
Appendix for
Bayesian Modeling Reveals Metabolite-dependent Ultrasensitivityin the Cyanobacterial Circadian Clock
Lu Hong, Danylo O. Lavrentovich, Archana Chavan, Eugene Leypunskiy, Eileen Li,

Charles Matthews, Andy LiWang, Michael J. Rust & Aaron R. Dinner

Contents
1 Additional biochemistry of the KaiC (de)phosphorylation reactions . . . . . . . . . . . . . . . . 2

2 The hexameric structure of KaiC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

3 Correlation structure in the posterior distribution . . . . . . . . . . . . . . . . . . . . . . . . . . 3

4 Convergence of the model fit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

5 KaiA function cannot be solely explained in terms of nucleotide exchange . . . . . . . . . . . . 4

6 The experimental data admit two S phosphorylation pathways . . . . . . . . . . . . . . . . . . 4

7 Comparison to the Paijmans model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

8 Phenomenological modifications to the Phong model . . . . . . . . . . . . . . . . . . . . . . . . 7

List of Figures
Appendix Figure S1 No evidence of direct nucleotide-KaiA interaction

Appendix Figure S2 Performance of the fitting procedure

Appendix Figure S3 Correlation structure in the MCMC ensemble

Appendix Figure S4 The mechanism of kinetic ordering is not well-constrained

Appendix Figure S5 Overview of the model with the multiplicative-factor parametrization scheme

List of Tables
Appendix Table S1 Effects of KaiA on KaiC function

1



1 Additional biochemistry of the KaiC (de)phosphorylation reactions
In this work we construct a generalmodel of the KaiA-KaiC subsystembased on a set of assumptions of basic

clock biochemistry; that is, KaiC is an ATPase and a reversible phosphotransferase with two phosphorylation

sites at S431 and T432, while KaiA is a nucleotide-exchange factor that promotes the exchange of bound

ADP for ATP in CII nucleotide-binding pockets, and may directly stimulate hydrolysis. Through model fitting,

we demonstrate that this set of assumptions is sufficient to explain the (de)phosphorylation kinetics of KaiC

and its dependence on %ATP and [KaiA]. Our results, however, do not imply that the model includes all

possible biochemical mechanisms; in this section and the next we briefly discuss aspects of KaiC that we do

not consider in the model.

First, the current model does not account for the CI domain. The CI domain of KaiC is required for

the hexamerization of S. elongatus KaiC (Hayashi et al., 2004b, 2006) and its ATPase activity is necessary to
allow the binding of KaiB needed to transition into the dephosphorylation phase of the oscillation (Phong

et al., 2013; Tseng et al., 2017). However, the ATPase activity of the CI domain has no significant effect on

the kinetics of the CII (de)phosphorylation reactions (Phong et al., 2013), and in the current study we are

not concerned with KaiB-dependent processes. Therefore the current model does not keep track of the CI

hydrolysis state or any allosteric coupling between the CI and CII domains.

Second, the model does not explicitly consider the function of Mg
2+
. The presence of Mg

2+
is required

for the assembly of the KaiC hexamer (Hayashi et al., 2006; Mutoh et al., 2013), and computational analyses

indicate that release of Mg
2+
independent of the bound nucleotide is highly energetically unfavorable (Hong

et al., 2018). Given these results, we assume that Mg
2+
and nucleotide cannot act independently of each

other, and the model implicitly assumes that each bound nucleotide is always in complex with a Mg
2+
ion.

A recent study, however, shows that depletion of Mg
2+
promotes KaiC autophosphorylation, especially in

buffers that lack EDTA, (Jeong et al., 2019). Moreover, some structures of KaiC have two Mg
2+
ions modeled

in the nucleotide-binding pocket, which has been interpreted to mean that KaiC kinase activity relies on a

two-metal-ion phosphotransfer mechanism (Pattanayek et al., 2009). Currently, the functions of Mg
2+
have

not been characterized kinetically or mechanistically at a level necessary to constrain its role in amolecularly

detailed model.

