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1 CBPtools instructions

For a detailed manual on using CBPtools, please visit the
online documentation (Reuter, 2019).

1.1 Installation

Python version 3.5 or higher is required to in-
stall CBPtools. All dependencies will be in-
stalled automatically along with CBPtools, except
for FSL’s PROBTRACKX2 which must be in-
stalled manually (see https://fsl.fmrib.ox.ac.uk/fsl/
fslwiki/FslInstallation). This tool is required to per-
form probabilistic tractography on diffusion-weighted
imaging data, making it only necessary when dif-
fusion magnetic resonance imaging (dMRI) data is
used. It is recommended to use a dedicated virtual
environment (see https://packaging.python.org/guides/
installing-using-pip-and-virtual-environments/). To in-
stall CBPtools, use the following pip command:

1 pip install cbptools

1.2 Usage example

For the following example we have supplied prepro-
cessed resting-state functional magnetic resonance imag-
ing (rsfMRI) and dMRI data for 100 randomly drawn
subjects out of the 300 subjects described in the Exam-
ple data section of the paper (mean age 28.46, 50 fe-
males, no significant age (t=-1.5, p=0.14) and education
(t=-1.04, p=.30) difference between genders). We have
also included the three region-of-interest (ROI) NIfTI im-
ages used in the paper, as well as the CBPtools con-
figuration files used to process the data. The exam-
ple data set was prepared and uploaded using DataLad
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version 0.12.0rc6 (Halchenko et al., 2019b) and has a
total size of 243GB. The example data can be down-
loaded using DataLad (Halchenko et al., 2019a), which
can be installed using apt-get or pip (note when using
pip, the git-annex dependency must be installed man-
ually; see https://www.datalad.org/get datalad.html).
The example data is located on a remote location linked
to through GitHub (https://github.com/inm7/cbptools-
example-data).

1 datalad install --get -data --source https ://

github.com/inm7/cbptools -example -data.git

Further downloading options (i.e., downloading only
parts of the data) are outlined in the online documen-
tation (Reuter, 2019).

A CBPtools project can be created using any of the
provided configuration files or a custom configuration
file. In this example, we will use the preSMA-SMA
ROI with the rsfMRI data (i.e., the ’config r presma-
sma rsfmri.yaml ’ configuration file), although it can be
substituted by any other configuration file to use differ-
ent settings and data.

1 cd cbptools -example -data

2 cbptools create --config config_r_presma -

sma_rsfmri.yaml --workdir /path/to/workdir

The workdir parameter is used to define where the
project files (and eventual output data) will be stored.
This can be any directory on the file system with read
and write access.

Any errors and warnings occurring during the setup
will be logged. The log is available either in the current
directory (if the setup fails) or in the log folder inside the
workdir (if the setup succeeds). If there are any errors,
the project will not be created until they are resolved. If
there are no validation problems, the project will be cre-
ated. Change directory to the workdir and execute the
workflow (contained in the Snakefile) using Snakemake,
which is installed as a dependency of CBPtools.
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1 cd /path/to/workdir

2 snakemake

For more customization of the Snakemake execution,
visit the Snakemake guide (Köster, 2019) or the execu-
tion section of the CBPtools online documentation.

1.3 Alternative settings

There are various ways to configure CBPtools either to
process data differently, or to receive different outputs.
In the paper, the focus was primarily on processing the
dMRI and rsfMRI modalities to obtain the group-level
parcellation results. Alternatively, users may be inter-
ested in using multi-session data or single-subject par-
cellations.

1.3.1 Clustering algorithms

The k-means algorithm is the default clustering algo-
rithm in CBPtools and was used to obtain the results in
the paper. However, CBPtools also provides agglomer-
ative (hierarchical) and spectral clustering as options to
obtain subject-level parcellations. The method to obtain
group-level parcellations remains the same irrespective
of subject-level parcellation algorithm.

All three available algorithms (k-means, agglomerative
clustering and spectral) use the scikit-learn package (Pe-
dregosa et al., 2011). To be more precise, the implemen-
tations are the KMeans, AgglomerativeClustering, and
SpectralClustering classes from the sklearn.cluster mod-
ule. The parameters that can be specified for each of
these algorithms can be adjusted in the configuration file.
Note that not all scikit-learn provided parameters can be
used, as some are not relevant for CBP or do not work
in conjunction with the other steps in the workflow. Im-
portantly, the clustering results strongly depend on the
parameters used. While CBPtools has a set of default pa-
rameters, they might not be the best choice for a given
ROI. For example, it is possible that the spectral cluster-
ing algorithm might not be able to properly compute a
(semi-)positive definite similarity matrix when inappro-
priate kernel parameters are used. In this case the spec-
tral clustering cannot proceed. For such cases, CBPtools
will log the issues that occur during the clustering step,
perform clustering for all possible subjects, and then halt
processing until the issues are resolved.

