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Supplementary Tables and Figures 
 
Table S1 Model Effect Estimates on Zero-inflated Negative Binomial Mixed Models to Examine the 
Associations between Long-term Exposure to Air Pollution and COVID-19 case-fatality rate or 
mortality 

 COVID-19 Case-Fatality COVID-19 Mortality 

Pollutant 
Main Effect 
Estimate* 

95% 
Confidence 
Interval 

p-values 
Main Effect 
Estimate 

95% 
Confidence 
Interval 

p-values 

Single Pollutant Model—Non-zero Components 
NO2 1.015 1.003 to 1.028 0.02 1.023 1.007 to 1.039 <0.001 
PM2.5 0.996 0.953 to 1.041 0.87 1.049 0.995 to 1.107 0.08 
O3 0.993 0.975 to 1.010 0.42 0.986 0.964 to 1.008 0.22 

3- Pollutant Model—Non-zero Components 
NO2 1.016 1.003 to 1.029 0.02 1.022 1.005 to 1.038 <0.001 
PM2.5 0.991 0.947 to 1.037 0.70 1.054 0.996 to 1.115 0.07 

O3 0.992 0.974 to 1.010 0.36 0.979 0.957 to 1.002 0.08 
Single Pollutant Model—Zero Components 
NO2 0.963 0.938 to 0.988 <0.001 0.943 0.917 to 0.969 <0.001 

PM2.5 0.843 0.779 to 0.912 <0.001 0.689 0.630 to 0.754 <0.001 
O3 0.860 0.828 to 0.892 <0.001 0.792 0.760 to 0.825 <0.001 
3-Pollutant Model—Zero Components 
NO2 0.969 0.945 to 0.994 0.02 0.949 0.922 to 0.978 <0.001 
PM2.5 0.902 0.831 to 0.980 0.01 0.772 0.703 to 0.848 <0.001 
O3 0.869 0.838 to 0.902 <0.001 0.804 0.772 to 0.838 <0.001 

 
*Effect estimate based on per unit increase in air pollutants 
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Table S2 Moran’s I test for spatial autocorrelation in residuals from tri-pollutant models for 
COVID-19 Case-fatality Rate and Mortality Rate for each US state 

 Case-fatality Rate Mortality Rate 

State Moran’s I p-value Moran’s I p-value 

Alabama 0.023005 0.666791 -0.016454 0.997143 
Arizona -0.069966 0.971086 0.159086 0.183565 
Arkansas -0.045066 0.776283 0.045421 0.548356 
California 0.024098 0.498309 0.058227 0.219995 
Colorado -0.019308 0.900768 -0.069735 0.60085 
Connecticut -0.249311 0.733068 -0.213497 0.835009 
Delaware -0.338612 1 NA NA 
District of 
Columbia 

NA NA NA NA 

Florida -0.033006 0.771992 -0.046262 0.617719 
Georgia 0.056318 0.172308 0.051514 0.200098 
Idaho -0.053368 0.95988 -0.003237 0.717008 
Illinois 0.056139 0.412049 0.096366 0.177248 
Indiana -0.116814 0.169918 0.172651 0.02579 
Iowa -0.054103 0.568083 -0.027161 0.8795 
Kansas 0.07953 0.061874 -0.03842 0.901546 
Kentucky -0.047995 0.623543 0.062124 0.36778 
Louisiana -0.029227 0.902967 0.035875 0.539011 
Maine -0.135679 0.44648 -0.141616 0.384822 
Maryland 0.028251 0.611963 0.236883 0.041622 
Massachusetts -0.041547 0.826158 -0.096154 0.947948 
Michigan -0.03011 0.730351 0.038998 0.252498 
Minnesota 0.019843 0.417719 -0.01777 0.986115 
Mississippi 0.096789 0.043456 0.044718 0.271883 
Missouri 0.030381 0.500362 0.073753 0.192159 
Montana 0.052994 0.060993 0.076018 0.031501 
Nebraska -0.040916 0.86608 -0.059581 0.722833 
Nevada 0.337241 0.038866 0.38327 0.035115 
New Hampshire 0.131492 0.042746 0.103783 0.081307 
New Jersey 0.175217 0.087009 0.126441 0.178484 
New Mexico -0.045416 0.979142 0.153729 0.258981 
New York 0.013377 0.579773 -0.033898 0.807794 
North Carolina -0.050907 0.34774 -0.032161 0.647075 
North Dakota 0.109892 0.49598 0.354751 0.100111 
Ohio -0.041737 0.707563 0.107715 0.139459 
Oklahoma 0.06193 0.010202 0.102011 0.000142 
Oregon 0.007053 0.350889 0.019009 0.24168 
Pennsylvania 0.108983 0.133666 0.348912 0.000011 
Rhode Island -0.256215 0.973717 -0.225587 0.897816 
South Carolina 0.062342 0.49757 0.102716 0.23941 
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South Dakota -0.034629 0.740424 -0.059895 0.913713 
Tennessee -0.007701 0.958532 0.110452 0.166716 
Texas 0.00567 0.215483 -0.00599 0.965107 
Utah 0.445684 0.000382 0.152707 0.073403 
Vermont 0.019688 0.629256 0.269936 0.117271 
Virginia 0.410102 0.000001 0.298699 0.000003 
Washington 0.005076 0.781592 0.05457 0.507951 
West Virginia 0.112795 0.000103 0.187581 0.06824 
Wisconsin -0.039313 0.67382 0.095091 0.018566 
Wyoming -0.215725 0.005326 -0.148779 0.047632 
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Figure S1 Percent Change in COVID-19 Case-fatality Rate Per Inter Quartile Range (IQR) 
increase in (A) NO2, (B) PM2.5, and (C) Ozone Concentrations in the Sensitivity Analysis. The red 
line represents the estimated effects in the main analysis. All results were derived from the tri-pollutant 
models. 
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Figure S2 Percent Change in COVID-19 Mortality Rate Per Inter Quartile Range (IQR) Increase 
in (A) NO2, (B) PM2.5, and (C) Ozone Concentrations in the Sensitivity Analysis. The red line 
represents the estimated effects in the main analysis. All results were derived from the tri-pollutant 
models.
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Appendix-Technical Appendix 