2 The hexameric structure of KaiC
The current model does not consider any hexameric effects. There is evidence to suggest that intersubunit

interaction regulates KaiC autokinase activity (Kitayama et al., 2013) as well as the ultrasensitive dependence

of KaiBC complex formation on the KaiC hexamer phosphoform composition (Lin et al., 2014). However,

explicitly accounting for the hexameric nature of KaiC, as in Li et al. (2009) or Lin et al. (2014), would lead to

a significant increase in the number of model parameters, which likely cannot be constrained by available

data and makes interpretation of the model difficult. Therefore, we only keep track of the states of KaiC

subunits considered independently, and the rate constants should be considered averages over hexameric

background configurations, weighted by their nonequilibrium state populations.

This leads to two simplifications concerning the KaiA-KaiC interactions. The first issue relates to the

stoichiometry of KaiAC complexes. During phosphorylation, KaiA dimers bind to KaiC hexamers likely with

either a 1:1 or 2:1 stoichiometry (Hayashi et al., 2004a; Yunoki et al., 2019). Because themodel does not con-

sider the hexameric structure of KaiC, this stoichiometry is not enforced explicitly, and each KaiC monomer

can bind independently to KaiA.

The second issue relates to the effect of the phosphorylation state of the entire hexamer on KaiA

(un)binding kinetics. KaiA can inhibit KaiB binding to KaiC (Lin et al., 2014), even though the KaiA and

KaiB binding sites are on opposing sides of KaiC. This has been interpreted as a result of cooperative al-

losteric transition between a kinase mode of KaiC, stabilized by KaiA binding and the T phosphoform, and
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a phosphatase mode of KaiC, stabilized by KaiB binding and the S phosphoform (Lin et al., 2014). A pos-

sible implication of this proposed mechanism is that KaiC hexamers in the phosphatase mode may have

uniformly diminished affinity for KaiA at the CII interface, regardless of the phosphorylation state of the

subunits. Given that the current model is trained using primarily the phosphorylation data set, the pre-

dicted KaiA dwell time (Figure EV2B) and dissociation constant (Figure 1D) likely reflect the property of KaiC

subunits in the kinase mode, whereas experiments with phosphomimetic mutants mimicking the S and D

phosphorylation states presumably probe the system kinetics in the phosphatase mode. Indeed, in the

KaiC-EE titration experiment (Figure 3F right), the presence of KaiC-EE has virtually no effect on the KaiC

S431A stimulus-response curve, which may be partly due to the fact that the KaiC-EE hexamers are in the

phosphatase mode and may therefore have additionally reduced affinity for KaiA, a condition not consid-

ered in our model.

3 Correlation structure in the posterior distribution
As discussed in the literature (Gutenkunst et al., 2007), often ratios of parameters are better constrained

than the parameters themselves. The parameter pairs that have a correlation coefficient larger than 0.9

in log space are shown in Appendix Figure S3A–C. Such correlations typically reflect that thermodynamic,

rather than kinetic, properties of the system are constrained. These include the free energy of phospho-

transfer between the S and D phosphoforms (Appendix Figure S3A) and the free energy for KaiA binding to

the ATP-bound states of KaiC (Appendix Figure S3B; compare with Figure 1D). Interestingly, there is a linear

relation among kA,T
TP
, kA,TU
d
, and kT, DP

b
(Appendix Figure S3C); this implies that the data constrain the flux out

of the
A
C
T

DP
state, but the exact pathway is underdetermined.

More generally, we characterize the extent to which the model parameters, or linear combinations

thereof, are constrained by the data using the principal components of the posterior distribution; that is,

the eigenvectors of the covariance matrix from MCMC sampling. The eigenvalues of the covariance matrix

span multiple orders of magnitude with no obvious gap (Appendix Figure S3D left), except for the stiffest

direction (Appendix Figure S3G), which is almost entirely aligned with ff2, the global error hyperparameter.
In addition, the directions of the principal components are in general not aligned with the directions of

the bare coordinates (Appendix Figure S3D right), and there is no obvious interpretation for the directions

of most of the principal components (Appendix Figure S3G). These features of the ensemble indicate that

the model is “sloppy” (Gutenkunst et al., 2007), and many model parameters are poorly constrained by the

data. Nevertheless, as we demonstrate in Results, the model can still be used to make consistent predic-

tions because the variabilities in the ensemble of parameter sets obtained from MCMC sampling align with

the softest degrees of freedom of the posterior distribution.

