
Supplemental material for “Simultaneous
inference for multiple marginal GEE models”
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bias-adjusted covariance matrix estimator is Σ̂adj = Ĥ−1B̂adjĤ
−1.

To derive the bias-adjusted covariance estimator for B̃, which may be used in the score

test, note that β̃−β ≈H−1(LTλ−U (β)) = −H−1(I −LT (LH−1LT )−1L)U(β), where

λ = (LH−1LT )−1LH−1U(β). Use this approximation instead of β̂− β ≈ −H−1U(β) in

the derivation corresponding to Mancl and DeRouen [1].

S.2 A simulation study based on a trial in actinic ker-

atosis

In a recently planned randomized controlled cross-over trial (EudraCT Number 2015-

002245-66), a standard photodynamic treatment A for actinic keratosis is compared to

three experimental treatment regimens B, C and D with differently reduced radiation doses

or fluencies. Each patient receives each treatment in a different skin patch and each patch
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is assumed to contain four lesions. The primary study endpoint is the proportion of cleared

lesions, which will be analysed in terms of a binary logistic regression GEE model. The

main secondary endpoint is pain, experienced during the radiation treatment, measured on

a visual analogue scale and analysed by a linear GEE model. We are interested in simul-

taneous confidence intervals comprising the differences in the proportion of cleared lesions

as well as the differences in mean pain scores between the reference treatment and each

of the three experimental treatments. The study is ongoing and we here investigate the

coverage probability of simultaneous confidence intervals according to equation (2) of the

main manuscript under the design assumptions of the actinic keratosis trial.

Simulation set-up

We considered sample sizes K = 30, K = 60, which is the planned sample size of the actual

trial after drop outs, and K = 100. For each setting 105 data sets were generated. We

assumed lesion clearance proportions of 0.7, 0.7, 0.6 and 0.4, in the reference treatment

A and the experimental treatments B, C, and D, respectively, and normally distributed

pain scores with mean values 5.5, 4.5, 4.5 and 3.5 and a common variance of 1. The

within-patient correlation was modelled by sampling a 20 dimensional latent multivariate

normal variable for each patient, with 16 dimensions corresponding to clearance of the

lesions and four dimensions directly resembling the pain scores under the four treatment

regimens. Binary lesion clearance resulted from dichotomization of the according latent

variables. Pain scores of different patches had a correlation of 0.6. The latent variables

for clearance had a correlation of 0.7 within the same patch and 0.5 between patches. The

latent variables for clearance and pain had a correlation of 0.25 within the same patch and

were uncorrelated between patches.

Simultaneous confidence intervals

To analyse the data using the multiple marginal model approach, a logistic GEE model
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was fit for the metric endpoint pain. In both models, patient was considered as clustering

variable and the independence working correlation was specified. The joint covariance

matrix of model coefficients was estimated with and without bias adjustment.

Simultaneous nominal 95% Wald confidence intervals according to equation (2) in the

main manuscript were calculated for the six coefficients β
(m)
i , i = 1, 2, 3, m = 1, 2, which

correspond to the differences in log-odds of lesion clearence and mean pain score between

the alternative treatment regimens and the reference treatment regimen. However, the

interpretation of the study results is planned for the difference in proportions not the dif-

ference in log-odds. Therefore an estimate for the joint covariance matrix for the differences

in lesion clearance proportions and the mean pain differences was derived by applying the

delta method (see e.g. chapter 3 in [2]), based on the estimates for the model coefficients

and their joint covariance matrix estimate.

Simultaneous nominal 95% Wald confidence intervals were then calculated for the dif-

ferences in proportion of lesion clearance and the differences of mean pain scores between

alternative therapy regimens and the standard regimen. Details are found in the supple-

mentary material.

For both parametrizations, the confidence intervals were calculated based on the joint

covariance matrix of model coefficients with or without bias adjustment and utilizing a crit-

ical quantile either from a multivariate normal distribution or a multivariate t-distribution

with K − 4 degrees of freedom.

Simulation results

Table S.1 shows the respective coverage probabilites obtained in the simulation. The results

are highly similar for both parametrizations, even though the delta method involves an

additional approximation. Without bias adjustment of the covariance matrix estimate and

using the multivariate normal distribution, the coverage probability is below the nominal

value, however the undercoverage decreases with increasing sample size. Utilizing either the

bias adjustment or the multivariate t-distribution improves the coverage probability, though

it remains below the nominal value in all scenarios. With both small sample adjustments

the observed coverage is closely above the nominal value and this approach is recommended

for the actual analysis.
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Table S.1: Simultaneous coverage probability (%) of simultaneous confidence intervals for

the six contrasts studied in the actinic keratosis trial. Lesion clearance efficacy is either

measured in log-odds or proportions of lesion clearance. In the latter case, the delta method

is applied in conjunction with the proposed methods to calculate confidence intervals. Con-

fidence intervals are based on the multivariate normal (MVN) or multivariate t-distribution

with K−4 degress of freedom (MVT) and are calculated with and without bias adjustment

of the covariance matrix estimate (column ’Bias adj.’). The considered sample sizes were

K = 30, 60 and 100. The nominal coverage probability is 95%. The results are based on

105 simulation runs.

