Anti-inflammatory withanolides from physalis minima

Jiangping Wu, [†] Tao Zhang, [†] Meng Yu, [†] Hongmei Jia, [†] Hongwu Zhang, [†] Qiongming Xu, [‡] Yucheng Gu, *, [§] and Zhongmei Zou *, [†]

[†]Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China;
[‡]College of Pharmaceutical Science, Soochow University, Suzhou 215123, China;
[§]Syngenta, Jealott's Hill International Research Centre, Berkshire RE42 6EY, UK.

* Corresponding author: Zhongmei Zou, Yucheng Gu, PhD;

Tel/Fax: 86-1057833290

E-mail address: zmzou@implad.ac.cn; yucheng.gu@syngenta.com

Index

page	contents
S4	Table S1 ¹³ C-NMR (150 MHz) spectroscopic data for compounds 6–10 in
	CD ₃ OD.
S 5	Table S2 ¹ H-NMR (600 MHz) spectroscopic data for compounds 6-10 in
	CD ₃ OD.
S 6	HR-ESI-MS spectrum of compound 1, ¹ H NMR spectrum of compound 1 in
	CD ₃ OD at 600 MHz.
S7	Detailed ¹ H NMR spectrum of compound 1 in CD ₃ OD at 600 MHz, Detailed ¹ H NMR spectrum of compound 1 in CD ₃ OD at 600 MHz.
S 8	¹³ C-NMR spectrum of compound 1 in CD ₃ OD at 150 MHz, Detailed ¹³ C NMR spectrum of compound 1 in CD ₃ OD at 150 MHz.
S9	Detailed ¹³ C NMR spectrum of compound 1 in CD ₃ OD at 150 MHz, HSQC spectrum of compound 1 in CD ₃ OD.
S10	HMBC spectrum of compound 1 in CD ₃ OD, COSY spectrum of compound 1 in
	CD ₃ OD.
S11	NOESY spectrum of compound 1 in CD ₃ OD.
S12	ECD spectrum of 1
S13	HR-ESI-MS spectrum of compound 2 , ¹ H NMR spectrum of compound 2 in CD ₃ OD at 600 MHz.
S14	Detailed ¹ H NMR spectrum of compound 2 in CD ₃ OD at 600 MHz, Detailed ¹ H
	NMR spectrum of compound 2 in CD ₃ OD at 600 MHz.
S15	¹³ C NMR spectrum of compound 2 in CD ₃ OD at 150 MHz, Detailed ¹³ C NMR spectrum of compound 2 in CD ₃ OD at 150 MHz.
S16	Detailed ¹³ C NMR spectrum of compound 2 in CD ₃ OD at 150 MHz, HSQC
	spectrum of compound 2 in CD ₃ OD.
S17	HMBC spectrum of compound 2 in CD ₃ OD, COSY spectrum of compound 2 in
	CD ₃ OD.
S18	NOESY spectrum of compound 2 in CD ₃ OD.
S19	HR-ESI-MS spectrum of compound 3 , ¹ H NMR spectrum of compound 3 in
S20	Detailed ¹ H NMR spectrum of compound 3 in CD ₃ OD at 600 MHz, Detailed ¹ H NMR spectrum of compound 3 in CD ₃ OD at 600 MHz.

S21	3 C NMR spectrum of compound 3 in CD ₃ OD at 150 MHz, Detailed 13 C NMR spectrum of compound 3 in CD ₃ OD at 150 MHz
S22	Detailed ¹³ C NMR spectrum of compound 3 in CD ₃ OD at 150 MHz, HSQC spectrum of compound 3 in CD ₃ OD.
S23	HMBC spectrum of compound 3 in CD ₃ OD, COSY spectrum of compound 3 in
	CD ₃ OD.
S24	NOESY spectrum of compound 3 in CD ₃ OD.
S25	HR-ESI-MS spectrum of compound 4, ¹ H NMR spectrum of compound 4 in
S26	CD_3OD at 600 MHz. Detailed ¹ H NMR spectrum of compound 4 in CD_3OD at 600 MHz, Detailed ¹ H NMR spectrum of compound 4 in CD_3OD at 600 MHz. ¹³ C NMR spectrum of compound 4 in CD_2OD at 150 MHz. Detailed ¹³ C NMR
S27	spectrum of compound 4 in CD_3OD at 150 MHz.
S28	Detailed ¹³ C NMR spectrum of compound 4 in CD ₃ OD at 150 MHz, HSQC
	spectrum of compound 4 in CD_3OD .
S29	HMBC spectrum of compound 4 in CD ₃ OD, COSY spectrum of compound 4 in
	CD ₃ OD.
S30	NOESY spectrum of compound 4 in CD ₃ OD.
S31	HR-ESI-MS spectrum of compound 5, ¹ H NMR spectrum of compound 5 in CD_3OD at 600 MHz.
S32	Detailed ¹ H NMR spectrum of compound 5 in CD ₃ OD at 600 MHz, Detailed ¹ H
S33	NMR spectrum of compound 5 in CD ₃ OD at 600 MHz. ¹³ C NMR spectrum of compound 5 in CD ₃ OD at 150 MHz, Detailed ¹³ C NMR spectrum of compound 5 in CD ₃ OD at 125 MHz.
S34	Detailed ¹³ C NMR spectrum of compound 5 in CD ₃ OD at 150 MHz, HSQC spectrum of compound 5 in CD ₃ OD.
S35	HMBC spectrum of compound 5 in CD ₃ OD, COSY spectrum of compound 5 in
	CD ₃ OD.
S36	NOESY spectrum of compound 5 in CD ₃ OD.