4 Convergence of the model fit
We assessed the quality of the fit in three ways. First, we repeated the full procedure three times to assess

reproducibility of the fitting procedure (Figure EV1B). The three independent runs yielded marginalized pos-

terior distributions that are remarkably consistent and tightly constrained for some parameters but diverge

over several orders of magnitude for others. The best fits from the three runs have log posterior values of

720, 714, and 705, respectively. Unless otherwise specified, in this work we base our analyses on the run

that produced the best fit with the highest posterior value. The ruggedness of the posterior distribution

demonstrates that given the model and training data set, the parameter estimation problem is far from the

asymptotic (i.e., large sample) regime. Moreover, in our fitting procedure the vast majority of the walkers

from the annealing step are discarded for the sake of improving the MCMC sampling efficiency (the accep-

tance rate is≤ 7% without pruning). Given the presence of multiple local maxima, this choice likely resulted
in an underestimation of the uncertainties in parameter values.

Second, we compared the model predictions with a test data set that probed the phosphorylation reac-
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Appendix Table S1: Effects of KaiA on KaiC function

Model
Log likelihood

Bayes factor

Phosphorylation Dephosphorylation Hydrolysis

Full model 422.9 346.8 –0.8 1

–P
∗

390.0 338.6 –0.8 1.4

–H
†

355.5 308.8 –0.9 2.5

–P,–H 278.2 283.6 –0.2 7.7

∗
–P: KaiA binding decoupled from (de)phosphorylation rates.
†
–H: KaiA binding decoupled from KaiC hydrolysis rates.

tion at two non-standard KaiC concentrations (Figure EV2E). The fit quality on the test data set is somewhat

worse compared to the training set (compare with Figure 1B). In particular, the model overestimates the

D phosphoform concentration at 1.75 μM KaiC and underestimates the T and D phosphoform concentra-

tions at 7 μM KaiC. This result suggests some degree of overfitting. This, however, is not a significant issue

because we base our conclusions on the ensemble of walkers rather than the behavior of the best fit.

Lastly, we assessed the convergence of the MCMC simulations using the integrated autocorrelation

times for the 48 principal components of the posterior distribution (Appendix Figure S3E). The autocorrela-

tion times for the largest and smallest principal components are 8,500 and 3,300 steps, respectively, which

gives rough estimates of the times between independent samples for the slowest and fastest degrees of

freedom. These estimates are far shorter than the length of the final MCMC runs in the fitting procedure

(100,000 steps). We also checked the autocorrelation time for the KaiA binding affinities (Appendix Figure

S3F), which is within the bound given by the principal components.

5 KaiA function cannot be solely explained in terms of nucleotide exchange
Because of the generality of themodel, the function of KaiA is not restricted to that of a nucleotide-exchange

factor. In particular, the phosphotransfer and ATP hydrolysis rates are allowed to depend on KaiA binding.

There is some experimental evidence to support such effects—KaiA binding inhibits dephosphorylation (Xu

et al., 2003) and the addition of KaiA increases the ATPase activity of KaiC (Terauchi et al., 2007; Murakami

et al., 2008). However, the biochemical mechanisms underlying these effects are not clear from the exper-

iments; for example, does KaiA increase KaiC ATPase activity by reconfiguring the KaiC active site, or does

KaiA binding indirectly promote ATP hydrolysis by shifting the KaiC population towards phosphoforms that

have high ATPase activity?

