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Table S1. Comparison of model estimates on initial susceptibility and model performance under 

different assumptions on vaccination campaigns. The baseline setting is as reported in the main 

text and alternative settings 1 to 3 are as described in the section "Sensitivity analysis on 

vaccination campaigns settings." The results are summarized by pooling all 10 model-inference 

runs (10,000 particles each run and 100,000 model realizations in total). The numbers are the 

mean and, for the susceptibilities, 95% credible intervals in the parentheses. The initial 

susceptibilities, estimated at the end of Sep 2018, were computed by adding the total numbers of 

individuals immunized by the vaccination campaigns in Oct 2018 to the posterior estimates at the 

end of Oct 2018.  

  
Model Settings on Vaccination Campaigns 

 
Age group Baseline Alternative 1 Alternative 2 Alternative 3 

Estimated 

initial 

susceptibility 

(%) at end of 

Sep 2018 

<1 year 53.2 (49, 57.5) 54.2 (50, 58.4) 54.2 (50, 58.5) 54.2 (50, 58.5) 

1-4 years 24.9 (20.4, 29.7) 24.9 (20.4, 29.7) 24.9 (20.4, 29.7) 29.9 (25.4, 34.7) 

5-17 years 6.0 (4.1, 7.9) 7.5 (5.1, 9.9) 7.5 (5.1, 9.9) 6.0 (4.1, 7.9) 

18-49 years 6.0 (4.1, 7.9) 7.5 (5.2, 9.9) 7.5 (5.2, 9.9) 7.5 (5.2, 9.9) 

50+ years 6.0 (4.1, 7.9) 6.0 (4.1, 7.9) 6.0 (4.1, 7.9) 6.0 (4.1, 7.9) 

Log-likelihood -255.25 -265.52 -255.25 -257.42 

Relative error 

of total 

number of 

cases over the 

outbreak 

<1 year 0.39% -11.96% -11.56% -17.91% 

1-4 years -0.04% -7.80% -6.90% -8.07% 

5-17 years -4.13% 14.38% 0.33% 1.84% 

18+ years -4.70% 7.24% 5.97% 7.95% 

All ages -1.79% -0.65% -3.48% -4.25% 

Root-mean-

square-error 

(RMSE), over 

Oct 2018 – 

July 2019 

<1 year 1.74 1.86 1.80 2.55 

1-4 years 8.72 8.13 8.17 7.70 

5-17 years 3.91 5.27 3.00 5.10 

18+ years 5.08 4.62 4.30 4.25 

All ages 7.31 7.52 5.88 6.29 

Correlation, 

over Oct 2018 

– July 2019 

<1 year 0.99 1.00 1.00 0.99 

1-4 years 0.95 0.96 0.96 0.97 

5-17 years 0.99 0.97 0.99 0.97 

18+ years 0.97 0.97 0.97 0.97 

All ages 0.99 0.99 1.00 1.00 

1-step-head 

prediction 

RMSE, over 

Oct 2018 – 

Mar 2019 

<1 year 4.37 4.46 4.40 4.60 

1-4 years 17.13 17.34 17.35 25.12 

5-17 years 8.27 8.39 8.37 8.50 

18+ years 4.34 4.93 4.93 5.06 

All ages 27.79 28.23 28.16 35.02 

 



Table S2. Estimated negative impact of “measles parties” and positive impact of vaccination campaigns during Oct 2018 – July 2019. 

Column 2 shows the observed numbers of cases, reported as of Aug 6, 2019. Column 3 shows the estimated numbers of cases if there 

had been no “measles parties”. Columns 4-6 show the estimated total numbers of cases (4th column), hospitalizations (5th column), 

and individuals in intensive care unit (ICU) for different age groups (rows 3 to 6) and overall (last row), if there had been no 

vaccination campaigns. Columns 7-9 show the estimated numbers of cases, hospitalizations, and ICU cases averted by the vaccination 

campaigns. Numbers are the median (and 95% confidence intervals) of 10,000 simulations. See Table 2 in the main text for the 

median and interquartile ranges. 

Age 

group 

No. cases 

reported 

No. cases, if 

no measles 

parties 

No. if no vaccination campaigns No. averted by vaccination campaigns 

Cases Hospitalizations ICU cases Cases Hospitalizations ICU cases 

<1 100 26 (0, 204) 1302 (0, 1430) 97 (0, 106) 20 (0, 22) 1202 (0, 1330) 89 (0, 99) 18 (0, 20) 

1-4 275 62 (3, 472) 3914 (3, 4096) 291 (0, 305) 60 (0, 63) 3639 (0, 3821) 271 (0, 284) 56 (0, 59) 

5-17 138 26 (1, 336) 1412 (1, 1692) 105 (0, 126) 22 (0, 26) 1274 (0, 1554) 95 (0, 116) 20 (0, 24) 

18+ 129 29 (1, 272) 1141 (1, 1343) 85 (0, 100) 18 (0, 21) 1012 (0, 1214) 75 (0, 90) 16 (0, 19) 

All 642 152 (5, 1246) 7810 (5, 8443) 581 (0, 628) 120 (0, 130) 7168 (0, 7801) 533 (0, 580) 110 (0, 120) 

 

 

 



Table S3. Main model parameters and prior ranges tested. In total, we tested 5040 combinations of prior ranges. Each combination 

was used as the lower and upper bounds of Latin Hypercube sampling. The optimal prior ranges used in the final model-inference runs 

are bolded if multiple ranges were tested.  

