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Relation to Other Work

There is similarity between our work (originally made avail-
able on bioRxiv in May 2017 [20]) and the reports of oth-
ers. Zhu and Stephens [92] implemented a similar causal
mixture distribution, but did not take the possibility of
inflation into account. They use a reference panel to es-
timate LD between SNPs, but restrict it to the specific
GWAS SNPs, i.e., the ones for which summary statistics
are available. Thus, for height, for example, their causal β
values perforce are restricted to the GWAS SNPs (≃1 mil-
lion), whereas we use a much larger reference panel (≃11
million) and allow the z-scores in the GWAS of interest to
arise from any of the reference panel SNPs. They take care
to allow for correlated “noise” in the estimated GWAS ef-
fect sizes. Their maximization scheme for the likelihood
function involves Markov chain Monte Carlo, and is there-
fore computationally intensive.

The “M2” model of Zhang et al [14] also uses a causal
mixture Gaussian similar to ours. They employ a refer-
ence panel of ≃1 million SNPs, and allow the causal SNPs
to be any of those (thus, in principle, causal SNPs are
not necessarily restricted to being GWAS SNPs with z-
scores); however, for GWASs with summary statistics for
SNPs not in the reference panel, they must restrict the
z-scores analyzed to be from SNPs in the reference panel.
(In our case, the reference panel is sufficiently large that
no such restriction is required.) Their analysis is based on
an expression (Eq. (2) in the Supplementary Note of [14],
hereinafter “SuppNoteZhang”) for the effective β at a focal
SNP arising through LD from underlying causal β values
at neighboring SNPs that does not take into account the
heterozygosity of those neighboring SNPs –Hj in Eq. (15),
H1, .., Hw in Eq. (20), and Hw in Eq. (26). Their likeli-
hood function (see Eqns. (5) and (7) in SuppNoteZhang,
with H = 1) ignores the detailed LD and heterozygosity
structure of the focal SNP (each of the potential causal
SNPs in LD with a typed SNP is approximated as having
LD with the typed SNP given by the mean for all of the
tagged SNPs – the LD score of the typed SNP divided
by the number of the SNPs in LD – and their heterozy-
gosities are implicitly treated in an average way, arising
through the measured standard error of the β̂ effect size).
We describe how to implement SNP heterozygosity and LD
structure in a controlled and accurate way using, equiva-
lently, either Fourier methods or a multinomial expansion
(where we take w = 20 in our “Model PDF: Multinomial
Expansion” subsection, Zhang et al take w = 1: compare
Eq. (19) here with Eq. (5) in SuppNoteZhang with H = 1,
and Eq. (21) here with Eq. (7) in SuppNoteZhang, again
with H = 1; setting w = 1 reduces the correct multino-
mial expansion to an inaccurate binomial expansion). As
a result, the M2 model solutions of Zhang et al do not
accurately reflect the capability of the underlying mixture
distribution for causal effects; their M3 model, which adds
an extra Gaussian, is implemented in the same fashion.
The inaccuracy in the M2 model can be seen in the QQ

plots (even though they are fairly restricted, with the max
value for -log10(p) set to 10) for, e.g., height, LDL choles-
terol, total cholesterol, years of schooling, Crohn’s disease,
coronary artery disease, and ulcerative colitis, for which
we obtain much better fits.

To test the numerical inaccuracy of using the binomial
approximation, in simulations, we set w = 1 for all cases
analyzed in Table A in the main paper and estimated
the model M2 parameters from the reulting binomial ex-
pansion for the posterior distribution for a SNP’s z-score,
given the SNP’s total LD and heterozygosity. That is, our
modified cost function was based on Eq. (21) with w = 1.
The results, directly comparable with Table A , are shown
below in Table F . In all cases there is significant under-
estimation of the M2 heritability, arising from underesti-
mation of the M2 polygenicity or the M2 discoverability,
or both. This establishes numerically the mathematical
fact mentioned above that the correct multinomial distri-
bution is not equal to the merely approximate binomial
distribution.

Table 3 in SuppNoteZhang reports simulations based
on “individual level data” (although it is not specified ex-
actly how that was done; in Table 2 they report results
from a simulation scheme to generate summary-level asso-
ciation statistics for GWAS without generating individual
level data). The closest comparison with our implementa-
tion of their M2 model is for the 50k sample size reported
in Table 3 SuppNoteZhang where M2 is both the true and
fitted model. Although the number of causal SNPs is sig-
nificantly under-estimated (3.92k vs. 5.35k) and the heri-
tability explained per causal SNP – essentially the discov-
erability – is significantly over-estimated (7.6 × 10−5 vs.
5.6 × 10−5), the heritability turns out to be numerically
correct (0.3). In Table F , for h2 = 0.4 and ncausal=11k,
our estimated number of causal SNPs is only half the true
value while the discoverability is a little underestimated
(σ̂2

β = 1.2 × 10−4 vs. σ2
β = 1.7 × 10−4), and ĥ2 = 0.14

vs h2 = 0.4. The discrepancies between the implementa-
tions of the inaccurate M2 model (in [14] and here) might
be due to the factor of ten difference in reference panel
size, how exactly individual level data simulations were
handled in [14], and/or implementation details. We em-
phasize, however, that with our full correct implementa-
tion, our simulation results are in better accord with the
simulated truth. For the example given above, we obtain
n̂causal=11k, σ̂2

β = 1.6 × 10−4 and ĥ2 = 0.39, with a cor-
respondingly acurate QQ plot – see the main paper Table
A and S1 Appendix Figure C .

We also applied the M2 model (i.e., setting w = 1
and using the binomial expansion as described above) to
several of the real phenotypes, and compared with the re-
sults of Zhang et al. Below we use a vee ( ˇ ) to distin-
guish numerical quantities estimated from this procedure.
We emphasize that we are using a reference panel with
nsnp = 11.02 million SNPs, whereas Zhang et al use a ref-
erence panel with only 1.07 million SNPs. For our larger
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panel, the mean heterozygosity is H = 0.22, while for the
smaller panel it is H = 0.35; this difference itself might
contribute to differences in estimated heritability, which is
a derived quantity that in the model is proportional to the
mean heterozygosity in the reference panel.

For height (2010), there were approximately 1 mil-
lion z-scores, the same as for Zhang et al (essentially the
HapMap 3 panel). We obtained ňcausal = 4.6 × 10−3,
slightly smaller than the value 4.8×10−3 from our full cor-
rect implementation, main paper Table B , but in agree-
ment with the value reported by Zhang et al (see S1 Ap-
pendix Table E ). Inflation (or rather deflation) appears
to be minor in the case of height 2010: σ̌2

0 = 0.94, the
same as our value from the full correct implementation,
σ2
0 in main paper Table B . Nonetheless, if we do not

correct the estimated heritability or discoverability for in-
flation – i.e., do not divide by σ2

0 or σ̌2
0 (see Eq. (10)),

which Zhang et al do not do (“a” in Eq. (3) in [14] cor-
responds to our σ2

0 , but values were not reported in [14])
– our M2 estimate is ȟ2 = 0.15, which is half the value
reported by Zhang et al. These heritability estimates cor-
respond to discoverabilities of σ̌2

β = 1.53 × 10−4 for our

implementation of M2 and 1.87×10−4 for Zhang et al (us-
ing H = 0.35 in Eq. (38)). Note that our M2 estimate
for σ̌2

β is only slightly smaller that the value 1.56 × 10−4

we obtain for the full correct implementation when not
rescaling by σ2

0 – see main paper Table B . It is possible
that the larger value 1.87× 10−4 for Zhang et al is related
to their reference panel being less than a tenth the size of
ours.