To test whether KaiA binding has a direct effect on KaiC catalytic activities, we construct simplified mod-

els where hydrolysis and/or phosphotransfer are/is independent of KaiA binding and compare the resulting

models to the full model using the Bayes factor (Appendix Table S1). We find that decoupling either phos-

photransfer (model –P) or hydrolysis (model –H) from KaiA binding decreases the evidence for the simplified

models, but the effects are weak, especially in comparison to a model where both classes of reactions are

decoupled from KaiA binding (model –P,–H). These results indicate that the function of KaiA cannot be solely

explained by nucleotide exchange, but we cannot conclusively distinguish between models –P and –H.

6 The experimental data admit two S phosphorylation pathways
We analyzed a random selection of 500 walkers to understand the implications of their variations for the

mechanisms of ordered phosphorylation. To simplify the analysis, we converted each walker to two single-
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site models in which either S431 or T432 was available for phosphorylation but not both. We asked how

important each reaction rate constant is to the overall T and S phosphoform concentrations in the single-site

models using the relative first-order sensitivities computed at the standard reaction condition (i.e., 100%

ATP with 1.5 μM KaiA). We focus on the initial phosphorylation rates because the steady-state rates are

determined by balances of many contributing processes, making them harder to interpret. The parameter

sensitivities at t = 1 h are used as proxies for the sensitivities of the initial phosphorylation rates.

Because each single-site model has 18 parameters, there are 36 sensitivities for the two phosphoforms.

To characterize this high-dimensional space, we used spectral clustering (Appendix Figure S4A). Overall, the

parameter sensitivities are much more constrained by the data for the T phosphoform than the S phos-

phoform, which is unsurprising given the relatively low concentrations of the S phosphoform under all

experimental conditions in the training data. The clustering furthermore indicates that there are at least

two plausible kinetic ordering mechanisms, which differ primarily in terms of the phosphorylation path-

ways taken by the S phosphoform (Appendix Figure S4 A and B). In both clusters, the U → T transition is
most sensitive to kUT

p
(i.e., the phosphorylation rate in the absence of KaiA).

In the first cluster (319 parameter sets), the U→ S transition is most sensitive to kA,US
p

in the presence of

KaiA. This is primarily because kUS
p
is very small in this cluster relative to kA,US

p
(Appendix Figure S4C); how-

ever, since, in this cluster, the U→ S transition is dominated by the KaiA-bound states, the S phosphoform
has negative sensitivity to the KaiA dissociation rate constant kU,TP

b
. This suggests that in the first cluster,

KaiA (un)binding to the U phosphoform is important in determining the initial phosphorylation rate of S.

The best fit belongs to this first cluster.

The phosphorylation pathway suggested by the second cluster (181 parameter sets) is more complex.

In this cluster, the U→S transition is mostly independent of KaiA, similar to the U→T reaction. However,
the S phosphoform is limited by the dephosphorylation reaction kSU

d
, which is much faster than the corre-

sponding phosphorylation rate (Appendix Figure S4C). In addition, the S phosphoform is sensitive to the rate

constant for KaiA binding, kS,DP
a
, which is important for facilitating nucleotide exchange for the ADP-bound

S phosphoform, but tends to be slower in the second cluster (Appendix Figure S4C). Therefore, faster de-

phosphorylation and slower KaiA binding is important for determining the initial S phosphorylation rate in

the second cluster.

A comparison of Appendix Figure S4C with Figure EV1B (blue distributions) shows that the two clusters

correspond to the bimodal posterior distributions for the rate constants kUS
p
, kA,US
p
, kSU
d
, and kS,DP

a
. The two

clusters, however, do not cleanly separate along the two modes of kS,TP
a
and kS,TP

b
; the kinetic significance of

this bimodal distribution is unclear.

As discussed above, the posterior distribution is fairly rugged and thus the fitting procedure is not fully

reproducible over independent runs. As a result, there are likely multiple potential kinetic ordering mecha-

nisms that remain unexplored through this analysis. Regardless, the analysis suggests that kinetic ordering

is likely a result of an interplay between (de)phosphorylation and KaiA (un)binding kinetics, rather than

purely the product of equilibrium free energies of phosphotransfer.