We would like to note that even if clustering succeeds,
the clustering results may not necessarily reflect biologi-
cally plausible results. For instance, a 2-cluster solution
may assign only one voxel to a cluster, and all other
voxels to the other cluster. If this happens, the group-
clustering (when mode is being used as the method) may
entirely remove the small cluster, resulting in a 1-cluster
solution being posed as a k-cluster solution. We therefore
strongly suggest investigating the single-subject cluster
labels and not only the group-level clustering results. It

is highly recommended to examine the log files to identify
any problematic runs and parameters causing them.

When using the connectivity input modality with spec-
tral clustering, it is possible to provide adjacency instead
of connectivity matrices. When choosing this option,
the adjacency matrices are given as input (in the con-
figuration field data: connectivity) and the spectral
clustering affinity must be set to precomputed (param-
eters: clustering: cluster options: kernel). This is
not possible with k-means or hierarchical clustering.

1.3.2 Multi-session input data

Multi-session data (i.e., a data set with multiple runs per
subject) can be processed using CBPtools by specifying
sessions in the configuration file. Data for each session
will be processed separately until the connectivity step
(Fig. 1c), after which the connectivity matrices for each
subject will be averaged across all the sessions. When
using multi-session data, the (optional) PCA transfor-
mation will be performed after averaging the connectiv-
ity matrices, whereas the other transformations (Fisher’s
Z transform and cubic transform) will be applied before
averaging. The averaged connectivity matrices will then
be used for the remainder of the procedure.

1.3.3 Single-subject parcellation

CBPtools can generate subject-specific reports (i.e., met-
rics and plots) in addition to the group-level clustering
reports if specified in the configuration file. This is done
by setting the field parameters: report: individ-
ual plots to true. This option is turned off by default
as it requires more computation time.

CBPtools can also be used to obtain parcellations in
the subject’s native space by setting the data: masks:
space field to ’native’. In this case all the data, i.e., the
input masks and the fMRI and dMRI data, should be
in the native space. Furthermore, the target mask is no
longer optional, as the default target mask is in a com-
mon reference space rather than native space. Note that
group-level parcellations cannot be computed in this sce-
nario. This is because CBPtools does not perform any
transformations to bring native data into a common ref-
erence space. As a result, only the subject-level parcel-
lations can be computed. When subject-specific input
masks are provided, CBPtools will generate all figures
for each individual subject, rather than generate output
at the group level. Steps F and G in Fig. 1 are skipped,
and step H will provide different output. Note that in
any case, seed and target masks must always be in the
same space.

1.3.4 Automatically deriving the seed mask
from an atlas

To accommodate the use of atlases, an atlas can be pro-
vided as a seed mask (i.e., in the data: masks: seed
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Fig. S1 Reference similarity heatmap example. Three dif-
ferent group clustering results (k = [2, 3, 4]) are compared to
three different reference NIfTI images. Note that the refer-
ence images as well as the group cluster results are derived
from dummy data, purely for illustration purposes.

field) instead of a binary seed mask. When doing so, the
atlas must be a NIfTI image using integers as region-
ids, and the region(s) to be used as a seed mask must
be specified as one or more region-ids (integers) in the
configuration file. A composite binary mask of the spec-
ified region(s) will be generated. Since CBPtools doesn’t
perform any image warping, the atlas has to be in the
same space as the input data (i.e., the time-series for the
rsfMRI modality, and the bedpostX output for the dMRI
modality).

1.3.5 Using reference images

To allow direct comparisons between the CBPtools
group-level cluster solutions and a priori parcellations
(e.g. the cytoarchitectonically defined preSMA-SMA
subdivision as used in the paper) one or more reference
images can be provided. These images must be in the
same space as the seed mask, covering the same voxels,
and have at least two clusters. A similarity score (ei-
ther Cramer’s V measure, adjusted Rand index, or ad-
justed mutual information score) will be computed be-
tween each reference image and each group clustering
solution. The output will be provided as a tab-separated
file, as well as a heatmap. An example of the latter is
shown in Fig. S1.