For schizophrenia, our M2 implementation modeled z-
scores from 6.29 million SNPs; the implementation of Zha-
ng et al considerably reduced that to 1.07 million z-scores.
Our M2 implementation gave 1.04×105 causal SNPs (ver-
sus 3.1× 104 for our correct implementation); Zhang et al
report 1.9 × 104 causal SNPs. Our M2 inflation measure
is σ̌2

0 = 1.15, comparable to our value σ2
0 = 1.14 reported

in the main paper Table B . Our M2 liability-scale her-
itability is 0.24 (uncorrected for inflation, which happens
to be the same as for our full model also when not correct-
ing for inflation), while Zhang et al report a value of 0.29
– see S1 Appendix Table E . The corresponding discov-
erabilities are σ̌2

β = 1.93× 10−5 for our implementation of

M2, smaller than 6.28× 10−5 from our full model (again,
both values not rescaled for inflation), and 4.36× 10−5 for
Zhang et al.

In S1 Appendix Table G we provide results for all
phenotypes analyzed here for which M2 results were avail-
able, or implicit, in [14]. We also report height (2014), for
which, as with BMI (2015), there were no M2 estimates
in [14] though there were M3 estimates. Our M2 estimate
of the number of causal SNPs for major depressive dis-
order, bipolar disorder, schizophrenia, and education all
appear to be inflated. It would appear that the inaccurate
M2 implementation is increasingly unreliable for higher-
polygenicity/lover-discoverability traits. The disjuncture

with our M2 simulation results, where we consistently find
an underestimation of heritability arising from either an
underestimation of polygenicity or discoverability, or of
both (S1 Appendix Table F ), might be due to effects
of model misspecification with respect to real phenotypes
exacerbated by the inherent inaccuracy of the implementa-
tion, particularly when using a very large reference panel.
Use of the smaller reference panel in [14] might be fortu-
itous in this regard.

Mathematically, we have shown that the binomial im-
plementation of the M2 model used by Zhang et al is
inaccurate, and we have demonstrated that numerically
with simulations. In contrast, simulations with our cor-
rect implementation demonstrate much better parameter
estimates – see main paper Table A . In both scenarios we
used exactly the same simulated GWAS z-scores and the
full reference panel of 11 million SNPs. When comparing
with Zhang et al, there is the additional matter that they
are using a reference panel one tenth the size of ours, and,
for many real phenotypes (the situation with schizophrenia
is representative) they exclude the vast majority of data
(z-scores) from the analysis.

Exploring potential MAF-dependence on causal effect
sizes, using only GWAS summary data, will be a focus
of future work. Our concern here is to present the basic
model, correctly implemented and analyzed. Zeng et al
[15] use a related causal distribution for true effects β, but
with MAF-dependence. Their approach is based on raw
genotype data and requires extensive parallel computing.
It is restricted to ≃400k SNPs; with summary statistics,
we are working with ≃11 million reference panel SNPs.
Below we explore possible model misspecification related
to MAF-dependence – see S1 Appendix Table A .

Data Preparation

Total Linkage Disequilibrium

Sequentially moving through each chromosome in contigu-
ous blocks of 5,000 SNPs in the reference panel, for each
SNP in the block we calculated its Pearson r2 correlation
coefficients (that arise from linkage disequilibrium, LD)
with all SNPs in the central bock itself and with all SNPs
in the pair of flanking blocks of size up to 25,000 each.
For each SNP we calculated its total linkage disequilibrium
(TLD), given by the sum of LD r2’s thresholded such that
if r2 < r2min we set that r2 to zero (r2min = 0.05). The
fixed window size corresponds on average to a window of
±8 centimorgans. This is deliberatly larger than the 1-
centimorgan window used to define LD Score [12], because
the latter appears to exclude a noticeable part of the LD
structure.

For each SNP we also built a histogram giving the num-
bers of SNPs in wmax equally-spaced r2-windows covering
the range r2min ≤ r2 ≤ 1. These steps were carried out in-
dependently for 1000 Genomes phase 3 and for HAPGEN2
(for the latter, we used 1000 simulated samples).
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Employing a similar procedure, we also built binary
(logical) LD matrices identifying all pairs of SNPs for which
LD r2 > 0.8, a liberal threshold for SNPs being “synony-
mous”.

In applying the model to summary statistics, we calcu-
lated histograms of TLD and LD block size (using 100 bins
in both cases) and ignoring SNPs whose TLD or block size
was so large that their frequency was less than a hundredth
of the respective histogram peak; typically this amounted
to restricting to SNPs for which TLD ≤ 600 and LD block
size ≤ 1, 500. We also ignored summary statistics of SNPs
for which MAF ≤ 0.01.

For schizophrenia, for example, there were 6,610,991
SNPs with finite z-scores out of the 11,015,833 SNPs from
the 1000 Genomes reference panel that underlie the model;
the genomic control factor for these SNPs was λGC =
1.466. Of these, 314,857 were filtered out due to low MAF
or very large LD block size. The genomic control factor for
the remaining SNPs was λGC = 1.468; for the pruned sub-
sets, with ≃ 1.49× 106 SNPs each, it was λ = 1.30. (Note
that genomic control values for pruned data are always
lower than for unpruned data.)

Since effect sizes of individual variants on complex phe-
notypes are tiny, allelic composition of each variant in case
and control groups is very similar, resulting in similar LD
structure. There will likely be at most only an extremely
slight change in the LD structure for different phenotype-
defined subgroups within a population. Imprecision in the
phenotype-specificity of the reference panel is currently not
a limiting factor in GWAS analysis.

Summary of the multiple binning process

(1) We bin typed SNPs (SNPs with z-scores) into an H×L
grid. Then, for any grid element, (2) we bin the tagged
SNPs into fairly fine LD-r2 bins: the range 0.05-1 is di-
vided up into w=20 or so bins.

In the extreme, we can consider each typed SNP in-
dividually, and inquire about how its z-score arises from
causal β values distributed among the reference SNPs it is
in LD with (the SNPs tagged by the typed SNP).

The two levels of binning ((1) and (2) above) can be
finessed until we get converged results for our three model
parameters – and of course it not necessary to go all the
way to the extreme scenario. As mentioned in the main
text, we ensured the binning in (1) and (2) was fine enough
to give converged results.

From (1) above, we have, in a given grid element, se-
lected typed SNPs in a narrow range of H and L. Concep-
tually, think of these SNPs as being just a single typed
SNP. An important point is that we look at the reference
SNPs our typed SNP is in LD with: we group those into
very narrow LD bins (w=20 bins). Our model is that the
typed SNP’s z-score arises from noise and possibly some
causal effects among the SNPs it tags through LD: a causal
SNP might be in any one of those latter bins, there might
be more than one causal SNP in any one of those bins,
and many of the bins might have causal SNPs, and all of

these distinct possible scenarios need to be accounted for.
ki in Eq. 21 is our random integer variable for the num-
ber of causal SNPs in bin i. A second important point
is that within bin i, regardless of i, the heterozygosities of
the binned reference SNPs will be in a very narrow range –
effectively, heterozygosity binning of the SNPs tagged by a
given typed SNP comes along free with fine-grained LD r2

binning of those tagged SNPs (again, we’re conceptually
just dealing here with a single typed SNP whose z-score
we are trying to predict). But because all SNPs in bin
i have very similar heterozygosities, the heterozygosity of
any one of them is necessarily properly accounted for: it
is given by Hi in Eq. 21, which carries over entirely to the
Fourier version of the z-score pdf – see Eq. 26.

t-Statistic for Pearson correlation co-
efficient

The sample Pearson correlation coefficient, r̂, and simple
linear regression slope, β̂, for the response and explana-
tory variables in a data set, are proportional and so have
the same t-statistic (and p-value), calculated below.