7 Comparison to the Paijmans model
Among all the computational work on the Kai oscillator, the model most similar to the current work in

terms of the treatment of the KaiA-KaiC subsystem is that by Paijmans et al. (2017), although the latter is

a full oscillator model including KaiB, the CI domain, and the allosteric transition between the active (i.e.,

phopshorylation phase) and inactive (dephosphorylation phase) KaiC conformations. The Paijmans model

and the full model in this work are both molecularly detailed, and describe how phosphotransfer, ATP

hydrolysis, KaiA (un)binding, and nucleotide exchange reactions control the phosphoform and nucleotide-

bound states of KaiC. However, there are some significant differences between these twomodels, which we
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examine below.

The Paijmans model is more general than this work in two ways. First, the Paijmans model explicitly con-

siders the hexameric nature of KaiC. There is no intersubunit coordination of phosphotransfer in the Paij-

mans model, but it explicitly considers the binding of one KaiA dimer to a KaiC hexamer, which is assumed

to uniformly accelerate nucleotide exchange in all six subunits. In this work, however, we do not consider

the hexameric states of KaiC, and each KaiC monomer is allowed to bind to a KaiA dimer independently. In

this way the affinities and kinetics of KaiA binding in this work may not be directly comparable to those in

the Paijmans model. Second, the Paijmans model allows for the exchange of bound ATP for ADP, such that

KaiA accelerates the exchange rates of both ATP and ADP while leaving the binding affinity unchanged. In

our model, however, we assume that there is no exchange of bound ATP for ADP, effectively assuming that

the affinity of KaiC for ATP is infinite (i.e., KCII
ATP/ADP

= 0 in the Paijmans model terminology). The treatments
of nucleotide exchange in bothmodels are otherwise similar, in that both assume that the ATP/ADP on-rates

are identical, that the apo state is in a quasi-steady state, and that there is no KaiA-independent nucleotide

exchange.

The current work goes beyond the Paijmans model in the following ways. First, we determine the rate

constants under the framework of Bayesian parameter estimation, which enables more rigorous uncer-

tainty quantification, while the parameters in the Paijmans model were hand-tuned to reproduce selected

experimental observations. Second, for simplicity the Paijmans model does not consider any possible cou-

pling between ATP hydrolysis and KaiC phosphorylation states, between nucleotide exchange and KaiC

phosphorylation states, between ATP hydrolysis and KaiA binding, or between KaiC nucleotide-bound states

and KaiA binding. Although many of the state-dependent effects are not fully constrained by data in this

work, as we describe in Results, the ultrasensitivity in KaiC phosphorylation depends critically on the cou-

pling between KaiC nucleotide-bound states and KaiA binding. It is an open question whether a model that

lacks such effects but explicitly accounts for the hexameric nature of KaiC can generate ultrasensitivity.

The difference in the treatment of KaiA binding affinity implies that some detailed balance conditions

are incompatible between the two models. In the Paijmans model, the binding affinity of KaiA to KaiC

hexamers during the phosphorylation phase depends on the phosphoform composition of the subunits,

and each subunit i in the phosphoform Xi other than U contributes an additive factor of ‹g
CII·KaiA
bind

(Xi ) to
the changes in KaiA binding free energy, ∆GCII·KaiA

bind
. Due to detailed balance, the fact that KaiA binds to

different KaiC phosphoforms with differential affinities implies that KaiA binding changes the free energy

of phosphotransfer [see eq. 8 in Paijmans et al. (2017)]. This condition is also present in our model, but is

complicated by the nucleotide-bound states of KaiC. Using themultiplicative-factor parametrization scheme

(see Materials and Methods), the detailed balance conditions in this work can be related to those in the

Paijmans model by

‹gCII·KaiA
bind

(T)− ‹gCII·KaiA
bind

(U) = −kT ln
‹kT,DP
a

∆kT,DP
b

(1)

‹gCII·KaiA
bind

(S)− ‹gCII·KaiA
bind

(U) = −kT ln
‹kS,DP
a

∆kS,DP
b

(2)