1.4 Running multiple CBPtools projects
in parallel

Clustering of input data from the rsfMRI and dMRI
modalities are run separately (i.e., no multi-modal so-
lution is provided), and the various configuration op-
tions can be different between the modalities. CBPtools
cannot create a project that processes both rsfMRI and
dMRI data within a single workflow. However, it is pos-
sible to create multiple projects (using different configu-

ration files) to subsequently run them in parallel by ex-
ecuting snakemake once per project. On a system that
is not managed by a scheduler (e.g. SLURM, qsub, HT-
Condor, etc.) it is recommended to specify the number
of jobs and amount of memory each snakemake instance
can use. If a scheduler is being used, this is not necessary.
For example, on a system with 8 threads and 30 GB of
memory the following approach can be used to initialize
two CBPtools projects (with each having access to half
of the available resources):

1 cbptools create -c config_r_presma -sma_rsfmri.

yaml -w r_presma -sma_rsfmri

2 cbptools create -c config_r_amygdala_dmri.yaml

-w r_amygdala_dmri

Two terminal windows can then be opened, to run the
following commands (one in each terminal):

1 cd r_presma -sma_rsfmri

2 snakemake -j 4 --resources mem_mb =15000

and

1 cd r_amygdala_dmri

2 snakemake -j 4 --resources mem_mb =15000

2 Supplementary methods

2.1 Connectivity

For the rsfMRI modality, connectivity is calculated using
linear correlations between the ROI voxels of the time-
series of a subject (x), and the target voxels of the time-
series of the same subject (y). The target can be any part
of the brain, although the example data in the paper uses
a subsampled whole-brain gray matter mask. Both x and
y are first standardized. The correlation is performed by
transposing y and taking its dot product of x, then divid-
ing this by the number of voxels in x and transposing the
result again. In the event there are voxels without suffi-
cient variance (i.e., variance not exceeding a threshold of
the smallest representable number in Python’s NumPy
package, np.finfo(np.float32).eps) within either the tar-
get or ROI masked time-series, the standardization will
have failed (i.e., a division by zero will have occurred on
account of the standard deviation being zero). Hence, all
correlations resulting from a computation with a NaN
(not a number) element are set to zero. If a Fisher’s
Z transform is to be performed on the connectivity ma-
trices, then values at precisely 1 or -1 will result in an
infinite value. We set them slightly below 1 or above -1
in order to prevent this.

2.2 Median filtering

Median filtering is an optional procedure which can be
applied to ’clean-up’ artifacts in a seed mask. Sometimes,
a seed mask contains small holes, single-voxel strands
that portrude from the mask, or sharp borders. These
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Fig. S2 Median filtering example. The top row shows a
selected voxel (center) and its nearest neighbor voxels (off-
center), where 1 means the voxel is part of the mask, and 0
means it is not. The view is reduced to 2D for simplicity.
The middle row shows all voxel values ordered incrementally.
The median value is highlighted in bold. The bottom row
shows the same as the top row after the selected voxel has its
value changed with the median of itself and its neighbors. a
Median filtering that results in the voxel being set to 0 (i.e.,
not part of the mask). b Median filtering that results in the
voxel being set to 1 (i.e., part of the mask). c Median filtering
that does not result in any changes (i.e., the voxel remains
part of the mask)

artifacts usually arise in hand-drawn ROIs. Median fil-
tering may be a useful tool to get rid of such artifacts.
The reason why median filtering is particularly useful for
hand-drawn masks is that they usually lack continuity in
the ’depth’ direction when drawing in 2D. When such ar-
tifacts are not expected, e.g. for atlas-derived ROIs, this
is not a recommended option. For each selected voxel
within the binary mask ROI, median filtering reassesses
its selection based on its neighborhood. To apply median
filtering, the spatial nearest neighbors are taken for each
voxel (resulting in a 3x3x3 matrix of the selected voxel
and its neighbors) and the median selection value (i.e.,
median of all the values in the matrix) is assigned as the
new selection value for this voxel. Fig. S2 shows three
examples of this procedure simplified to a 2-dimensional
space. The first example (Fig. S2a) shows a selected
voxel that has too few neighbors that are part of the
mask. As a result, the voxel is removed from the mask
by having its value set to zero (the median). The second
example (Fig. S2b) instead shows a selected voxel that
is not part of the mask, but has many neighbors that
are part of it. The selected voxel is added to the mask
by having its value set to one. Lastly, the third exam-
ple (Fig. S2c) shows a selected voxel that is part of the
mask and has many neighbors that are likewise part of
the mask. Its value remains unchanged, as the median is
the same as its original value.

2.3 Nuisance signal regression

Nuisance signals (i.e., confounds) can optionally be sup-
plied as a tab-separated file per subject. This file is ex-
pected to have a header on the first row naming each col-
umn. The column names can be used to select columns
to be used as nuisance regressors (note that if no columns
are specified, then all columns are used). Commonly used
columns may be white matter, cerebrospinal fluid, gray
matter, or global signal, as well as motion regressors to
correct for the effects of head motion in the scanner. If
required, a linear trend and constant should be added as
columns to the files. The nuisance signal removal is ap-
plied as a linear regression of the confound time-points
on the time-series of the corresponding subject and re-
taining the residuals as the new signal.