Log-odds and means Proportions and means

Approximation Bias adj. K = 30 K = 60 K = 100 K = 30 K = 60 K = 100

MVN no 91.8 93.6 94.2 91.4 93.4 94.1

MVN yes 93.2 94.2 94.5 92.9 94.0 94.5

MVT no 94.4 94.7 94.8 94.2 94.5 94.8

MVT yes 95.5 95.2 95.1 95.3 95.0 95.1

S.3 Exemplary analysis using R

R package

The methods described in the main manuscript were implemented in the R package ’mmmgee’

[3] that is available from the CRAN repository. The package can be installed and loaded

in R using the commands

install.packages("mmmgee")

library(mmmgee)

To learn about the included functions for fitting GEE models, estimating the joint

covariance matrix and perform hypothesis or calculate confidence intervals use

help(geem2)

help(mmmgee)

help(mmmgee.test)
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Data set

An instance of the simulated data for the actinic keratosis example with K = 60 subjects

is included in the R package in the data set “keratosis”. The data set can be loaded in R

by the command

data(keratosis)

after loading the package. Each line of the data set corresponds to a single lesion. Lesions

are numbered consecutively within each treated patch in the variable “lesion”. The treat-

ment regimen applied to the respective patch is encoded in the variable“trt”and the patient

identity is encoded in the variable “id”. A value of 1 in the binary variable “clearance” cor-

responds to successful lesion clearance. The pain score, found in the variable “pain”, is

reported for each treatment application and is therefore identical for all four lesions within

a treated patch.

Confidence intervals for log-odds and mean differences

With the following R-code, the marginal GEE models are fit, a bias-adjusted estimate for

the joint covaraince matrix of the regression coefficients is calculated and simultaneous

confidence intervals based on a multivariate t-distribution with K − 4 = 56 degrees of

freedom are calculated for the differences in log-odds and the differences in mean pain

score between the alternative treatment regimens B, C and D and the reference regimen A.

library(mmmgee)

data(keratosis)

m1<-geem2(clearance~trt,id=id,data=keratosis,family=binomial,

corstr="independence")

m2<-geem2(pain~trt,id=id,data=keratosis[keratosis$lesion==1,],

family=gaussian,corstr="independence")

L1<-L2<-diag(1,4)[-1,]

mmmgee.test(x=list(m1,m2),L=list(L1,L2),

asymptotic=FALSE,biascorr=TRUE,conf.int=TRUE)

The resulting point estimates and simultaneous 95% confidence intervals are shown in

Table S.2
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Table S.2: Point estimates and simultaneous 95% confidence intervals for the difference

in log-odds of lesion clearance and the mean difference of pain scores between the standard

regimen A and the alternative therapy regimens B, C and D in the actinic keratosis example.

Estimate Lower Upper

Lesion clearance

B vs A 0.08 -0.41 0.56

C vs A -0.27 -0.78 0.24

D vs A -1.07 -1.65 -0.49

Pain score

B vs A -1.04 -1.32 -0.76

C vs A -1.14 -1.45 -0.82

D vs A -1.99 -2.27 -1.71

Confidence intervals for differences in proportions and mean differences

To calcualte intervals for the difference in proportions of lesion clearence rather than log-

odds, the delta method is applied. This means to approximate the distribution of a differ-

entiable function f = f(β̂) as N(f(β), ∂f(β̂)
∂β

ˆvar(β̂)∂f(β̂)
∂βT ). In the example, the calculation

is simplified if we use the no-intercept model
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for the binary endpoint, such that pk = exp(β
(1)
k )/(1+exp(β

(1)
k )) is the probability of clear-

ance in the k-th treatment group. Define f(β) = (p1, . . . , p4, β
(2)
0 , . . . , β

(2)
3 )T . Then ∂f(β̂)

∂β

is the diagonal matrix diag(p1(1 − p1), . . . , p1(4 − p4), 1, 1, 1, 1). Simultaneous confidence

intervals for contrasts of f(β) are then calculated based on the corresponding normal ap-

proximation of f(β̂), analogous to the calculation of confidence intervals for contrasts of β

as defined in equation (2) of the main manuscript.

The following R code is used to perform the calculations. Here the ’multcomp’ package

[4] is used to calculate the simultaneous confidence intervals based on the estimated propor-

tions and means and the delta method estimate of their covariance matrix. The first line

of code installs the ’multcomp’ package. As before, the critical value from a multivariate
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t-distribution with K − 4 = 56 degrees of freedom is used.

install.packages("multcomp")

library(mmmgee)

library(multcomp)

data(keratosis)

m1_noint<-geem2(clearance~trt-1,id=id,data=keratosis,

family=binomial,init.beta=rep(0.5,4))

m2<-geem2(pain~trt,id=id,data=keratosis[keratosis$lesion==1,],

family=gaussian,corstr="independence")

p<-exp(coef(m1_noint))/(1+exp(coef(m1_noint)))

G<-mmmgee(list(m1_noint,m2),biascorr=TRUE)

D<-diag(c( p*(1-p), rep(1,4) ))

Ldelta<-diag(1,8)[-c(1,5),]

Ldelta[1:3,1]<- -1

confint(glht(model=NULL,linfct=Ldelta,coef.=c(p,coef(m2)),

vcov.=D%*%vcov(G)%*%D,df=60-4))

The resulting point estimates and simultaneous 95% confidence intervals are shown in

Table S.3 In this example, the results would suggest that all alternative treatment regimens

result in a reduction of pain. For treatment B the difference in lesion clearance proportion is

in a reasonably close margin around zero, whereas for treament C and D a severe reduction

on efficacy cannot be excluded.
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Table S.3: Point estimates and simultaneous 95% confidence intervals for the difference in

proportion of lesion clearance and the mean difference of pain scores between the standard

regimen A and the alternative therapy regimens B, C and D in the actinic keratosis example.

Estimate Lower Upper

Lesion clearance

B vs A 0.02 -0.09 0.12

C vs A -0.06 -0.18 0.05

D vs A -0.26 -0.39 -0.12

Pain score

B vs A -1.04 -1.32 -0.76

C vs A -1.14 -1.45 -0.82

D vs A -1.99 -2.27 -1.71
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