NO.	6	7		9	<u>30D.</u> 10	
1	210.2	212.5	204.1	205.6	206.0	
1	210.5	212.5	204.1	203.0	128.7	
2	41.3	42.2	128.7	129.6	128.7	
3	/3.6	70.5	141.7	142.3	142.5	
4	36.5	78.6	36.0	37.2	37.1	
5	61.5	65.4	77.2	78.5	78.1	
6	62.4	59.7	73.4	75.1	75.4	
7	25.1	26.7	26.8	28.8	30.8	
8	35.7	34.8	35.4	37.5	37.7	
9	38.6	39.8	36.3	37.4	38.2	
10	52.1	52.0	52.6	52.6	52.5	
11	22.2	21.8	23.2	24.1	22.9	
12	37.9	30.3	38.3	40.8	40.7	
13	52.3	55.0	52.2	53.2	54.0	
14	81.3	81.2	82.4	82.4	84.0	
15	84.4	33.0	83.6	83.4	76.5	
16	122.1	37.9	120.4	127.3	127.8	
17	162.6	86.7	162.2	158.9	154.6	
18	16.8	20.8	16.1	17.9	19.9	
19	14.3	15.2	15.0	16.0	16.7	
20	35.0	79.3	36.1	35.5	35.2	
21	17.8	19.0	17.2	19.8	18.6	
22	78.9	81.6	78.6	79.7	79.4	
23	32.1	33.9	32.4	32.9	32.7	
24	150.8	151.0	150.8	150.1	150.5	
25	121.8	121.7	121.2	122.2	122.0	
26	167.7	169.6	167.4	166.8	166.7	
27	12.5	11.2	11.6	13.0	13.0	
28	19.7	20.4	20.6	18.5	20.4	
CH ₃ CO-1'	170.1	-	170.6	-	-	
CH ₃ CO-2'	20.9	-	21.9	-	-	
OMe	53 7	_	_	-	_	
	55.1					

Table S1 ¹³C-NMR (150 MHz) spectroscopic data for compounds 6–10 in CD₃OD.

NO.	6	7	8	9	10
2	α: 2.88 dd (16.2, 3.0)	α: 2.55 dd (15.6, 3.2) 5.87 β: 2.91 dd (15.6, 7.2)		6.15 dd (10.2, 3.6)	6.18 dd (10.2, 3.6)
	β: 2.94 dd (16.2, 7.8)		5.87 dd (10.2, 3.6)		
3	3.79 m	4.08 m	6.57 ddd (10.2,	6.67 ddd (10.2,	6.69 ddd (10.2,
			5.4, 3.6)	5.4, 3.6)	5.4, 3.6)
			α: 2.10 dd (10.2,	α: 2.45 dd (10.2,	α: 2.45 dd (10.2,
4	α: 1.68 (br d, 16.2)	3.21 d (3.2)	5.4)	5.4)	5.4)
4	β: 3.66 d (3.0)		β: 3.36 dt (16.2,	β: 3.76 dt (16.2,	β: 3.74 dt (16.2,
			3.6)	3.6)	3.6)
6	3.40 br s	3.30 br s	3.60 t (3.6)	4.30 br s	4.32 br s
7	<i>α</i> : 1.62 m	α: 2.49 m	α: 1.97 m,	α: 2.97 m,	α: 2.77 m,
1	<i>β</i> : 2.49 m	β: 2.60 m	β: 2.21 m	<i>β</i> : 3.47 m	β: 3.57 m
8	2.59 m	2.63 m	2.30 m	2.86 m	2.76 m
9	1.93 m	2.57 m	2.12 m	3.79 m	3.69 m
11	1.25 m,1.38 m	1.48 m, 1.70 m	2.16 m, 2.12 m	1.64 m, 2.82 m	1.42 m, 2.62 m
12	1.74 m, 1.47 m	1.51 m, 2.21 m	1.82 m, 2.31m	1.95 m, 2.34 m	1.95 m, 2.34 m
15	5.82 d (3.0)	5.04 d (3.2)	5.37 d (2.4)	5.10 d (2.4)	5.25 d (2.4)
16	5.78 d (3.0)	3.67 m, 3.76 m	5.60 d (2.4)	6.13 d (2.4)	5.71 br s
18	1.37 s	1.21 s	1.16 s	1.43 s	1.39 s
19	1.35 s	1.26 s	1.21 s	1.72 s	1.70 s
20	2.57 m	-	2.53	2.64 m	2.62 m
21	1.21 d (7.2)	1.07 s	1.12 d (7.2)	1.22 d (7.2)	1.26 d (7.2)
22	4.39 dd (12.0, 3.6)	5.08 dd (12.0, 3.6)	4.34 dd (12.0, 3.6)	4.45 dd (12.0, 3.6)	4.43 dd (12.0, 3.6)
23	2.29 m, 2.59 m	1.86 m, 1.96 m	2.28m, 2.39 m	2.08 m, 2.49 m	2.06 m, 2.52 m
27	1.84 s	1.86 s	1.86 s	1.85 s	1.85 s
28	1.53 (br s)	1.99 s	1.99 s	1.52 s	1.50 s
CH ₃ CO	2.09 s	2.10 s	2.03 s	-	-
OMe	3.21 s	-	-	-	-

