
Appendix

Comparison with numerical simulations

To derive the approximations in Eq 6 and Eq 9, two assumptions were made. First, the
expressions in the exponentials were approximated with linear functions of age, and,
second, the rate of change of µ was assumed to be small in comparison to the time it
takes for Q to reach the stationary distribution. Moreover, the result in Eq 9, is derived

Fig A1. Hazard rates estimated from numerical simulations and compared to
predictions based on Eq 6. A: Hazard rates (points and 95% confidence intervals) for
three different values of the threshold, θ; red: θ = 120, green: θ = 100, and blue: θ = 80.
The values of the other parameters were λ = 500, µ0 = 550, β = 0.485/365. Solid lines
show the predictions based on Eq 6. B: Hazard rates (points and 95% confidence
intervals) for three different values of the slope, β; red: β = 0.52/365, green:
β = 0.485/365, and blue: β = 0.45/365. The values of the other parameters were
λ = 500, µ0 = 550, θ = 100. Solid lines show the predictions based on Eq 6.

through a diffusion approximation which is only valid for ρ close to 1 (the so called
heavy traffic approximation). To demonstrate the validity of the approximations, these
analytical results are, in this section, compared to data from numerical simulations of a
number of model systems.

Numerical simulations of damage accumulation is straightforward (see for example
[1, p.288-89]), but can become time-consuming when λ is large. In each case below, for
each combination of parameter values, a large number of model instances were
simulated and the time points of death were saved and used later for comparison with
the theoretical predictions. The models were run in a regime where they generate
mortality data similar to that observed in human populations. The smallest time unit
was one day, and parameters were chosen so that the expected life length of the models
was similar to that observed in humans (c:a 75 years). This choice was made for
illustrative purposes, and the match between simulations and analytical approximations
holds more generally. Hazard rates for the simulated data were estimated by
approximating the hazard in age-bin (a, a+ 1/2] by the number of deaths in this
interval, divided by the total amount of time spent in the interval.

Note that a necessary condition for an existence of a stationary distribution of Q is
that ρ ≤ 1. However, when the models are simulated numerically ρ can be allowed to
become larger than one (this will was used in Section 4 in the main text).

The case of an M/M/1 queue

Here the baseline model was defined by the following parameters: λ = 500, µ0 = 550,
β = 0.485/365, all in units of per day, and θ = 100. The two latter parameters were
varied, and values are given in the figure legend. For each set of parameter values,
400000 realizations were simulated. Figure A1 shows the results from these simulations.
It is clear that the approximation of Eq 6 gives a very accurate account of how the
hazard rates depend on age for these parameter values.

The general case

To show that Eqs. 7 and 9 are good approximations in the case when damage
accumulation is not modeled as an M/M/1 queue, two types of systems were simulated.
In the first case, the inter-interval distributions of damage and repair were assumed to
have uniform distributions. In the second case, log-normal distributions, with unit
variance, were used. Note that the coefficients of variation are independent of age in
both cases, and are smaller than 1 in the first case and large than 1 in the second.

Figure A2 shows that the approximations can capture the relation between age and
hazard rates very well also in these cases. The linear approximation (i.e., Eq 9) slightly
underestimates the hazards when the hazard rates are below 0.01, but for larger hazard
rates the errors are small. Note, however, that the approximations based on Eq 7 are
derived under the assumption that damage accumulation can be approximated by a



Fig A2. Hazard rates estimated from numerical simulations and compared to
predictions based on Eq 7 and Eq 9. A: Hazard rates (points and confidence intervals)
estimated from simulations of a system where damage occurred with an average rate of
1500 per day, according to a uniform distribution on (0, 2/1500). The distribution of
repair times was also uniform with a age-dependent rate according to µ = 1550− βa.
The values of the other parameters were β = 0.485/365, and θ = 102. Solid lines show
the predictions based on Eq 7 (orange), and Eq 9 (blue). B: Estimated hazard rates
(points and 95% confidence intervals) from a system where damage occurred with an
average rate of 550 per day, according to a log-normal distribution with unit variance.
The distribution of repair times was also log-normal with an age-dependent rate
according to µ = 550− βa. The values of the other parameters were β = 0.485/365, and
θ = 172.

Fig A3. Effects of using a soft threshold in the M/M/1 model. A: The four sigmoids
corresponding to s = 1, 2, 5, and 10. B: corresponding hazard rates. Values obtained by
numerical integration of Eq 10. Black line show the hazards corresponding to a hard
threshold (i.e., s = 0).

continuous variable, and might consequently not work well with a too low threshold (see
e.g., [2, Ch.7-8] for more on this approximation).

A soft threshold

In the main text, the rate of dying was either zero, when Q(t) < θ or constant for
Q(t) ≥ θ. Such a hard threshold might not be very realistic and in this section it is
shown that a soft threshold gives similar results. That is, assume that amount of
accumulated damage is related to hazard rate through a sigmoid function

π(a) =
1

1 + exp( θ−Q(a)
s )

. (10)

Here θ determines the location of the sigmoid, and acts like a threshold parameter, as
before, and s is a scale parameter determining the slope of the sigmoid. When s→ 0,
the sigmoid approaches a unit step function, so for small s, Eq 10 will be similar to
Eq 3, i.e., the hard threshold. To investigate how Eq 10 depends on s more generally,
the expression was evaluated numerically for different values of ρ. Numerical integration
of Eq 10 was done by Monte Carlo integration, using the fact the the stationary
distribution of Q(t), in the M/M/1 case, is a geometric distribution.

Figure A3 shows that for s ≤ 2, the hazard rates are indistinguishable from the hard
threshold case. When s = 5 the hazard rates for ρ < 0.95 are slightly above those of the
hard threshold, but for ρ > 0.95 the model has an almost exponential dependence
between age (ρ) and hazard rates. For s = 10, however, the relationship is no longer
exponential. This demonstrates that the exponential dependence between age and
mortality is not crucially dependent on using a hard threshold. However, the relation
between queue length and hazard rate must be nonlinear, in particular the case s = 10
shows that a linear relation between queue length and hazard rate would not lead to an
exponential curve in this model.
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