2.4 Relabeling strategy

Relabeling is applied to obtain a group-level parcellation
by combining subject-level parcellations. The subject-
level cluster labels (per k) are obtained by applying the k-
means (or, alternatively, agglomerative or spectral) clus-
tering algorithm. This results in a cluster labeling per
subject, per k. Fig. S3a shows an example set of labels
for k = 5. The cluster-ids (represented by numbers and
colors) are arbitrary (i.e., they can be permuted), yet in
this particular example all subjects have identical clus-
terings (the dotted line separates the different clusters).

To interpret the parcellations over a population, the
parcellations must be combined into a single (group)
parcellation per k by computing the most representa-
tive cluster assignment for each ROI voxel across sub-
jects. As the cluster-ids per subject are arbitrary, they
need to be reassigned such that the most similar clusters
between subjects get assigned the same cluster-id. To
achieve this, we check all permutations of the cluster-id
(Fig. S3d) per subject and compare the permutation-
derived labels to a reference clustering representative to
all subjects. The permutation most similar to the refer-
ence is used to reassign cluster-ids for that subject.

The reference clustering (Fig. S3b) is obtained by per-
forming hierarchical clustering (Fig. S3c) with Hamming
distance on all of the subject labels (Nguyen and Caru-
ana, 2007). Hamming distance is insensitive to cluster-id
permutations as as it measures the minimum number of
substitutions required to change the set of cluster labels
from one subject to that of another. Once all subject
labels have been relabeled to best match the reference
clustering, they become comparable. The most frequent
assignment for each voxel is then obtained by taking the
mode over the relabeled cluster-ids and used as the group
level parcellation (Fig. S3e).

Note that in Fig. S3, all subjects clusterings are iden-
tical for the assignment of cluster-ids. This is an ideal
situation, but not a realistic one. In real-world data, it
is common to see differences in relabeled results.
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Fig. S3 Relabeling strategy to obtain group cluster labels. a Four example label sets obtained from clustering, where each
color/number represents a cluster-id that is assigned randomly. Each of the subjects has an identical clustering, yet the
cluster-ids differ. b Reference cluster labels obtained through hierarchical clustering of the subject labels in a. c Illustration
of hierarchical clustering performed on 5 voxels. d Cluster-ids are swapped for each possible permutation of the cluster-ids
array. Each permutation is then tested for similarity against the reference clustering from b. e The cluster labels for each
subject after the relabeling strategy has been applied. The mode is obtained for each voxel, resulting in the group clustering
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3 Supplementary results

For all example ROIs outlined in the paper we have ob-
tained additional results, i.e., validity metrics and cluster
solutions. Fig. S4 contains all the results provided as out-
put by CBPtools for the preSMA-SMA ROI. While the
results in Fig. S4a have been shown in full for the R insula
and R amygdala ROIs, Fig. S4b contains the relabel ac-
curacy as described in the paper (Sect. 2.1.5 Individual-
and group-level clustering), showing that in particular for
the dMRI 2-cluster solution the percentage of overlap is
high. Generally, the adjusted rand index (ARI) is more
credible than the percentage of overlap as it corrects for
chance grouping of voxels within a cluster solution. The
cophenetic correlation is displayed in Fig. S4c. It is a
measure on how well the pairwise distances between the
individual cluster labels (i.e., the cluster labels generated
from each subject’s connectivity matrix) are preserved in
the group-level clustering. In this case it is the mode of
the relabeled individual clustering results for each value
of k, as described in the paper (Sect. 2.3 Example data).

The result is particularly high for the chosen 2-cluster
solution for both dMRI and rsfMRI. Fig. S4d shows the
remaining 3, 4, and 5-cluster solutions, although both
internal and external validity suggests a 2-cluster solu-
tion. The same remaining results are presented for the
R insula (Fig. S5) and the R amygdala (Fig. S6). Note
that in Fig. S6b a left-sided view is provided for some of
the clusterings, as the right-sided view used for all ROI
representations obscures one or more of the clusters.