‹gCII·KaiA
bind

(D)− ‹gCII·KaiA
bind

(T) = −kT ln
∆kD,DP

a

∆kD,DP
b

∆kT,TP
b

‹kT,TPa

(3)

‹gCII·KaiA
bind

(D)− ‹gCII·KaiA
bind

(S) = −kT ln
∆kD,DP

a

∆kD,DP
b

∆kS,TP
b

‹kS,TPa

(4)

In general, this set of equations are inconsistent. That is, one cannot express the ‹gCII·KaiA
bind

(X)s in the Pai-
jmans model in terms of the ∆ks in our model. The only condition under which these equations can be
made consistent is when

‹kT,DP
a

∆kT,DP
b

=
‹kT,TP
a

∆kT,TP
b

and
‹kS,DP
a

∆kS,DP
b

=
‹kS,TP
a

∆kS,TP
b

that is, when the nucleotide-bound states have no effect on KaiA binding affinities to the T and S phospho-
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forms.

8 Phenomenological modifications to the Phong model
In the model of Phong et al. (2013), KaiA sequestration is determined by the equation

[A]active = max(0; [A]total −m[BCS]− n[BCD]): (5)

Here, [A]total is the total KaiA concentration; [
B
C
S
] and [

B
C
D
] are the concentrations of the S and D phospho-

forms in complex with KaiB, respectively;m and n are model parameters describing the binding stoichiome-
tries between KaiA and the KaiBC complex. In this way, the KaiA binding affinity to the inhibitory complex

is effectively infinite, with no KaiA dissociation until [
B
C
S
] and [

B
C
D
] drop below a threshold. To make the

representation of KaiA sequestration more realistic, we introduce a KaiA dissociation constant KD (Figure

4C). Similar to the treatment in Kim and Forger (2012), we assume that the KaiA sequestration reaction is in

a quasi-equilibrium and replace (5) with

[A]active =
1

2

“
[A]total − SD−KD +

p
4[A]totalKD + ([A]total − SD−KD)2

”
(6)

where we have defined SD = m[BCS] + n[BCD].

To introduce ultrasensitivity to the Phong model, we first note that the four phosphorylation rate con-

stants for the U→T, U→S, T→D, and S→D transitions are given by Michaelis-Menten kinetics with ADP serv-
ing as a competitive inhibitor,

kphos =
kA
phos

[A]active

K1=2 + [A]active

1

1 +KI [ADP]=[ATP]
(7)

where kA
phos

varies with the specific phosphorylation reaction. To introduce ultrasensitivity, we add a thresh-

old term T (Figure 4D),

kphos =
kA
phos

([A]active − T )

K1=2 + ([A]active − T )

1

1 +KI [ADP]=[ATP]
H([A]active − T ) (8)

where

T = (0:3 + 1:5e−5%ATP=100%)(1 + 0:08[CU]=—M) (9)

and H is the Heaviside function. The first part of the expression for the phosphorylation threshold, 0:3 +
1:5e−5%ATP=100%, describes how the threshold changes as a function of %ATP; the constants are determined
by approximating the [KaiA] threshold in Figure 3A as an exponential function. The second part of the

expression, 1 + 0:08[CU]=—M, describes how the threshold changes as a function of CU concentration. This
formula is defined by

a=—M+ b([CU]=—M− 3:5)

a=—M+ b(−3:5)

where parameters a and b are determined by taking a linear fit, a+b[AA], of the data from Figure 3G (yellow
line); that is, 1 + 0:08[CU]=—M gives the fractional changes to the phosphorylation threshold as a result of
any U phosphoform (in the form of AA phosphomimetic mutant) additional to the 3.5 μM KaiC S431A in the

experiment.