The true (or population) correlation, r, between two
random variables X and Y is

r ≡ corr(X,Y ) =
cov(X,Y )√

var(X)
√
var(Y )

= corr(δY + γ, βX + α) (40)

for any constants α, β, γ, δ. If one linearly models Y as
Y = βX + α, i.e., yi = βxi + α + ǫi for the ith instanti-
ation where ǫi is the residual (random error, assumed to
follow a zero-centered normal distribution: ǫi ∼ N (0, σ2

ǫ )),
then, by minimizing the mean squared error, the popula-
tion (true) value β is estimated as the sample linear re-

gression coefficient β̂:

β̂ =

∑
i(xi − x̄)(yi − ȳ)∑

i(xi − x̄)2

= cov(g, y)/var(g). (41)

For centered sample data, with response variable y and
explanatory variable g (both vectors over n samples, with
means ȳ = ḡ = 0), one therefore has the sample equation

y = gβ̂ + ǫ̂ (42)

where ǫ̂ is the sample estimated residual. The mean sample
response (prediction) for a given value of the explanatory
variable is therefore

ŷ = gβ̂. (43)

From Eq. 40, the sample squared correlation for the quan-
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h2 ĥ2 π1 π̂1 σ2
β0

σ2
βeff

σ̂2
β σ̂2

0 ncausal n̂causal

0.1 0.12 1E-5 1.2E-5 2.1E-3 4.5E-3 4.1E-3 1.01 110 135
0.1 0.09 1E-4 0.8E-4 2.1E-4 4.5E-4 4.8E-4 1.01 1101 835
0.1 0.08 1E-3 0.7E-3 2.2E-5 4.7E-5 4.7E-5 1.02 11015 7587
0.1 0.09 1E-2 0.6E-2 2.2E-6 4.7E-6 6.5E-6 1.01 110158 61888

0.4 0.46 1E-5 2.1E-5 9.5E-3 2.2E-2 9.2E-3 1.02 110 230
0.4 0.48 1E-4 1.1E-4 8.6E-4 1.8E-3 1.8E-3 1.04 1101 1216
0.4 0.33 1E-3 0.9E-3 8.8E-5 1.9E-4 1.5E-4 1.06 11015 9967
0.4 0.33 1E-2 0.9E-2 8.8E-6 1.9E-5 1.5E-5 1.06 110158 103945

0.7 0.90 1E-5 2.8E-5 1.5E-2 3.1E-2 1.3E-2 1.02 110 313
0.7 0.80 1E-4 1.2E-4 1.5E-3 3.3E-3 2.8E-3 1.06 1101 1340
0.7 0.62 1E-3 0.9E-3 1.5E-4 3.3E-4 2.9E-4 1.09 11015 9832
0.7 0.56 1E-2 0.9E-2 1.5E-5 3.3E-5 2.5E-5 1.10 110158 103393

Table A . Testing model misspecification: single Gaussian with selection parameter, for twelve single setups (three
different heritabilities, each with four different polygenicities – a single instantiation in each case, i.e., not averaged
over multiple instantiations). True causal SNPs are a randomly selected fraction π1 of all reference SNPs, and their β
values are randomly drawn from Gaussians with variance HSσ2

β0
, where H is the causal SNP’s heterozygosity,

S = −0.5, and σ2
β0

is given in the table. Let W denote the mean of HS over all causal SNPs. Then σ2
βeff

≡ Wσ2
β0
,

which is approximately what the model will try to estimate in σ̂2
β .

tities in Eq. 42 (and 43) is

r̂2 = corr(g, y)2 = corr(ŷ, y)2

=
cov(g, y)2

var(g)var(y)

=
var(ŷ)

var(y)

=
β̂2var(g)

var(y)
. (44)

The sample residual vector is ǫ̂ = y − ŷ with mean 0:
¯̂ǫ = (1/n)

∑n
i=1 ǫ̂i = 0. Note that var(y) =

∑n
i=1(yi −

ȳ)2/(n − 1), but var(ǫ̂) =
∑n

i=1(ǫi − ¯̂ǫ)2/(n − 2): linear
regression removes two degrees of freedom, the intercept
(α̂ = 0 in this case) and slope (β̂). Note also that the
above set of vars should strictly be v̂ar, indicating that
they are estimated from the data, but this hat is dropped
for ease of notation. Decompose the total variation in y
around the mean:

∑

i

(yi − ȳ)2 =
∑

i

(yi − ŷi)
2 +

∑

i

(ŷi − ȳ)2 (45)

i.e.,

(n− 1)var(y) = (n− 1)var(ŷ) + (n− 2)var(ǫ̂). (46)

From Eq. 44, var(ŷ) = r̂2var(y), hence the sample mean
squared error is

σ̂2
ǫ ≡ var(ǫ̂) = var(y)(1− r̂2)(n− 1)/(n− 2). (47)

Now, the variance of the sample slope (as an estimate of
the population or true slope) arises through the variation

in yi, given gi (the gi are assumed to be correct and con-
stant explanatory variables). Thus, from Eq. 41,

var(β̂) ≡ var(β̂|g) = var

(∑
i giyi∑
i g

2
i

∣∣∣∣gi
)

≡
[
se(β̂)

]2
. (48)

where se denotes standard error (dropping the hat as with
var). Hence,

var(β̂) =

∑
i g

2
i var(yi|gi)

(
∑

i g
2
i )

2 . (49)

But from Eq. 42, var(yi|gi) ≡ var(ǫ̂) = σ̂2
ǫ , hence

var(β̂) = σ̂2
ǫ /

∑

i

g2i

=
σ̂2
ǫ

(n− 1)var(g)

=
var(y)(1− r̂2)

var(g)(n− 2)

=
β̂2(1− r̂2)

r̂2(n− 2)
. (50)

From Eq. 44, and noting that, as with β̂ in Eq. 48,
var(r̂) ≡ var(r̂|g), it immediately follows that β̂/se(β̂) =
r̂/se(r̂). So to construct a confidence interval for r̂, or

equivalently for β̂, form the t-statistic

t = r̂/se(r̂)

= β̂/se(β̂)

= r̂

√
n− 2√
1− r̂2

. (51)
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h2 ĥ2 π1 π1eff π̂1 σ2
b σ2

c σ2
βeff σ̂2

β σ̂2
0 ncausal n̂causal

0.14 0.16 1E-5 2.9E-6 1.3E-5 2.2E-3 2.2E-2 4.3E-3 5.2E-3 1.01 110 138
0.10 0.09 1E-4 2.9E-5 5.1E-5 2.2E-4 2.2E-3 4.2E-4 7.6E-4 1.02 1101 560
0.10 0.08 1E-3 2.9E-4 3.4E-4 2.2E-5 2.2E-4 4.2E-5 1.0E-4 1.02 11015 3779
0.10 0.10 1E-2 2.9E-3 3.3E-3 2.2E-6 2.2E-5 4.2E-6 1.2E-5 1.01 110158 35964

0.51 0.58 1E-5 2.9E-6 1.7E-5 8.8E-3 8.8E-2 1.7E-2 1.4E-2 1.01 110 189
0.36 0.39 1E-4 2.9E-5 7.2E-5 8.8E-4 8.8E-3 1.7E-3 2.3E-3 1.04 1101 794
0.39 0.35 1E-3 2.9E-4 4.8E-4 8.8E-5 8.8E-4 1.7E-4 3.1E-4 1.05 11015 5250
0.40 0.36 1E-2 2.9E-3 3.1E-3 8.8E-6 8.8E-5 1.7E-5 4.8E-5 1.06 110158 34184

0.75 0.90 1E-5 2.9E-6 2.7E-5 1.5E-2 1.5E-1 2.8E-2 1.4E-2 1.01 110 293
0.62 0.67 1E-4 2.9E-5 9.5E-5 1.5E-3 1.5E-2 2.9E-3 2.9E-3 1.05 1101 1043
0.71 0.67 1E-3 2.9E-4 5.6E-4 1.5E-4 1.5E-3 2.9E-4 5.0E-4 1.08 11015 6115
0.71 0.60 1E-2 2.9E-3 3.8E-3 1.5E-5 1.5E-4 3.0E-5 6.6E-5 1.09 110158 42235

Table B . Testing model misspecification: double Gaussian for large and small effects, for twelve single setups (three
different heritabilities, each with four different polygenicities – a single instantiation in each case, i.e., not averaged
over multiple instantiations). True causal SNPs are a randomly selected fraction π1 of all reference SNPs, and their β
values are randomly drawn from Gaussians with variances σ2

b and σ2
c = 10σ2

b , 90% from the former, 10% from the
latter. See Eq 56. π1eff and σ2

βeff are weighted means of the polygenicities and variances for each Gaussian – see text.

Mean Relative Risk

For logistic linear regression coefficient β, the odds ratio for
disease is OR = eβ ; for a rare disease, this is approximately
equal to the genotypic relative risk: GRR ≃ OR. Since
E
[
β2

]
= σ2

β , the mean relative risk E [GRR] ≃ 1 + σ2
β/2.