3.1 Benchmarks

Benchmarks were obtained using Snakemake’s (Köster
and Rahmann, 2012) benchmarking utilities. Snake-
make uses the psutil package to obtain the values for
various benchmarking metrics. We have benchmarked
the rsfMRI and dMRI workflows for the preSMA-SMA
ROI parcellation as described in the paper. The bench-
marks were performed on a system with 30 total available
threads and 100GB total available random-access mem-
ory (RAM). The data set was stored on a shared remote
storage server, hence competing for file read and write
speed (I/O) may have increased the duration of each in-
dividual task. The entire procedure for the rsfMRI data
took 1 day, 14 hours, 56 minutes, and 1 second. For the
dMRI data, it took 3 days, 23 hours, 42 minutes, and 23
seconds.

Tables 1, 2, 3, 4, 5, and 6 show the total task dura-
tion, maximum resident set size (RSS), maximum virtual
memory size (VMS), maximum unique set size (USS),
maximum proportional set size (PSS), and maximum
CPU load in seconds for regional CBP of the preSMA-
SMA ROI performed on rsfMRI data. Tables 7, 8, 9, 10,
11, and 12 show the same for the dMRI data.

The RSS, VMS, PSS, and USS refer to the memory
usage during the execution of a task, with each metric

providing a different measurement. Due to overlap be-
tween metrics it is not correct to sum them, instead they
should be assessed individually. USS is likely the most
representative metric for determining how much mem-
ory is actually being used by a process (Rodola, 2019).
Note that the reported benchmarks are per run of a task,
where each task ran a number of times equal to the n
jobs column. For example, the connectivity task ran 300
times (once per subject), whereas the kmeans clustering
task ran 1200 times (4 times per connectivity matrix,
once for each requested value of k). Other metrics, such
as I/O in, and I/O out were reported by Snakemake but
not included here for the sake of brevity. All reported
values are in megabytes (MB), except duration which is
in the hours:minutes:seconds format. Since benchmark-
ing is recorded in seconds, tasks that took less than half
a second are rounded to 0 seconds.

Accurately testing runtime and CPU usage is difficult
as it depends on many factors that can differ strongly be-
tween systems and configuration settings. For example,
the size of the input data and ROI, as well as using lo-
cal or shared computational resources may influence any
of the reported metrics. With data sets as large as the
HCP data, users will often be limited to using shared
resources when processing this data with CBPtools. To-
tal compute time for the entire procedure may therefore
vary considerably even between runs on the same sys-
tem. Thus, all reported benchmarks should only be in-
terpreted as a loose guideline of what can be expected
from this software.

3.2 Amygdala long-range dMRI connec-
tivity

The dMRI clusterings of R amygdala reveal a medio-
lateral separation that splits further along the same
medio-lateral axis at higher clustering granularity. Due
to the strangeness of this layered pattern of clusterings
as well as the problems inherent to probabilistic tractog-
raphy and the poor signal to noise ratio of MRI in sub-
cortical regions, we have further investigated the source
of this clustering. To determine whether this pattern is
driven solely by local connectivity rather than differen-
tiation based on long-range connectivity profiles of the
ROI voxels, the ROI and a border around it were ex-
cluded from the whole-brain gray matter target mask in
a follow-up analysis. The exclusion of the ROI along with
borders of 5, 20, and 40 mm around it were separately
analyzed. Next, the ARI was computed between these
clustering results and the original R amygdala cluster-
ing results (Fig. 5 and Fig. S6) to assess their similar-
ity. Lastly, the target voxel contribution to the k = 2
clustering of the R amygdala was evaluated. The dMRI
connectivity matrices, computed with PROBTRACKX2
as described in the paper (Sect. 2.1.4 Connectivity com-
putation), were averaged for all subjects, resulting in an
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Table 1. Duration per task for the rsfMRI preSMA-SMA parcellation

task mean std min max n jobs

process masks 00:00:00 - - - 1
connectivity 00:07:51 00:02:47 00:02:55 00:13:25 300
kmeans clustering 00:03:07 00:00:52 00:01:25 00:05:14 1200
internal validity 00:00:06 00:00:00 00:00:05 00:00:07 300
group-level clustering 00:00:01 00:00:01 00:00:00 00:00:04 4
group similarity 00:00:07 - - - 1
plot individual similarity 00:00:02 00:00:00 00:00:01 00:00:02 4
plot group similarity 00:00:00 - - - 1
plot labeled ROI 00:00:04 00:00:00 00:00:03 00:00:04 24
plot internal validity 00:00:00 00:00:00 00:00:00 00:00:00 3

Table 2. Maximum resident set size (RSS) per task in MB for the rsfMRI preSMA-SMA parcellation

task mean std min max n jobs

process masks 134.43 - - - 1
connectivity 468.99 637.46 205.34 3532.4 300
kmeans clustering 393.53 39.5986 318.15 464.35 1200
internal validity 298.86 11.713 283.92 373.33 300
group-level clustering 152.99 2.34687 149.63 155.21 4
group similarity 147.43 - - - 1
plot individual similarity 167.63 0.180278 167.5 167.94 4
plot group similarity 134.37 - - - 1
plot labeled ROI 158.79 0.244233 158.11 159.27 24
plot internal validity 137.63 2.22257 134.51 139.52 3