We use the original Phong model parameters in all analyses of the model with one exception. In the

final modified model with both a KD and a phosphorylation threshold (Figure 4E bottom), the period is

systematically longer than 24 h due to a slow down in phosphorylation. To fix this problem, we change kAds
and k0ds , the two rate constants controlling the D→S transition, to 0.94 kAds and 1.1 k0ds .
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To assess whether the ultrasensitivity we introduced into the model with (8) is consistent with our mea-

surements, we simulated the KaiC-AA titration experiment using the modified Phong model (Figure EV3E)

and compared the predicted EC50 with the experimental results (Figure 3G). To perform this simulation,

we set all phosphorylation rates to the S and D states to zero, and represent KaiC-AA concentration as a

constant offset to the [CU] term in (9). A comparison of the model prediction with the experimental result
shows that EC50 scales with [AA] in the model similarly to the experiment, but the EC50 in the model is

consistently larger than the experiment by about 0.15 μM. This result suggests that the ultrasensitivity we

introduced into the model by hand is reasonable, but to achieve precise agreement with experiment would

require fine tuning the Phong model parameters, which is outside the scope of the current work.
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Appendix Figure S1: No evidence of direct nucleotide-KaiA interaction. 1H-15NHSQC spectra of the N-terminal fragment
(residues 1–135) of KaiA in the presence and absence of ATP (A) or ADP (B) show no significant differences in chemical

shifts, while spectra of the C-terminal fragment (residues 181–284) show subtle line broadening in the presence of ATP

(C) and ADP (D), suggesting weak, if any, interaction between the nucleotide and the C-terminal fragment. Given these

results, we do not include any direct KaiA-nucleotide interaction in the model.
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Appendix Figure S2: Performance of the fitting procedure. A) The time evolution of the log posterior values over the
four steps of the fitting procedure (see Materials and Methods). For step 1 and 3, the individual Markov chains that do

not produce walkers used in the next step are shown in beige. B) A comparison of the performance of Powell’s method,

a derivative-free numerical optimization method, Goodman-Weare (GW) ensemble MCMC method, and conventional

Metropolis-Hastings (MH) algorithm with a Gaussian trial distribution. For the Metropolis-Hastings algorithm the co-

variance matrix of the trial distribution is given by the global covariance of the fit (i.e., the last step in panel A), scaled

by a factor of 0.005 to give an average acceptance rate of 19.8%. A set of 224 walkers drawn from the prior distribution

are used to initialize the simulations for all three methods; the 224 walkers are evolved independently for the Powell’s

and Metropolis-Hastings methods, and in an ensemble for the Goodman-Weare method. Chains that do not reach log

posterior above 450 are shown in beige. C) A comparison of the performance of Powell’s method with the Nelder-Mead

simplex-based numerical optimization method. The simulations are initialized using the same walkers as in step 2 of A).

10



Appendix Figure S3: Correlation structure in the MCMC ensemble. A), B), and C) show parameters with correlation
coefficients larger than 0.9. In B), “X” represents the KaiC phosphoforms. In C), the projections of the 3D scatter plot

onto pairwise correlations are shown in gray. D) The principal component/eigenvalue spectrum of the covariancematrix

(left), and the alignment of the principal components with the coordinates (right). Here, I denotes the intersection of
the principal component ellipoid with the coordinates and P denotes the projection of the principal components onto
the corresponding coordinates (Gutenkunst et al., 2007). E) The integrated autocorrelation time for the 48 principal

components (PC); the principal components are indexed from the largest to the smallest. The integrated autocorrelation

time is calculated using an automated windowing procedure (Madras and Sokal, 1988) from the autocorrelation function

averaged over the ensemble. F) The integrated autocorrelation time for the KaiA dissociation constants as a function of