Thus, for schizophrenia for example, the mean relative risk
is ≃ 1.00003.

Model Misspecification

Single Gaussian with selection parameter

If the true β effects are distributed in a way that is different
from the assumed one, how meaningful are the parameters
and their estimated values? In principle, this is an open-
ended issue, but an important assessment can nevertheless
be made.

Our model assumed that the βs are drawn from a single
Gaussian with constant variance σ2

β , for a fraction π1 of
the reference SNPs:

β ∼ N (0, σ2
β). (52)

Evidence has been reported indicating that some causal
effects are larger for SNPs with lower heterozygosity. This
has lead to consideration of

β ∼ N (0, HSσ2
β0
) (53)

where H is the heterozygosity of a causal SNP being as-
signed the effect β, S is a new parameter, and σ2

β0
is a con-

stant. S < 0 suggests there is selection pressure. S = −1
is implicit in LD Score regression; our model has S = 0;
intermediate values have been reported by others [15].

Here, in a series of additional simulations using HAP-
GEN as before with a sample size of 100,000, we set S =

−0.5, generated new β values prescribed by Eq. 53, and
calculated new GWAS z-scores, for the twelve heritability
× polygenicity scenarios we used previously – see the main
paper Table A , but this time with just a single instanti-
ation in each case. We then fit our model to the simulated
z-score. The estimated model parameters π̂1, σ̂

2
β , and σ̂2

0 ,

along with ĥ2 and n̂causal, are shown in S1 Appendix Table
A .

The proportion of variance explained by variant i, whose
genotype vector (over N samples) is gi, is q

2
i = var(y; gi) =

β2
i Hi, where y is the phenotype vector over the samples.

Then, the expected value of this contribution to heritabil-
ity is

〈q2i 〉 = 〈β2
i 〉Hi

= HS
i σ

2
β0
Hi

= HSi+1σ2
β0
. (54)

h2 arises from π1 of the n SNPs. So, not knowing which
of the SNPs are causal, h2 will approximately be given by

h2 = σ2
β0

ncausal∑

i=1

HS+1
i ≃ π1σ

2
β0

n∑

i=1

HS+1
i . (55)

We expect that the contribution of HS to the variances
will be absorbed in an average sense into our single vari-
ance estimate, σ̂2

β . Let W denote the mean of HS over all

causal SNPs. Then σ2
βeff

≡ Wσ2
β0
, which is approximately

what the model will try to estimate in σ̂2
β . As can be seen

from S1 Appendix Table A , there is reasonable concor-
dance between the model estimates and the true param-
eters, with greatest mismatch (factor of 2-3) for the very
lowest polygenicity (π1 = 10−5) scenarios with higher her-
itabilities (estimating as a mean response from the full set
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h2 ĥ2 π1 π̂1 σ2
β σ̂2

β σ̂2
0 ncausal n̂causal

0.10 0.03 3.1E-3 4.3E-4 1.6E-5 3.2E-5 1.03 34540 4722
0.40 0.18 3.1E-3 6.5E-4 6.6E-5 1.2E-4 1.10 34718 7112
0.70 0.35 3.1E-3 9.8E-4 1.2E-4 1.5E-4 1.16 34370 10840

Table C . Testing model misspecification for three different true heritabilities, h2 = 0.1, 0.4, 0.7, for a fixed overall
polygenicity, π1 = 3.1× 10−3. True causal SNPs are a randomly selected with prior probability π1L, which decreases
from a maximum of 0.005 at L = 1 down to 0 at L ≥ 200. π1 is the fraction of all reference SNPs that are causal; their
β values are randomly drawn from a Gaussian with variances σ2

β . See S1 Appendix Fig K .

of variants the actual response arising from a small num-
ber of SNPs having large effects). In other words, with
pronounced selection pressure (S = −1/2), our model es-
timates for polygenicity (number of causal SNPs), discov-
erability, and heritability give a reasonable indication of
the underlying polygenic architecture.

Double Gaussian: Large and Small Effects

If the true non-null β effects are distributed with respect
to two Gaussians, how well does our single-Gaussian based
model perform? It may be the case that the majority of
causal effects are distributed with respect to a Gaussian
with a particular variance, σ2

b , while a minority are dis-
tributed with respect to a Gaussian with a much larger
variance, σ2

c . This reflects situations where a minority of
causal SNPs have much larger effects than the majority
of causal SNPs. Accordingly, here we examine the case
where

β ∼ π1

(
(1− pc)N (0, σ2

b ) + pcN (0, σ2
c )
)
+

(1− π1)N (0, 0). (56)

For definiteness, we set pc = 0.1 and σ2
c = 10σ2

b . As with
S1 Apendix Table A , we examined twelve scenarios (π1

= {10−5, 10−4, 10−3, 10−2}, and h2 ≃ {0.1, 0.4, 0.7}), us-
ing HAPGEN-generated simulated genotypes. In the in-
stantiations generated, the true heritability based on the
sample is calculated, which depends on the particular set
of β values and the heterozygosity of the SNPs they are
assigned to. In Table B we report the results of the es-
timated parameters, π̂1, σ̂

2
β , and σ̂2

0 , when the distribution
of causal effects is modeled with Eq 3. We also report
the estimated heritability, ĥ2 and number of causal SNPs,
n̂causal. Since the “b”and “c” Gaussians in Eq. 56 are be-
ing estimated with a single Gaussian (β ∼ N (0, σ2

β)), we
also report effective underlying parameter values: π1eff ,
the weighted mean of π1 × (1− pc) and π1 × pc, weighted
by σb and σc used as proxies for relative importance of the
two Gaussians; and σ2

βeff , the overall variance of the true

causal effects. It can be seen that σ̂2
β reasonably tracks

with σ̂2
βeff , while for the larger polygenicities, π̂1 reason-

ably tracks with π1eff , and the estimated heritabilities,

ĥ2, are close to the true values, h2. Although this exam-
ple is not an exhaustive search, the results demonstrate
the general applicability and robustness of the model, giv-

ing polygenicities, discoverabilities, and heritabilities than
are good indicators of the underlying truth.

Total LD-dependent Prior Probability

We also examined a highly artificial scenario where the
prior probability of a SNP being causal, π1L, is not a con-
stant but dependent on total LD, L. Because the model as-
sumes there is no LD-dependence on whether or not a ref-
erence SNP is causal, we do not expect the single Gaussian
model to provide a good fit. We assumed that the prior
probability of being causal, π1L, decreases linearly from a
maximum of π1L = 0.005 at L = 1, down to π1L = 0.0
for L ≥ 200. The overall proportion of causal SNPs is
still denoted π1. Results are shown in S1 Appendix Table
C . There is consistent under-estimation of the heritabil-
ity. The model QQ plots gave only a very poor fit to the
simulated p-values. That is, the obvious poorness of the
fits (see S1 Appendix Fig K ) gave little credence in the
estimated parameters.

GWAS Replication

An issue that commonly arises in GWAS is whether z-
scores in discovery GWAS and those in replication GWAS
are consistent. In particular, if some variants reach genome-
wide significance on one study but are far from approach-
ing that threshold in a replication study, is there some
overlooked problem or are the values in fact statistically
consistent? Our model allows for making principled as-
sessments of consistency between discovery and replication
GWAS, and we carried out such an assessments in a recent
GWAS of bipolar disorder [35].

