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Supplementary Note 1: The nonergodic reaction free energy

We start with the theoretical framework used by Matyushov1. The solvent coor-

dinate, x, is defined as the polarization energy induced by the difference dipole

between the dipoles generated by the reactant (R) and product (P) states of the ET

reaction,

x = −
∫

d~r ~P (~r) ·∆ ~E0(~r), ∆ ~E0 = ~E1 − ~E2, (1)

where ~E1 and ~E2 are electric fields generated by the R and P states of the donor-

acceptor pair. Assume that the polarization field ~P (~r) is linearly proportional to

the electric field,

~P (~r) =

∫
dω

∫
d~r′ χ(ω,~r, ~r′) · ~E(~r′), (2)

where χ(ω,~r, ~r′) is the dielectric tensor which is dependent on the frequency ω. It

is assumed that the R state of the system is in equilibrium with the environment.

That is, at t = 0, the system is ”frozen” at the polarization1,

~Pf (~r) =

∫
dω

∫
d~r′ χ(ω,~r, ~r′) · ~E1(~r

′). (3)

Hence, we define the origin of the solvent coordinate to be

x0 = −
∫

d~r ~Pf (~r) ·∆ ~E0(~r), ∆ ~E0 = ~E1 − ~E2, (4)

Equivalently, the solvent coordinate is redefined to be

x = −
∫

d~r (~P (~r)− ~Pf (~r)) ·∆ ~E0(~r). (5)

Using the method of restricted ensembles2, we let the cutoff frequency of the en-

vironmental relaxation modes be the average ET rate kET . The nonergodic solvent

coordinate with a given kET is written by

x = −
∫

dω θ(|ω| − kET )

∫
d~r1

∫
d~r2 ( ~E(~r1)− ~E1(~r1)) · χ(ω,~r1, ~r2) ·∆ ~E0(~r2). (6)
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The physical picture behind this method is that only relaxation modes that are

faster than the cutoff frequency, kET , actively contribute to the polarization of the

system, while all the slow modes stay in equilibrium with ~E1, the R state of the

system. Then, the difference of polarization energies of the R and P states, ∆Gsol,

is given by1

∆Gsol(kET ) =

∫
dωθ(|ω| − kET )

∫
d~r1

∫
d~r2

(1

2
~E1(~r1) · χ(ω,~r1, ~r2) · ~E1(~r2)

− 1

2
~E2(~r1) · χ(ω,~r1, ~r2) · ~E2(~r2)

)
, (7)

and the outer reorganization energy λo, including contributions of the environ-

mental relaxation modes, reads

λo(kET ) =

∫
dωθ(|ω| − kET )

∫
d~r1

∫
d~r2

1

2
∆ ~E0(~r1) · χ(ω,~r1, ~r2) ·∆ ~E0(~r2). (8)

Both are dependent on the reaction rate kET . It is easily seen that

∆Gsol(kET ) + λo(kET ) =

∫
dωθ(|ω| − kET )

∫
d~r1

∫
d~r2 ~E1(~r1) · χ(ω,~r1, ~r2) ·∆ ~E0(~r2)

=

∫
dω

∫
d~r1

∫
d~r2 ~E1(~r1) · χ(ω,~r1, ~r2) ·∆ ~E0(~r2), (9)

which is a constant. That means, regardless of the value of kET , the following

identity always holds

∆Gsol(kET ) + λo(kET ) = ∆Geq
sol + λeqo , (10)

where ∆Geq
sol = limkET→0 ∆Gsol(kET ) and λeqo = limkET→0 λo(kET ). This proves

Equation 18 in the main text.

Supplementary Note 2: The generalized Fokker-Planck equation

In the literature, the solvent coordinate x, being the polarization energy, was often

modeled as a random process, which followed the Brownian motion3, 4. In the
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work of Sumi and Marcus5, the environmental motion, assumed to follow the

Debye relaxation, was governed by the Fokker-Planck equation. However, for a

general form of relaxations S(t), a generalized approach needs to be taken.