KaiC phosphoform and nucleotide-bound states. G) The ten largest vector components, ordered by absolute value, for

the first and last three principal components.
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Appendix Figure S4: The mechanism of kinetic ordering is not well-constrained. A) Spectral clustering on the rela-
tive sensitivity of the T and S phosphoform concentrations at t = 1 h to rate constants in the T- and S-site models,
respectively. Only the parameters with significant (> 0:2) relative sensitivities in either cluster are shown in the plot.
“X” stands for either the T (horizontal axis) or S (vertical axis) phosphoform. The sensitivities are calculated using 500

sampled parameter sets chosen randomly from the ensemble. The clustering analysis was done using the FindClusters

function in Mathematica 12.0. B) Model diagrams that highlight the reactions that have the highest relative sensitivities

in the first (left) and second (right) clusters; the D phosphoform is not shown for clarity. C) Selected model parameter

values in the two clusters. A comparison with blue distributions in Figure EV1B indicates that the clustering based on

sensitivity can be mapped onto the modes of the posterior distribution.
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Appendix Figure S5: Overview of the model with the multiplicative-factor parameterization scheme. Panels A) and B)
are analogous to those in Figure EV1, but the rate constants are represented as products of the factors that are actually

optimized in the MCMC simulations. In B), the ‹k parameters are fixed parameters determined by detailed balance
conditions. The parentheses denote state-dependent effects; A: KaiA-bound state, P: phosphoform, N: nucleotide-

bound state. The horizontal axis has a log scale (base 10). The rate constants have the unit s
-1
(or s

-1·μM-1 for the KaiA
on rate constant ka) and the multiplicative factors are dimensionless. See Materials andMethods for further description

of the detailed balance conditions and the model parameterization method.
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All parameter values are given in log space (base 10). All first-order rate constants have units of s−1, and all second-order rate constants have units of s−1 · —M−1. The multiplicative factors (∆k) are dimensionless.
Table S2: Best fit parameter values (independent-rate scheme)

kUh −3:409

kTh −3:837

kSh −4:816

kDh −3:895

kA,Uh −4:242

kA,Th −2:203

kA,Sh −3:066

kA,Dh −2:869

kDP,Ur −1:294

kDP,Tr −0:1942

kDP,Sr −0:7744

kDP,Dr −2:072

kUTp −4:005

kTUd −2:434

kUSp −5:360

kSUd −3:650

kTDp −4:629

kDTd −3:969

kSDp −3:842

kDSd −3:033

kA,UTp −3:881

kA,TUd −2:850

kA,USp −3:804

kA,SUd −3:082

kA,TDp −5:352

kA,DTd −7:174

kA,SDp −3:587

kA,DSd −3:449

kU,TPa −2:352

kU,DPa 1:697

kT,TPa −1:068

kT,DPa −0:1370

kS,TPa −2:183

kS,DPa 0:4483

kD,TPa −1:288

kD,DPa −1:528

kU,TPb −2:093

kU,DPb −2:093

kT,TPb −0:9147

kT,DPb −0:4178

kS,TPb −3:840

kS,DPb −0:2805

kD,TPb −2:504

kD,DPb −3:856

1



Table S3: Best fit parameter values (multiplicative-factor scheme)

kDPr −1:294

kh −3:409

ka −2:352

kb −2:093

kp −4:005

kd −2:434

∆kA,TTP 1:100

∆kA,STP 0:5193

∆kA,DTP −0:7781

∆kTh −0:4280

∆kSh −1:407

∆kDh −0:4861

∆kA,Th 1:634

∆kA,Sh 1:750

∆kA,Dh 1:026

∆kA,Uh −0:8333

∆kU,DPa 4:049

‹kT,DPa 2:215

‹kS,DPa 2:801

∆kD,DPa 0:8245

‹kT,TPa 1:284

‹kS,TPa 0:1691

‹kD,TPa 1:064

∆kU,DPb 0:000 124 7

∆kT,DPb 1:676

∆kS,DPb 1:813

∆kD,DPb −1:763

∆kT,TPb 1:179

∆kS,TPb −1:746

∆kD,TPb −0:4111

∆kUSp −1:355

∆kSUd −1:216

∆kTDp −0:6240

∆kDTd −1:535

∆kSDp 0:1626

∆kDSd −0:5983

∆kA,USp 1:556

∆kA,SUd 0:5683

∆kA,TDp −0:7233

∆kA,DTd −3:205

∆kA,SDp 0:2554

∆kA,DSd −0:4163

∆kA,UTp 0:1239

∆kA,TUd −0:4157
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