A discovery z-score from sample size Nd is the sum of
two random components

zd = δd + ǫd. (57)

A replication z-score from sample size Nr similarly is

zr = δr + ǫr (58)

where δ is the genetic fixed effect (causal for the SNP in
question, or LD-mediated from one or more neighboring
causal SNPs), and ǫ is the environmental contribution and
noise, modeled as a normal distribution, N (0, σ2

0), with
mean 0 and variance σ2

0d or σ2
0r (both approximately equal
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to 1 for BIP data). Effect sizes are related by

δr =

√
Nr

Nd
δd. (59)

The posterior distribution pdf(zr|zd) is the convolution of
pdf(δd|zd) with N (0, σ2

0r), where

pdf(δd|zd) =
pdf(zd|δd)
pdf(zd)

pdf(δd) (60)

which, using Eq. 59, gives pdf(δr|zd);

pdf(zd|δd) = φ(zd; δd, σ
2
0d), (61)

where φ(z; δ, σ2) is the Gaussian for z with mean δ and
variance σ2; pdf(zd) and pdf(δd) are calculated using the
Gaussian mixture model – see Eq. 29 and Eq. 32. It
should be noted that these probability densities are SNP-
specific in that they depend on the SNP’s heterozygosity
and LD structure, i.e., the distributions of heterozygosity
and LD r2 of its neighbors. The convolution can be written
as

pdf(zr|zd) =
∫ ∞

−∞

pdf(

√
Nd

Nr
δr|zd)φ(zr − δr; 0, σ

2
0r)dδr

=

∫ ∞

−∞

pdf(δd|zd)φ(zr −
√

Nr

Nd
δd; 0, σ

2
0r)dδd.

(62)

This can be re-expressed using fast Fourier transforms
without the need to perform explicit integration. Now,

pdf(zr|zd) =
1

pdf(zd)

∫ ∞

−∞

{
pdf(δd)φ(zd; δd, σ

2
0d)×

φ(zr −
√

Nr

Nd
δd; 0, σ

2
0r)dδd

}
. (63)

But

φ(zd; δd, σ
2
0d)φ(zr −

√
Nr

Nd
δd; 0, σ

2
0r) =

1

σ0dσ0r2π
exp

(−(zd − δd)
2

2σ2
0d

)
exp


−

(zr −
√

Nr

Nd
δd)

2

2σ2
0r


 .

(64)

For the purpose of testing compatibility of discovery and
replication z-scores, σ0d ≃ σ0r ≃ 1 can always be achieved
in practice by estimating the original values from the data
using the model described here, rescaling the discovery
and replication z-scores by the respective inflation esti-
mate, and then analyzing the compatibility of the rescaled
discovery and replication z-scores. Assuming σ0d ≃ σ0r

and writing it as σ0, Eq. 64 is

φ(zd; δd, σ
2
0d)φ(zr −

√
Nr

Nd
δd; 0, σ

2
0r) = Bφ(δd;A,S

2) (65)

where

A ≡
zd +

√
Nr

Nd
zr

1 +Nr/Nd
, (66)

B ≡ 1

σ2
02π

exp

(−(z2d + z2r )

2σ2
0

)
exp

(
− A2

2S2

)
,

S ≡ σ0√
1 +Nr/Nd

. (67)

Hence,

pdf(zr|zd) =
B

pdf(zd)

∫ ∞

−∞

pdf(δd)φ(δd;A,S
2)dδd

=
B

pdf(zd)

∫ ∞

−∞

pdf(δd)φ(δd −A; 0, S2)dδd

=
B

pdf(zd)

∫ ∞

−∞

pdf(δ)φ(A− δ; 0, S2)dδ. (68)

The integral is just a convolution. Hence, letting F denote
the Fourier transform operator, with F−1 its inverse,

pdf(zr|zd) =
B

pdf(zd)
F−1

{
F [pdfδ(·)]×F [φ(·, 0, S2)]

}
(A).

(69)

Using Eqs. 60 and 62, or equivalently Eq. 69, for any
zd, pdf(δr|zd) and pdf(zr|zd) can be calculated for finely-
spaced vectors with elements δr and zr respectively rang-
ing from −alim to alim, with, say, alim = 12 (wide enough
so that, for any zd, the pdfs start at 0, increase as δr or
zr increases, and then ultimately decrease to 0 again with
further increases in the 1st argument). See S1 Appendix
Figures A and S1 Appendix B which were calculated
for discovery and replication bipolar disorder GWAS data
[35], where the data (SNPs) are divided up into a 4 × 4
grid of heterozygosity (H) × total LD (TLD).

To assess whether observed replication z-scores, zro,
are statistically consistent with the observed discovery z-
scores, zdo, for a given SNP (explicitly taking into account
its H and TLD structure) one can calculate the proba-
bility of obtaining a replication z-score, zr, that is “more
extreme” that the observed value as follows: if zdo > 0,
calculate p(zr < zro) by integrating the pdf thus

p(zr < zro|zdo) =
∫ zro

−alim

pdf(zr|zdo)dzr, (70)

and if zdo < 0, calculate p(zr > zro) from

p(zr > zro|zdo) =
∫ alim

zro

pdf(zr|zdo)dzr (71)

(small values will indicate outliers). This probability was
calculated for 623 rs# SNPs with discovery p-values <
9.97 × 10−5, as described in [35]. For example, in the
discovery data set PGC2 (Neff = 49, 367, with 20,352
cases), SNP rs9834970 (H=0.49976, TLD=97.42, shown
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as the left-most green disc in the bottom-left panel in S1
Appendix Fig. A ) had z-score zdo = −7.52 and p-value
pdo = 5.54×10−14. In the independent replication dataset
(Neff = 35, 240, with 9,412 cases) it had zro = −1.04 and
pro = 0.2959. The expected effect size in the replication
dataset given the discovery z-score, E(δr|zdo) = −4.03.
The probability of obtaining a replication z-score more ex-
treme than the one observed was p(zr > zro|zdo) = 0.012.
If the threshold for replicating were set at pt = 0.05 (cor-
responding to zt = −1.6449), then the probability for the
replication z-score for SNP rs9834970 to reach this thresh-
old is 0.97.

For a null hypothesis that replication z-scores are con-
sistent with discovery z-scores, there are no rejections (α =
0.05) for Bonferroni or Benjamini-Hochberg FDR. I.e., the
replication data are, based on our model, consistent with
the discovery data.

Additional notes on HDL

The LDSR estimate of SNP heritability for HDL choles-
terol is 15.8% [85]. Our estimate is 7%. The LDSR esti-
mate appears to be based on the subset of samples geno-
typed with genome-wide association study arrays, reported
as 94k in [48], the same subset we used. Note that
[48] also include another 94k samples genotyped with the
Metabochip array; in cases where Metabochip and GWAS
array data were available for the same individuals, they
used Metabochip data to ensure that key variants were
directly genotyped rather than imputed.

Our procedure is geared at characterizing the causal
variants that can best be described in a distributional
sense. To that end, we exclude SNPs that are in very
large LD blocks (and SNPs with very low MAF). Thus,
it is possible that we miss some large effects. However,
such large effects are the ones that are most likely to be
found; more important, from our stand point, is making
principled estimates of the characteristics of the remaining
undiscovered causal SNPs in complex traits. Nevertheless,
in forthcoming work, we will analyze all available pheno-
types with a more complex model, incorporating multiple
causal Gaussian, heterozygosity-dependent variance, and
total LD dependence of prior probabilities.

The more direct comparison for our work is with [77],
not [48] which has twice the sample size. [77] report 95
lipid-associated loci, 59 of which were new at that time.
Based on their Supplementary Table 2, of the 95 loci, 47
were associated with HDL: 17 of these were previously
found, an additional 3 were new findings in the previously
found loci, and the remaining 27 were findings in new loci.
A subsequent “conditional association analysis” identified
secondary signals at 26 loci, of which 10 loci resulted in
11 SNPs (two from one locus) being associated with HDL.
Their text notes that when the additional SNPs for the 26
loci were combined with the lead SNPs from the 95 loci,
12.1% of total variance in HDL was explained in the Fram-

ingham Heart Study, to be compared with our estimate of
3.3% of phenotypic variance explained by genome-wide sig-
nificant SNPs. If all 95 loci lead SNPs, plus all secondary
SNPs from 26 of the loci, the were used to estimate the
proportion of total variance explained by genome-wide sig-
nificant SNPs, that could easily lead to the discrepancy.