We start with an overdamped generalized Langevin equation with a mem-

ory kernel K(t)6,

dx

dt
= −

∫ t

0

K(t− τ)x(τ)dτ + ξ(t), (11)

where ξ(t) is a colored noise with mean 0, 〈ξ(t)〉 = 0. According to the fluctuation-

dissipation theorem7, the memory kernel K(t) satisfies a relation with the noise

ξ(t),

K(τ) = C〈ξ(t+ τ)ξ(t)〉, (12)

where the condition of stationarity is assumed. By Laplace transforming the Langevin

equation of x(t), we get

x̂(z) =
x(0)

z + K̂(z)
+

ξ̂(z)

z + K̂(z)
, (13)

where x(0) is the value of x(t) at t = 0, and

f̂(z) =

∫ ∞
0

dt f(t)e−zt, (14)

for a general function f(t). By the inverse Laplace transform of Equation 13, we

get

x(t) = x(0)S(t) +

∫ t

0

dτ S(t− τ)ξ(τ), (15)

where S(t) is the normalized auto-correlation function (TCF) of x(t) (defined in

Equation 14 in the main text), whose Laplace transform satisfies

Ŝ(z) =
1

z + K̂(z)
. (16)
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If ξ(t) is a Gaussian process, x(t) is also a Gaussian process with its mean

x̄(t) and variance A(t) given by

x̄(t) = x(0)S(t),

A(t) = 〈(x(t)− x(0)S(t))2〉 = C−1
∫ t

0

∫ t

0

dt1dt2 S(t− t1)S(t− t2)K(t1 − t2). (17)

The probability distribution function (pdf) P (x, t|x(0), t = 0) is given by

P (x, t|x(0), t = 0) = (
1

2πA(t)
)1/2 exp

(
−(x− x̄(t))2

2A(t)

)
. (18)

It is straightforward to show that P (x, t|x(0), t = 0) satisfies the differential equation8,

∂P

∂t
=

(
Ȧ(t)

2
− Ṡ(t)

S(t)
A(t)

)
∂2P

∂x2
− Ṡ(t)

S(t)

∂

∂x
(xP ), (19)

In this expression, Ȧ(t) can be computed by

Ȧ(t) ≡ dA

dt
=

2

C
S(t)L−1{Ŝ(z)K̂(z)}

=
2

C
S(t)L−1{Ŝ(z)(

1

Ŝ(z)
− z)}

= − 2

C
S(t)Ṡ(t), S(0) = 1, (20)

where L−1{f̂(z)} means the inverse Laplace transform of the function f̂(z). As a

result,

A(t) =
1

C
(1− S2(t)), (21)

where the constant C is given by

C = lim
t→∞

1

A(t)
= lim

t→∞
〈x2(t)〉−1. (22)

Hence, the pdf of x(t) follows the generalized Fokker-Planck equation,

∂P

∂t
= D(t)

(
C−1

∂2P

∂x2
+

∂

∂x
(xP )

)
, (23)
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where D(t) is the time-dependent diffusion coefficient9,

D(t) = − 1

S(t)

dS(t)

dt
. (24)

In the limit of t→∞, A(t)→ C−1, the pdf of x(t) becomes

P (x, t|x(0), t = 0)→ Peq(x) = (
C

2π
)1/2 exp

(
−C

2
x2
)
. (25)

Therefore, a statistical free energy function F (x) can be defined through Peq(x) as

follows,

Peq(x) ∝ exp(−F (x)

kBT
), (26)

which gives the form of F (x) as

F (x) =
kBTC

2
x2. (27)

Comparing this form with the free energy function defined in Equation 10a in the

main text, we get

C−1 = 2kBTλo(kET ). (28)

Finally, the generalized Fokker-Planck equation, which governs the local motions

around the donor and acceptor, is given by

∂P

∂t
= D(t)

(
2λγokBT

∂2P

∂x2
+

∂

∂x
(xP )

)
, (29)

where λγo ≡ λo(kET ). This proves Equation 24 in the main text.

