S1 Text: Comparison of off rate with steric trap experiments

The off rate from simulations was estimated to be $2 \times 10^3 \text{ s}^{-1}$. However, even with the force field adjustment to stabilize the native state, the dimer is somewhat less stable than in experiment, having $K_d \approx 10^{-3}$ molecules.nm⁻² ($\Delta G \approx 4.1 \text{ kcal.mol}^{-1}$), compared with the esimate from steric trap experiments of $K_d \approx 1.3 \times 10^{-9}$ molecules.nm⁻² ($\Delta G \approx 12.1 \text{ kcal.mol}^{-1}$) [1]. If we assume that the on rate k_{on} is unaffected by changes in stability, since it is effectively diffusion-limited, then any change of stability or dissociation constant $K_d = k_{\text{off}}/k_{\text{on}}$ must arise from variations in the off rate k_{off} . Thus, since K_d is 10^6 smaller in experiment, k_{off} would be expected to be 10^6 smaller also, i.e. $2 \times 10^{-3} \text{ s}^{-1}$.

References

 Hong H, Blois TM, Cao Z, Bowie JU. Method to measure strong protein-protein interactions in lipid bilayers using a steric trap. Proc Natl Acad Sci USA. 2010 Nov;107(46):19802–19807.