Additionally, HDL has very large signals from chromo-
somes 8, 15, and 16. Thus it might be more appropriate
to analyze HDL in a manner similar to AD, separating out
chromosome 19. We will address this in future work.
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Fig A . Pdf for replication z-score zr in a sample with Neff = 35, 240, given discovery z-score zd in a sample with
Neff = 49, 367, for bipolar disorder. pdf(zr|zd) is given by Eq. 69. PGC2 Table 1 and PGC2 STable 2 refer to Table 1
and Supplementary STable 2 in [35].
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Bipolar Disorder: Probability density for replication e�ect size given PGC2 discovery z-scores  [pdf(δr|zd)]

H=[0.02 0.14], TLD=[1 149] H=[0.02 0.14], TLD=[149 296] H=[0.02 0.14], TLD=[296 444] H=[0.02 0.14], TLD=[444 592]

H=[0.14 0.26], TLD=[1 149] H=[0.14 0.26], TLD=[149 296] H=[0.14 0.26], TLD=[296 444] H=[0.14 0.26], TLD=[444 592]

H=[0.26 0.38], TLD=[1 149] H=[0.26 0.38], TLD=[149 296] H=[0.26 0.38], TLD=[296 444] H=[0.26 0.38], TLD=[444 592]

H=[0.38 0.50], TLD=[1 149] H=[0.38 0.50], TLD=[149 296] H=[0.38 0.50], TLD=[296 444] H=[0.38 0.50], TLD=[444 592]

Fig B . Pdf for replication effect size δr in a sample with Neff = 35, 240, given discovery z-score zd in a sample with
Neff = 49, 367, for bipolar disorder. pdf(δr|zd) is given by Eqs. 60 and 59.
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Phenotype π1 σ2
b σ2

0 ncausal h2
(l)

MDD [2.85E-3, 5.17E-3] [6.21E-6, 8.19E-6] [1.054, 1.057] [3.14E4, 5.69E4] [0.07, 0.07]
BIP [2.46E-3, 2.94E-3] [4.94E-5, 5.56E-5] [1.049, 1.051] [2.71E4, 3.24E4] [0.16, 0.17]
SCZ 2014 [2.80E-3, 2.87E-3] [5.47E-5, 5.55E-5] [1.136, 1.139] [3.09E4, 3.16E4] [0.21, 0.21]
CAD [9.94E-5, 1.26E-4] [1.38E-4, 1.59E-4] [0.966, 0.973] [1.09E3, 1.39E3] [0.03, 0.03]
UC [1.24E-4, 1.28E-4] [8.71E-4, 8.94E-4] [1.138, 1.140] [1.37E3, 1.41E3] [0.12, 0.12]
CD [9.35E-5, 9.77E-5] [1.69E-3, 1.71E-3] [1.166, 1.169] [1.03E3, 1.08E3] [0.18, 0.18]
AD Chr19 [7.44E-5, 8.81E-5] [8.96E-3, 1.72E-2] [1.066, 1.086] [1.92E1, 2.28E1] [0.07, 0.09]
AD NoC19 [1.18E-4, 1.66E-4] [1.60E-4, 1.97E-4] [1.044, 1.047] [1.27E3, 1.79E3] [0.06, 0.10]
ALS Chr9 [1.24E-5, 1.61E-5] [0.00, 2.50E-2] [1.010, 1.021] [5.13E0, 6.87E0] [0.00, 0.00]

Edu [3.05E-3, 3.35E-3] [1.52E-5, 1.62E-5] [1.003, 1.006] [3.36E4, 3.69E4] [0.12, 0.12]
IQ 2018 [2.11E-3, 2.29E-3] [2.24E-5, 2.39E-5] [1.279, 1.286] [2.33E4, 2.53E4] [0.12, 0.12]
BMI [4.83E-4, 5.00E-4] [5.47E-5, 5.66E-5] [0.864, 0.880] [5.32E3, 5.51E3] [0.06, 0.07]
Height 2010 [4.13E-4, 4.51E-4] [1.60E-4, 1.72E-4] [0.931, 0.940] [4.55E3, 4.97E3] [0.17, 0.18]
Height 2014 [5.48E-4, 5.84E-4] [1.19E-4, 1.27E-4] [1.656, 1.666] [6.04E3, 6.43E3] [0.16, 0.17]
Height 2018 [8.40E-4, 8.71E-4] [9.29E-5, 9.63E-5] [2.495, 2.507] [9.26E3, 9.60E3] [0.19, 0.20]
Putamen [4.35E-5, 5.53E-5] [9.27E-4, 1.01E-3] [1.000, 1.008] [4.79E2, 6.09E2] [0.10, 0.12]
LDL [3.31E-5, 3.86E-5] [5.69E-4, 7.54E-4] [0.959, 0.965] [3.63E2, 4.25E2] [0.05, 0.06]
HDL [2.35E-5, 2.38E-5] [1.24E-3, 1.26E-3] [0.969, 0.973] [2.58E2, 2.62E2] [0.07, 0.07]
TC [3.96E-5, 4.56E-5] [8.08E-4, 9.90E-4] [0.961, 0.966] [4.36E2, 5.02E2] [0.09, 0.10]

Table D . 95% confidence intervals for the model parameters (π1, σ
2
b and σ2

0), the number of causal SNPs, and the
heritability. See the main paper Table B . Confidence intervals for parameters were estimated using the inverse of the
observed Fisher information matrix (FIM). The full FIM was estimated for all three parameters used in the model. For
the derived quantity h2, which depends on all parameters, the covariances among the parameters, given by the
off-diagonal elements of the inverse of the FIM, were incorporated. To calculate the confidence intervals, the mode was
run with pruning at r2 = 0.1 to approximate independence of z-scores (for blocks of GWAS SNPs – i.e., SNPs with a
z-score – for which their LD r2 > 0.1, a single SNP in the block was randomly chosen to represent the block; blocks
were thus approximately independent).
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Phenotype∗ N†
(eff) ncausal (SE) nM2 (SE) nM3 (SE) nMS (SE) h2

(l) (SE) h2
M2 (SE) h2

M3 (SE) h2
MS (SE)

MDD (2018; 7.1%) 1.57E5 4.4E4 (6.5E3) 3.0E4 (4.4E3) —– —– 0.07 (0.001) 0.09 (0.007) —– —–
MDD (UKB; 7.1%) 2.67E3 —– —– —– 4.0E4 (1.5E4) —– —– —– 0.03 (0.005)
Bipolar Disorder (0.5%) 4.94E4 3.0E4 (1.3E3) 1.1E4 (3.5E3) —– —– 0.16 (0.001) 0.24 (0.027) —– —–
Schizophrenia (1.0%) 8.07E4 3.1E4 (193) 1.9E4 (1.9E3) —– —– 0.21 (0.001) 0.29 (0.013) —– —–
CAD (2011; 3.0%) 6.57E4 —– 1.9E3 (642) 2.5E3 (900) —– —– 0.07 (0.013) 0.07 (0.012) —–
CAD (2015; 3.0%) 1.63E5 1.3E3 (75) —– —– —– 0.03 (0.001) —– —– —–
Ulcerative Colitis (0.1%) 3.65E4 1.4E3 (10) 856 (321) 2.7E3 (1.6E3) —– 0.11 (0.001) 0.10 (0.015) 0.13 (0.020) —–
Crohn’s Disease (0.1%) 3.62E4 1.1E3 (12) 856 (214) 6.2E3 (2.1E3) —– 0.18 (0.001) 0.17 (0.021) 0.23 (0.026) —–
AD (14.0%) 4.67E4 1.3E3 (140) 416 (321) 2.6E3 (1.9E3) —– 0.15 (0.013) 0.07 (0.024) 0.10 (0.021) —–