Supplementary Note 3: Photo-excited ET reactions

In a photo-excited ET reaction, at t = 0, the local environment is in equilibrium

with the ground state of the donor-acceptor pair with the electric field, ~E0. Hence

we define the ”frozen” polarization vector to be

~Pf (~r) =

∫
dω

∫
d~r′ χ(ω,~r, ~r′) · ~E0(~r

′), (30)

6



and the origin of the solvent coordinate x0 is shifted accordingly,

x0 = −
∫

d~r ~Pf (~r) ·∆ ~E0(~r), ∆ ~E0 = ~E1 − ~E2, (31)

Then the solvent coordinate is shifted according to Equation 5. ~E0 differs slightly

from the electric field of the excited state, ~E1. The difference can be approximately

measured through the solvation experiment 10, which gives the stabilization en-

ergy, ∆Esol (see Equation 15 in the main text). It is easy to see that the difference

of the minima of the excited state and the ground state of the donor-acceptor pair,

∆x(kET ), has an approximate relation with ∆Esol
11,

∆x(kET ) =

∫
dωθ(|ω| − kET )

∫
d~r1

∫
d~r2 ( ~E1(~r1)− ~E0(~r1)) · χ(ω,~r1, ~r2) ·∆ ~E0(~r2)

= γ lim
kET→0

∆x(kET ) ≈ γ∆Esol, (32)

where γ is given by (see Equation 16 in the main text)

γ =

∫ +∞

−∞
dω S(ω)θ(|ω| − kET ), (33)

and S(ω) is the Fourier transform of S(t). Similarly, the identity between ∆Gsol(kET )

and λo(kET ) (see Equation 9) is modified because of the shift of ~Pf ,

∆Gsol(kET ) + λo(kET ) + ∆x(kET ) = ∆Geq
sol + λeqo + ∆Esol. (34)

This is Equation 28 in the main text.

The initial distribution of the local environment is in equilibrium with the

electric field, ~E0. Equivalently, P (x, t = 0) is centered at x = 0, by definition.

According to the concept of restricted ensembles, the variance of P (x, t = 0) is

given by 2λγokBT because relaxation modes of the local environment, which are

slower than the ET reaction, are inactive during the reaction time. Hence, the

initial distribution P (x, t = 0) is given by

P (x, t = 0) =

√
1

4πλγokBT
exp

(
− x2

4λγokBT

)
, (35)

which is Equation 30 in the main text.

7



Supplementary Note 4: The correlation function with multiple exponential

components

If the solvation correlation function S(t) can be written as a sum of multiple expo-

nential functions,

S(t) =
N∑
i=1

cie
−t/τi , (36)

where N is the number of components, the Laplace transform of S(t), S(ω), reads

(see Equation 13 in the main text),

S(ω) =
1

π

∫ +∞

0

dt S(t) cosωt =
1

π

N∑
i=1

ci
τi

1 + (ωτi)2
. (37)

With a given value of kET , the dynamic factor γ can be computed using Equation

33,

γ =

∫ +∞

−∞
dω S(ω)θ(|ω| − kET ) = 1− 2

π

N∑
i

ci arctan(kET τi), (38)

which is the same as Equation 31 in the main text.
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Supplementary Figure 1: The time evolution of reactants’ distribution, P (x, t), with dif-
ferent solvation timescales τD using the Sumi-Marcus model. Other values of parameters
used are, J = 0.020eV, ∆Go = −0.60eV, λi = 0.80eV, and λo = 0.40eV, which are the same
as Figure 2. The bolded red line represents the curve of −k(x) without scaling. Within
each graph, the upper panel displays the time evolution of P (x, t), while the lower panel
displays the evolution of the reaction rate’s distribution, −k(x)P (x, t). (a) τD = 0.1ps. (b)
τD = 10ps. (c) τD = 3ns.
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Supplementary Figure 2: Simulations of photo-excited ET dynamics with different sol-
vation timescales, τD using the nonergodic model with the stablization energy, ∆Esol =
0.025eV. Other values used are the same as those in Supplementary Figure 1.
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Supplementary Figure 3: The time evolution of reactants’ distribution, P (x, t), with dif-
ferent solvation timescales τD using the nonergodic model with the stablization energy,
∆Esol = 0.025eV. Values of parameters used are the same as those in Supplementary Fig-
ure 1. The bolded red line represents the curve of −k(x) without scaling. Within each
graph, the upper panel displays the time evolution of P (x, t), while the lower panel dis-
plays the evolution of the reaction rate’s distribution, −k(x)P (x, t). (a) τD = 0.1ps. (b)
τD = 10ps. (c) τD = 3ns.
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