Table 3. Maximum virtual memory size (VMS) per task in MB for the rsfMRI preSMA-SMA parcellation

task mean std min max n jobs

process masks 3191.87 - - - 1
connectivity 7465.29 36.2322 6958.66 7556.79 300
kmeans clustering 3644.03 38.031 3599.16 3676.32 1200
internal validity 3495.10 24.345 3459.93 3564.05 300
group-level clustering 3322.00 31.1755 3268 3340.02 4
group similarity 3338.63 - - - 1
plot individual similarity 3372.64 0 3372.64 3372.64 4
plot group similarity 3191.89 - - - 1
plot labeled ROI 3383.47 0.0128493 3383.45 3383.5 24
plot internal validity 3261.89 49.4904 3191.9 3296.89 3
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Table 4. Maximum unique set size (USS) per task in MB for the rsfMRI preSMA-SMA parcellation

task mean std min max n jobs

process masks 95.21 - - - 1
connectivity 427.68 642.234 162.85 3490.46 300
kmeans clustering 352.90 37.9777 276.42 418.92 1200
internal validity 257.04 11.8793 240.17 332.17 300
group-level clustering 109.41 2.91085 105.21 112.8 4
group similarity 102.34 - - - 1
plot individual similarity 124.50 1.74108 123.23 127.49 4
plot group similarity 90.58 - - - 1
plot labeled ROI 114.10 0.109287 113.89 114.25 24
plot internal validity 92.98 1.66349 90.64 94.36 3

Table 5. Maximum proportional set size (PSS) per task in MB for the rsfMRI preSMA-SMA parcellation

task mean std min max n jobs

process masks 114.06 - - - 1
connectivity 433.62 642.058 173.45 3497.87 300
kmeans clustering 367.71 37.9632 291.49 434.04 1200
internal validity 272.84 11.7443 255.77 346.41 300
group-level clustering 120.80 4.83297 114.68 126.69 4
group similarity 110.40 - - - 1
plot individual similarity 140.05 6.08659 133.26 147 4
plot group similarity 98.17 - - - 1
plot labeled ROI 116.17 0.71444 115.42 117.78 24
plot internal validity 99.26 1.82353 96.69 100.73 3

Table 6. Maximum CPU load per second for each task in MB for the rsfMRI preSMA-SMA parcellation

task mean std min max n jobs

process masks 0.00 - - - 1
connectivity 3.36 3.94097 0.54 21.85 300
kmeans clustering 260.10 48.1961 190.88 428.98 1200
internal validity 369.16 25.1319 300.23 449.27 300
group-level clustering 36.26 30.492 0 83.56 4
group similarity 92.30 - - - 1
plot individual similarity 111.55 2.65929 107.93 115.21 4
plot group similarity 0.00 - - - 1
plot labeled ROI 71.60 9.28152 57.32 86.26 24
plot internal validity 0.00 0 0 0 3
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Table 7. Duration per task for the dMRI preSMA-SMA parcellation

task mean std min max n jobs

process masks 00:00:00 - - - 1
connectivity 00:01:24 00:00:19 00:00:34 00:02:41 300
kmeans clustering 00:07:50 00:02:10 00:03:49 00:12:25 1200
internal validity 00:00:11 00:00:00 00:00:10 00:00:11 300
group-level clustering 00:00:01 00:00:01 00:00:00 00:00:04 4
group similarity 00:00:08 - - - 1
plot individual similarity 00:00:02 00:00:00 00:00:01 00:00:02 4
plot group similarity 00:00:00 - - - 1
plot labeled ROI 00:00:04 00:00:00 00:00:03 00:00:04 24
plot internal validity 00:00:00 00:00:00 00:00:00 00:00:00 3

Table 8. Maximum resident set size (RSS) per task in MB for the dMRI preSMA-SMA parcellation

task mean std min max n jobs

process masks 134.91 - - - 1
connectivity 1151.82 108.917 859.34 1503.99 300
kmeans clustering 748.99 97.3975 547.84 915.24 1200
internal validity 468.60 31.9433 418.03 613.05 300
group-level clustering 151.87 2.41363 149.03 155.39 4
group similarity 146.80 - - - 1
plot individual similarity 164.48 5.83578 154.38 168.08 4
plot group similarity 134.84 - - - 1
plot labeled ROI 158.76 0.30115 158.21 159.38 24
plot internal validity 134.50 0.257207 134.14 134.7 3