Education (2016) 2.94E5 3.5E4 (837) 1.9E4 (2.1E3) —– —– 0.12 (0.001) 0.13 (0.006) —– —–
Education (UKB) 1.25E5 —– —– —– 6.4E4 (629) —– —– —– 0.18 (0.004)
Intelligence (2017) 7.80E4 —– 1.5E4 (1.9E3) —– —– —– 0.22 (0.015) —– —–
Intelligence (2018) 2.63E5 2.4E4 (512) —– —– —– 0.13 (0.001) —– —– —–
BMI (2010) 1.24E5 —– 1.3E4 (1.7E3) 1.5E4 (1.5E3) —– —– 0.20 (0.011) 0.20 (0.010) —–
BMI (2015) 2.34E5 7.1E2 (48) —– 1.8E4 (1.6E3) —– 0.07 (0.001) —– 0.13 (0.005) —–
BMI (UKB) 1.26E5 —– —— —– 4.5E4 (2.4E3) —– —– —– 0.28 (0.004)
Height (2010) 1.34E5 4.8E3 (107) 4.6E3 (535) 9.5E3 (1.2E3) —– 0.17 (0.002) 0.30 (0.014) 0.32 (0.015) —–
Height (2014) 2.53E5 6.2E3 (100) —– 1.3E4 (1.3E3) —– 0.17 (0.001) —– 0.33 (0.011) —–
Height (2018) 7.08E5 9.4E3 (87) —– —– —– 0.19 (0.001) —– —– —–
Height (UKB) 1.26E5 —– —– —– 2.3E4 (484) —– —– —– 0.53 (0.003)
Putamen Volume 1.16E4 5.4E2 (33) —– —– —– 0.11 (0.002) —– —– —–
LDL 8.99E4 3.9E2 (16) 1.4E3 (856) 9.3E3 (1.9E3) —– 0.06 (0.002) 0.08 (0.016) 0.11 (0.011) —–
HDL 9.43E4 2.6E2 (98) 1.8E3 (963) 1.0E4 (1.5E3) —– 0.07 (0.000) 0.09 (0.015) 0.11 (0.010) —–
Total Cholesterol 9.46E4 4.7E2 (17) 1.5E3 (535) 6.4E3 (1.9E3) —– 0.09 (0.002) 0.09 (0.013) 0.12 (0.012) —–

Table E . Comparison of our results with those obtained from the two- and three-component Gaussian models in [14], denoted M2 and M3, respectively,
and the single Gaussian model with selection parameter in [15], denoted MS. M2 and M3 use the Hapmap3 reference panel with 1.07 million common
SNPs (MAF≥ 0.05); MS uses an Affymetrix panel with 483,634 SNPs (MAF> 0.01) on UK Biobank data; our results are based on a 1000 Genomes Phase3
reference panel with 11 million SNPs (MAF≥ 0.002). SE denotes standard error. ncausal is our estimate of the total number of causal SNPs (at
MAF>0.2%); nM2 and nM3 are the total numbers of susceptibility SNPs for M2 and M3, and nMS the corresponding numbers for MS. h2

(l) is our

heritability estimate (see the main paper Table B ); those obtained from M2, M3, and MS are labeled h2
M2, h

2
M3, and h2

MS , respectively. For quantitative
phenotypes, values are on the observed scale; for binary phenotypes, values are on the liability scale, using the same population prevalence as used for Table
B . It is important to note that our heritability estimates are corrected for inflation, by dividing by the inflation parameter σ2

0 ; this is not done for M2,
M3 or MS. ∗Disease prevalences are given as a percentage in parentheses. For binary phenotypes, let h2

obs denote the heritability on the observed 0-1 scale
(this is h2 in the main paper Figure A ). Let P denote the proportion of cases in the study: P = Ncases/(Ncases +Ncontrols). Then the heritability on the
log-odds-ratio scale reported in [14] is h2

log = h2
obs/(P (1− P )). The transformation between the observed and liability scale is given by Eq. 39. †N is the

total sample size for quantitative traits; for qualitative traits, Neff = 4/(1/Ncases + 1/Ncontrols) – see main text.
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h2 ĥ2 π1 π̂1 σ2
β σ̂2

β σ̂2
0 ncausal n̂causal

0.1 0.05 (0.00) 1E-5 8.4E-6 (7E-7) 4.3E-3 (7E-4) 2.5E-3 (3E-4) 1.01 (0.002) 110 92 (7)
0.1 0.03 (0.00) 1E-4 4.6E-5 (6E-6) 4.2E-4 (2E-5) 3.2E-4 (3E-5) 1.02 (0.002) 1101 501 (67)
0.1 0.04 (0.00) 1E-3 5.2E-4 (8E-5) 4.2E-5 (5E-7) 3.3E-5 (3E-6) 1.01 (0.002) 11015 5714 (903)
0.1 0.04 (0.00) 1E-2 2.9E-3 (4E-4) 4.2E-6 (4E-8) 5.9E-6 (1E-6) 1.01 (0.002) 110158 31943 (3950)

0.4 0.24 (0.02) 1E-5 1.6E-5 (9E-7) 1.7E-2 (3E-3) 6.4E-3 (7E-4) 1.02 (0.002) 110 172 (10)
0.4 0.17 (0.01) 1E-4 6.7E-5 (4E-6) 1.7E-3 (7E-5) 1.1E-3 (6E-5) 1.05 (0.003) 1101 740 (42)
0.4 0.14 (0.00) 1E-3 5.0E-4 (3E-5) 1.7E-4 (2E-6) 1.2E-4 (6E-6) 1.06 (0.003) 11015 5510 (359)
0.4 0.15 (0.00) 1E-2 3.6E-3 (2E-4) 1.7E-5 (2E-7) 1.7E-5 (1E-6) 1.06 (0.002) 110158 40072 (2572)

0.7 0.43 (0.03) 1E-5 2.0E-5 (1E-6) 3.0E-2 (5E-3) 9.0E-3 (1E-3) 1.02 (0.003) 110 220 (14)
0.7 0.33 (0.01) 1E-4 8.3E-5 (4E-6) 2.9E-3 (1E-4) 1.7E-3 (9E-5) 1.07 (0.003) 1101 912 (48)
0.7 0.25 (0.00) 1E-3 5.1E-4 (2E-5) 2.9E-4 (4E-6) 2.0E-4 (6E-6) 1.10 (0.004) 11015 5661 (241)
0.7 0.24 (0.00) 1E-2 3.6E-3 (2E-4) 2.9E-5 (3E-7) 2.8E-5 (1E-6) 1.09 (0.003) 110158 39774 (1775)

Table F . Simulation results for our implementation of the M2 model of [14] (i.e., restricting the number of LD r2

windows for the range 0 ≤ r2 ≤ 1 to 1 – see the subsection Relation to Other Work on page S2). Shown here is a
comparison of mean (std) true and estimated (ˆ) model parameters and derived quantities. Results for each line, for
specified heritability h2 and fraction π1 of causal SNPs, are from 10 independent instantiations with random selection
of the ncausal causal SNPs that are assigned a β-value from the standard normal distribution. Compare with the main
paper Table A (main paper.)

Phenotype∗ ncausal ňcausal nM2 σ2
β σ̌2

β σ2
M2 h2

(l) ȟ2
(l) h2

M2 σ2
0 σ̌2

0

MDD (2018; 7.1%) 4.4E4 9.8E4 3.0E4 7.63E-6 3.43E-6 8.57E-6 0.07 0.08 0.09 1.06 1.06
Bipolar Disorder (0.5%) 3.0E4 1.5E5 1.1E4 5.51E-5 1.27E-5 6.23E-5 0.17 0.20 0.24 1.05 1.05
Schizophrenia (1.0%) 3.1E4 1.0E5 1.9E4 6.28E-5 1.93E-5 4.36E-5 0.24 0.24 0.29 1.14 1.15
Ulcerative Colitis (0.1%) 1.4E3 1.1E4 856 1.01E-4 1.20E-3 4.34E-4 0.13 0.13 0.10 1.14 1.15
Crohn’s Disease (0.1%) 1.1E3 928 856 1.99E-3 2.21E-3 5.67E-4 0.21 0.20 0.17 1.17 1.18

Education (2016) 3.5E4 1.3E5 1.9E4 1.57E-5 4.73E-6 1.95E-5 0.12 0.13 0.13 1.00 1.02
Height (2010) 4.8E3 4.6E3 4.6E3 1.56E-4 1.53e-4 1.87e-4 0.16 0.15 0.30 0.94 0.94
Height (2014) 6.2E3 6.1E3 —– 2.04E-4 1.98E-4 —– 0.28 0.26 —– 1.66 1.66
LDL 390 371 1.4E3 6.35E-4 6.05E-4 1.63E-4 0.06 0.05 0.08 0.96 0.96
HDL 260 255 1.8E3 1.21E-3 1.12E-3 1.43E-4 0.07 0.06 0.09 0.97 0.97
Total Cholesterol 469 290 1.5E3 8.63E-4 6.08E-4 1.71E-4 0.09 0.04 0.09 0.96 0.95