 Table S2 ¹H-NMR (600 MHz) spectroscopic data for compounds 6–10 in CD₃OD.

Chemical shifts are in ppm, and coupling constants (J) in Hz are given in parentheses.

Detailed ¹H NMR spectrum of compound 1 in CD₃OD at 600 MHz

Detailed ¹H NMR spectrum of compound **1** in CD₃OD at 600 MHz

 ^{13}C NMR spectrum of compound 1 in CD₃OD at 150 MHz

Detailed ¹³C NMR spectrum of compound 1 in CD₃OD at 150 MHz

Detailed ¹³C NMR spectrum of compound 1 in CD₃OD at 150 MHz

¹H NMR spectrum of compound **2** in CD₃OD at 600 MHz

Detailed ¹H NMR spectrum of compound **2** in CD₃OD at 600 MHz

 ^{13}C NMR spectrum of compound 2 in CD₃OD at 150 MHz

Detailed ¹³C NMR spectrum of compound **2** in CD₃OD at 150 MHz

Detailed ¹³C NMR spectrum of compound **2** in CD₃OD at 150 MHz

4.5 4.0 f2 (ppm) 3.5 3.0 2.5 2.0 1.5 1.0 0.5

Ó

Ó

6.0 5.5 5.0

0

0

8.5 8.0 7.5 7.0 6.5

-110

-120

. -130

-140

-150 -160

 $^1\mathrm{H}$ NMR spectrum of compound 3 in CD_3OD at 600 MHz

Detailed ¹H NMR spectrum of compound **3** in CD₃OD at 600 MHz

Detailed ¹H NMR spectrum of compound **3** in CD₃OD at 600 MHz

 ^{13}C NMR spectrum of compound 3 in CD₃OD at 150 MHz

Detailed ¹³C NMR spectrum of compound **3** in CD₃OD at 150 MHz

Detailed ¹³C NMR spectrum of compound **3** in CD₃OD at 150 MHz

S23

x611 19.9 4.75 -5.80 5.08

 -4.97

 -3.57 3.37 520 -550 -500 -450 1 1 400 -350 -300 -250 -200 -150 -100 -50 I 1 -0 . 05 I 7777777 883336777 883336777 1.05<u>-</u> 2:821 2:821 2:333 .36**≠** -20-I 100 89.₹ -69 -50 c 3.5 f1 (ppm) 6.0 5.0 2.0 1.5 0.5 6.5 5.5 4.5 4.0 3.0 2.5 1.0

¹H NMR spectrum of compound 4 in CD₃OD at 600 MHz

Detailed ¹H NMR spectrum of compound 4 in CD₃OD at 600 MHz

Detailed ¹H NMR spectrum of compound 4 in CD₃OD at 600 MHz

 ^{13}C NMR spectrum of compound 4 in CD₃OD at 150 MHz

Detailed ¹³C NMR spectrum of compound 4 in CD₃OD at 150 MHz

Detailed ¹³C NMR spectrum of compound 4 in CD₃OD at 150 MHz

S30

¹H NMR spectrum of compound **5** in CD₃OD at 600 MHz

Detailed ¹H NMR spectrum of compound **5** in CD₃OD at 600 MHz

¹³C NMR spectrum of compound **5** in CD₃OD at 150 MHz

Detailed ¹³C NMR spectrum of compound 5 in CD₃OD at 150 MHz

Detailed ¹³C NMR spectrum of compound **5** in CD₃OD at 150 MHz