Parameter Symbol/Equation Ranges tested Source/rationale 

Initial susceptibility in <1 year-olds S1(t=0); Eqn 1 Based on susceptibility in 18-49 

year-olds (i.e., the mothers)  

N/A 

Initial susceptibility in 1-4 year-olds S2(t=0); Eqn 1 [5, 15], [10, 20], [15, 25], [20, 

30], [25, 35], [30, 40], [35, 45]% 

of population 

Unclear; use a wide range 

Initial susceptibility in 5-17 year-olds S3(t=0); Eqn 1 [4, 8], [5, 10], [5, 15], [10, 20], 

[15, 25]% of population 

Unclear; use a wide range 

Initial susceptibility in 18-49 year-olds S4(t=0); Eqn 1 [4, 8], [5, 10], [5, 15], [10, 20]% 

of population 

Higher vaccination rate for this 

age group (see data from the 

WHO (37)) 

Initial susceptibility in 50+ year-olds S5(t=0); Eqn 1 [4, 8]% of population High immunity due to natural 

infection in this group 

Initial number of infants with maternal 

immunity 

M(t=0); Eqn 1 Based on susceptibility in 18-49 

year-olds (i.e., the mothers)  

N/A 

Latent period Z; Eqn 1 [7, 9] days Mean = 8 days in (38) 

Infectious period D; Eqn 1 [2, 6] days 4-6 days in (26) 

Mixing parameter for the susceptibles m1; Eqn 1 1 (perfect mixing), [0.95, 1], 

[0.9, 0.95] 

1 for well-mixed models 

Mixing parameter for the infectious m2; Eqn 1 1 (perfect mixing), [0.95, 1], 

[0.9, 0.95] 

1 for well-mixed models and 

0.97 estimated in (29) 

Relative contact rate among <1 year-olds β1; Eqn 2 Set to 1 N/A 

Relative contact rate among 1-4 year-olds β2; Eqn 2 [3, 30] Unclear; use a wide range 

Relative contact rate among 5-17 year-olds β3; Eqn 2 [25, 50] 1.3-1.9 times of 0-4 year-olds 

(39) 

Relative contact rate among 18-49 year-olds β4; Eqn 2 [20, 40] 1.3-1.6 times of 0-4 year-olds 

(39) 

Relative contact rate among 50+ year-olds β5; Eqn 2 [1, 5] .7-1.4 times on 0-4 year-olds 

(39)  

Relative contact rate between 1-4 and 5-17 β6; Eqn 2 [1, 5] Unclear; use a wide range 



year-olds (sibling interactions) 

Contact rate between 18-49 and 1-4 or 5-17 

year-olds (parent-child interactions) 

β7; Eqn 2 [1, 5] Unclear; use a wide range 

Amplitude of school term-time forcing b1; Eqn 3 [0.25, 0.75], [0.5, 1] Possible between 0-1.  

Basic reproductive number R0; Eqn 4 [5, 10], [7, 12] Common range: 12-18; possible 

values: 1.4-770 (6) 

Reporting rate r; Eqn 6 [80, 100]% Probably high as a later version 

of case report was used here. 

 

 



Fig. S1. Estimates of model parameters not listed in Fig. 4. (A) amplitude of school term-time 

forcing, (B) latent period, (C) reporting rate, (D) relative contact rate among 50+ year-olds, (E) 

relative contact rate between 1-4 and 5-17 year-olds (i.e. sibling interactions), and (F) relative 

contact rate between 18-49 and 1-4 or 5-17 year-olds (i.e. parent-child interactions). Red lines 

and surrounding regions (y-axis on the left) show the mean and 50% and 95% credible intervals 

of estimates pooled over all 10 model-inference runs (100,000 model realizations in total) made 

at the end of each month from Oct 2018 to July 2019. For comparison, the grey bars (y-axis on 

the left) show monthly incidence for all ages. Note that m1 and m2 are not shown as both optimal 

priors are the value 1 (Table S3).  
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(A) Amplitude of school term−time forcing
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(B) Latent period (days)
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(C) Reporting rate
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(D) Relative contact rate among 50+ year−olds
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(E) Relative contact rate between siblings
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(F) Relative contact rate between child and parent



Fig. S2. Schematic of the measles transmission model. Measles transmission model follows the 

susceptible (S), exposed (E) and latently infected, infectious (I), and recovered/removed via 

vaccination (R) SEIR dynamics and includes 5 age-groups as indicated by the subscripts (i.e., <1, 

1-4, 5-17, 18-49, and 50+ year-olds, respectively) and a group (M) for infants with maternal 

immunity. Black solid arrows show the disease-related processes; grey solid arrows show the 

demographic processes including birth (horizontal), aging (vertical), and death (tilted). Black 

dashed arrows show processes related to the routine 2-dose measles vaccination where 

susceptible individuals are vaccinated at ages 1 and 5 and move to the respective immune 

groups. Red dotted arrows show processes related to vaccination of susceptible individuals under 

18 during the vaccination campaigns.  
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