Table 9. Maximum virtual memory size (VMS) per task in MB for the dMRI preSMA-SMA parcellation

task mean std min max n jobs

process masks 3191.92 - - - 1
connectivity 4410.93 83.9623 4217.11 4737.08 300
kmeans clustering 4030.72 88.4106 3733.02 4098.15 1200
internal validity 3696.22 38.0761 3636.38 3829.43 300
group-level clustering 3304.01 36.005 3267.99 3340.02 4
group similarity 3338.65 - - - 1
plot individual similarity 3355.92 28.9974 3305.7 3372.68 4
plot group similarity 3191.91 - - - 1
plot labeled ROI 3383.48 0.0495798 3383.25 3383.51 24
plot internal validity 3191.90 0.00816497 3191.89 3191.91 3
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Table 10. Maximum unique set size (USS) per task in MB for the dMRI preSMA-SMA parcellation

task mean std min max n jobs

process masks 93.45 - - - 1
connectivity 1109.09 109.136 821.17 1463.93 300
kmeans clustering 707.34 97.206 504.75 869.72 1200
internal validity 425.04 31.7783 373.96 570 300
group-level clustering 108.36 1.9292 106.6 111.35 4
group similarity 103.77 - - - 1
plot individual similarity 121.44 5.85576 111.75 127.2 4
plot group similarity 91.03 - - - 1
plot labeled ROI 114.06 0.187705 113.59 114.66 24
plot internal validity 90.72 0.139603 90.52 90.83 3

Table 11. Maximum proportional set size (PSS) per task in MB for the dMRI preSMA-SMA parcellation

task mean std min max n jobs

process masks 113.51 - - - 1
connectivity 1128.20 109.084 839.71 1482.42 300
kmeans clustering 723.25 97.2084 519.75 883.56 1200
internal validity 440.07 31.6481 391.82 585.34 300
group-level clustering 118.84 2.76936 115.67 122.74 4
group similarity 111.25 - - - 1
plot individual similarity 135.31 9.35706 120.77 146.83 4
plot group similarity 99.00 - - - 1
plot labeled ROI 116.08 0.71373 115.54 118.66 24
plot internal validity 97.63 0.417692 97.04 97.95 3

Table 12. Maximum CPU load per second for each task in MB for the dMRI preSMA-SMA parcellation

task mean std min max n jobs

process masks 0.00 - - - 1
connectivity 98.11 1.71986 85.59 101.79 300
kmeans clustering 208.21 32.7676 162.54 295.77 1200
internal validity 365.97 13.5011 343.32 418.99 300
group-level clustering 32.65 35.3829 0 84.58 4
group similarity 88.92 - - - 1
plot individual similarity 91.03 52.8042 0 128.09 4
plot group similarity 0.00 - - - 1
plot labeled ROI 68.86 8.37796 49.62 80.61 24
plot internal validity 0.00 0 0 0 3
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ROI voxel by target voxel matrix. The ROI voxels were
separated by cluster, and the connectivity values of each
target voxel to all ROI voxels within a cluster were then
averaged. This provided an average connectivity value
of each target voxel to each of the two clusters. The
Euclidean distance between the connectivity values of
both clusters for each target voxel was then calculated.
The higher this distance, the larger of a contribution this
target voxel provided to separating both clusters. This
array of Euclidean distance values per target voxel was
then z-scored and values below 1.96 were removed. The
remaining target voxels were considered to be the most
important features as per their contribution to the clus-
ter separation for k = 2.

While the visual representations of the clusters
mapped onto the R amygdala ROI (Fig. S7) look rel-
atively similar, the ARI scores reveal that this is not the
case as more local connections are removed from the tar-
get features (Fig. S8). The k = 2 cluster solution for the
5mm run had an ARI of .9, whereas the 20 mm and 40
mm solutions had .8 and .46, respectively. At higher clus-
tering granularities, the 40 mm solution remained at low
similarity to the original clustering solution. However,
while the 5 mm and 20 mm results each revealed less
similarity at the k = 3 granularity, they became more
similar to the original solution again at k = 4 and 5.
Nonetheless, two of the three assessed validity indices,
the Silhouette index and the Calinski-Harabasz index,
indicated that the 2-cluster solution best fitted the data
as per the original clustering results, as well as the 5 mm,
20 mm, and 40 mm results. The Davies-Bouldin index
suggested a best fitting 3-cluster solution for the original
results as well as the 5 mm results. For the 20 mm and
40 mm results, however, the Davies-Bouldin index in-
stead suggested a better fitting 5-cluster solution. Taken
together with a decrease in similarity as a larger area
of local connectivity was excluded from the target fea-
tures, this may hint that a more strongly coherent 2- or
3-cluster solution was driven predominantly by patterns
in local connectivity.