Table G . Comparison of model estimates: (1) our results reported in the main paper Table B (ncausal, σ
2
β , h

2
(l),

and σ2
0) without rescaling discoverability and heritability by the inflation parameter; (2) results of our implementation

(quantities with a ˇ) of the M2 model in [14], without rescaling with respect to σ̌2
0 – see the first section of this

Supplement, Relation to Other Work ; and (3) M2 results reported or implicit in [14] (quantities with the underscore

M2). σ
2
M2 = (h2

M2/nM2)/H̄, where H̄ = 0.35. ∗Disease prevalences are given as a percentage in parentheses. See S1
Appendix Table E .
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ĥ
2
l

Data (2018)

Model

Null

=1.12

=1.12

e =2.42e5

=6.33e-5

=5.02e-3

=0.02

=0.03

(17 causal

 SNPs) 

0 2 4 6

Chromosome 19 only

1
0
(p

)

Alzheimer’s Disease

A B C

D E F

Fig G . QQ plots for AD, comparing the 2013 data [39] and model results (top row) with those of 2018 [40] (bottom
row). For both data sets, we exclude (in (A) and (D)) chromosome 19 from the analysis, and in (B) and (E) we analyze
chromosome 19 exclusively. (C) is (B) with the y-axis extended 5×; (F) is (E) with the y-axis extended 10×. The
heritabilities reported are for the relevant sections of DNA. From (A) and (B), the total (full autosomal reference
panel) narrow-sense liability-scale SNP heritability for AD is h2

l = 0.15. See the main paper Figure A for a further
description.

0

5

10

15

20

N
o

m
in

a
l 
-l
o

g
1

0
(p

)

Empirical -log
10

(q)

λ =1.06

σ̂2
0 =0.94

N =1.34e5

π̂1 =4.32e-4

σ̂2
β =1.66e-4

ĥ
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Fig L . A 4×4 heterozygosity×total-LD grid of QQ plots for major depressive disorder (H increasing top to bottom,
TLD increasing left to right, taking every second subplot from a full 10×10 grid). n is the number of SNPs in each grid
element. See Figure A (A).

20



0 2 4 6
0

2

4

6

8

10

N
o

m
in

a
l 
-l
o

g
1

0
(p

)

H=[0.02 0.07], TLD=[1 60] bip

λ̂model =1.0 6

λ̂data =1.0 3

n=6.1e+05

Data

Model

Expected

0 2 4 6
0

2

4

6

8

10
H=[0.02 0.07], TLD=[178 237] bip

λ̂model =1.1 8

λ̂data =1.0 7

n=2575

0 2 4 6
0

2

4

6

8

10
H=[0.02 0.07], TLD=[356 415] bip

λ̂model =1.2 6

λ̂data =1.1 9

n=217

0 2 4 6
0

2

4

6

8

10
H=[0.02 0.07], TLD=[535 592] bip

λ̂model =1.2 8

λ̂data =1.9 6

n=64

0 2 4 6
0

2

4

6

8

10

N
o

m
in

a
l 
-l
o

g
1

0
(p

)

H=[0.17 0.21], TLD=[1 60] bip

λ̂model =1.1 0

λ̂data =1.1 5

n=6.1e+04

0 2 4 6
0

2

4

6

8

10
H=[0.17 0.21], TLD=[178 237] bip

λ̂model =1.4 1

λ̂data =1.3 7

n=1993

0 2 4 6
0

2

4

6

8

10
H=[0.17 0.21], TLD=[356 415] bip

λ̂model =1.6 6

λ̂data =1.0 6

n=159

0 2 4 6
0

2

4

6

8

10
H=[0.17 0.21], TLD=[534 590] bip

n=30

0 2 4 6
0

2

4

6

8

10

N
o

m
in

a
l 
-l
o

g
1

0
(p

)

H=[0.31 0.36], TLD=[1 60] bip

λ̂model =1.1 3

λ̂data =1.1 6

n=4.4e+04

0 2 4 6
0

2

4

6

8

10
H=[0.31 0.36], TLD=[178 237] bip

λ̂model =1.5 4

λ̂data =1.4 9

n=2761

0 2 4 6
0

2

4

6

8

10
H=[0.31 0.36], TLD=[356 415] bip

λ̂model =1.9 5

λ̂data =1.4 3

n=261

0 2 4 6
0

2

4

6

8

10
H=[0.31 0.36], TLD=[535 591] bip

n=37

0 2 4 6

Empirical -log
10

(q)

0

2

4

6

8

10

N
o

m
in

a
l 
-l
o

g
1

0
(p

)

H=[0.45 0.50], TLD=[1 60] bip

λ̂model =1.1 4

λ̂data =1.1 8

n=1.1e+05

0 2 4 6

Empirical -log
10

(q)

0

2

4

6

8

10
H=[0.45 0.50], TLD=[178 237] bip

λ̂model =1.6 3

λ̂data =1.5 1

n=1.0e+04

0 2 4 6

Empirical -log
10

(q)

0

2

4

6

8

10
H=[0.45 0.50], TLD=[356 415] bip

λ̂model =2.1 8

λ̂data =1.8 2

n=1139

0 2 4 6

Empirical -log
10

(q)

0

2

4

6

8

10
H=[0.45 0.50], TLD=[533 592] bip

λ̂model =2.7 3

λ̂data =1.3 5

n=128

Fig M . A 4×4 heterozygosity×total-LD grid of QQ plots for bipolar disorder. See Figures A (B) and L .
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Fig N . A 4×4 heterozygosity×total-LD grid of QQ plots for schizophrenia. See Figures A (C) and L .
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Fig O . A 4×4 heterozygosity×total-LD grid of QQ plots for coronary artery disease. See Figures A (D) and L .
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Fig P . A 4×4 heterozygosity×total-LD grid of QQ plots for ulcerative colitis. See Figures A (D) and L .
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Fig Q . A 4×4 heterozygosity×total-LD grid of QQ plots for Crohn’s disease. See Figures A (E) and L .
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Fig R . A 4×4 heterozygosity×total-LD grid of QQ plots for Alzheimer’s disease, excluding chromosome 19. See
Figures A (F), G , L , and S .
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Fig S . A 4×4 heterozygosity×total-LD grid of QQ plots for Alzheimer’s disease, chromosome 19 only. See Figures
A (F), G , L , and R .
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Fig T . A 4×4 heterozygosity×total-LD grid of QQ plots for amyotrophic lateral sclerosis, chromosome 9 only. See
Figures A (H) and L .
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Fig U . A 4×4 heterozygosity×total-LD grid of QQ plots for years of education. See Figures B (A) and L .
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Fig V . A 4×4 heterozygosity×total-LD grid of QQ plots for intelligence. See Figures B (B) and L .
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Fig W . A 4×4 heterozygosity×total-LD grid of QQ plots for body mass index. See Figures A (C) and L .
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Fig X . A 4×4 heterozygosity×total-LD grid of QQ plots for height (2010). See Figures B (C) and L .
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Fig Y . A 4×4 heterozygosity×total-LD grid of QQ plots for height (2014). See Figures B (C) and L .
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Fig Z . A 4×4 heterozygosity×total-LD grid of QQ plots for height (2018). See Figures B (C) and L .
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Fig AA . A 4×4 heterozygosity×total-LD grid of QQ plots for putamen volume. See Figures B (D) and L .
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Fig AB . A 4×4 heterozygosity×total-LD grid of QQ plots for low density lipoprotein. See Figures B (E) and L .
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Fig AC . A 4×4 heterozygosity×total-LD grid of QQ plots for high density lipoprotein. See Figures B (F) and L .
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Fig AD . A 4×4 heterozygosity×total-LD grid of QQ plots for total cholesterol. See Figures A (H) and L .
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