Fig. S9 is a visual representation of the target vox-
els that most contributed to the separation of clusters of
the original 2-cluster solution. These voxels are mostly in
the same hemisphere as the ROI, with a handful of vox-
els located in the left hemispheric amygdala. However,
more interhemispheric connections may be expected to
the left amygdala, as the medial amygdala is suggested
to be strongly connected with its interhemispheric coun-
terpart. Only a handful of voxels being present here may
have been caused by lower sensitivity in probabilistic
tractography on account of the thresholds used to im-
prove specificity and counteract false positives.
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rsfMRI

k = 2 k = 3 k = 4 k = 5

dMRI
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a

Fig. S4 R preSMA-SMA validity metrics and parcels. a Internal validity scores (the Silhouette index, the Davies-Bouldin
index, and the Calinski-Harabasz index) for all tested solutions (k = [2, 3, 4, 5]). b Accuracy of the relabeling for each
individual clustering to the group-clustering, with the cluster number k on the x-axis, comparing rsfMRI (blue) to dMRI
(orange). c Cophenetic correlation scores of the reference clusterings for k = [2, 3, 4, 5] based on the rsfMRI (blue) and dMRI
(orange) modalities. d Parcels for the k = [2, 3, 4, 5] cluster solutions for both dMRI (top row) and rsfMRI (bottom row).
The view is from the right side of the ROI with the posterior on the left and anterior on the right (the same view as applied
in Fig. 2B of the paper)
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c

ba

Fig. S5 Validity metrics for the R insula. a Group similarity scores (i.e., the similarity of individual clusterings to the
group-clustering) using the ARI, with the cluster number k on the x-axis, comparing rsfMRI (blue) to dMRI (orange). b
Accuracy of the relabeling of individual subject cluster labels to a reference clustering, calculated as the percentage of overlap
between both clusterings. c Cophenetic correlation scores of the reference clustering for k = [2, 3, 4, 5] based on the rsfMRI
(blue) and dMRI (orange) modalities
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rsfMRI

k = 2 k = 3 k = 4 k = 5

dMRI

b

a

Fig. S6 R amygdala metrics and parcels for the 2, 3, 4, and 5-cluster solutions. a Cophenetic correlation scores of the
reference clustering for both rsfMRI (blue) and dMRI (orange). b Cluster solutions for all investigated values of k mapped
onto the original ROI image, for both dMRI (top row) and rsfMRI (bottom row)
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No Seed (40mm)
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Anterior
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Right

No Seed (20mm)

k = 2 k = 3 k = 4 k = 5

No Seed (5mm)

k = 2 k = 3 k = 4 k = 5

Original

Superior

Inferior

Anterior

Posterior

Right

Fig. S7 R amygdala parcels for k = [2, 3, 4, 5] using different target features. The top left shows the parcels when ROI voxels
have a connectivity profile containing all whole-brain gray matter voxels. The top right shows the parcels that result from
extracting the ROI voxels from the target features including a border of 5 mm around the ROI. The bottom left and right
show the same, but with a border of 20 and 40 mm respectively
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Fig. S8 Similarity between R amygdala clustering results where local connectivity was excluded from the target features
(Fig. S7) and the clustering results where all whole-brain gray matter voxels were used as target features (Fig. 5 and Fig. S6),
for k = [2, 3, 4, 5]

Posterior Right Superior

Fig. S9 Mapping of target voxels (red) that most contribute to the k = 2 cluster formation of the R amygdala (blue). The
top row of figures was generated using Nilearn’s plotting tools (Abraham et al., 2014), whereas the bottom row was generated
using Mango (multi-image analysis GUI; http://ric.uthscsa.edu/mango/)
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b

Cyto rsfMRI

a

ARI = 0.82 ARI = 0.83 ARI = 0.83 ARI = 0.85 ARI = 0.87

Fig. S10 Individual subject clustering solutions for the rsfMRI 2-cluster solution of the R preSMA and SMA ROI. a
The 2-cluster solutions of the combined R preSMA and SMA ROI for the cytoarchitectonically defined (Ruan et al., 2018)
subdivision from the Jülich histological atlas (Eickhoff et al., 2005), and the rsfMRI connectivity-based group-level parcels.
b Subject-level clusterings of five subjects for the rsfMRI preSMA-SMA 2-cluster solution and their adjusted Rand index
(ARI) values to the rsfMRI group-level parcellation
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