COVID-19 case-fatality rate: We obtained the number of daily county-level COVID-19 confirmed cases 

and deaths that occurred from January 22, 2020, the day of first confirmed case in the US, through April 

29, 2020 in the US from three databases: the New York Times, the USAFACTS, and 1Point3Acres.com. 

Each of these databases provide real-time data by retrieving information on official reports from state and 

local health agencies. After data acquisition from these sources, we compared the number of confirmed 

COVID-19 cases and deaths in each US county (identified by the Federal Information Processing 

Standards, FIPS code) across all databases for accuracy and consistency. In case of discrepancy, county-

level case and death number were corrected by manually checking the data reported from the 

corresponding state and local health department websites. We calculated county-level COVID-19 case-

fatality rate by dividing the number of deaths over the number of people diagnosed with COVID-19 for 

each US county with at least 1 or more confirmed case, as reported by April 29, 2020. Of all the data 

reported as of April 29, 2020, confirmed cases and deaths with unassigned counties were excluded in the 

analysis. 

Air pollution: Three major criteria ambient air pollutants were included in the analysis, including NO2, a 

traffic-related air pollutant and a major component of urban smog, PM2.5, and O3. We recently estimated 

daily ambient PM2.5, NO2, and O3 levels at 1 km2 spatial resolution across the contiguous US an ensemble 

machine learning model with ground measurements, satellite-data products, chemical transport model 

output, meteorological and land-use information as predictors22,23. We calculated the daily average for 

each county based on all covered 1 km2 grid cells, and then further calculated the annual mean (2010-

2016) for PM2.5 and NO2 and the warm-season mean (2010-2016) for O3, defined as May 1 to October 31, 

as surrogates for long-term PM2.5, NO2, and O3 exposures, respectively. More recent exposure data were 

not available at the time of this analysis. However, county-specific mean values of an air pollutant among 

different years are highly correlated.  

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted May 7, 2020. .https://doi.org/10.1101/2020.05.04.20090746doi: medRxiv preprint 

https://doi.org/10.1101/2020.05.04.20090746
http://creativecommons.org/licenses/by-nc-nd/4.0/


Covariates: We compiled county-level information for several covariates that could also explain 

heterogeneity in the observed COVID-19 rates and may confound associations with long-term air 

pollution exposure. Healthcare capacity was measured by the number of intensive care unit (ICU) beds, 

hospital bed, and active medical doctors per 1000 people. Number of ICU beds were based on Kaiser 

Health News analysis of 2018 and 2019 hospital cost reports filed to the Centers for Medicare & 

Medicaid Services. Numbers of active medical doctors and hospital bed of 2017 were obtained 

from the Area Health Resources Files. Based on the number of COVID-19 tests performed in each 

state, we calculated a positive rate (i.e., the percentage of specimens tested that are positive for COVID-

19). Travel mobility index, based on anonymized location data from smartphones, was used to account for 

changes in travel distance in reaction to the COVID-19 pandemic. Socioeconomic status (SES) was 

measured by social deprivation index, a composite measure of area-level deprivation that takes into 

account income, education, employment, housing, household characteristics, transportation, and 

demographics. Sociodemographic covariates included population density, percentage of elderly (age ≥ 

60), and percentage of male. We also obtained behavioral risk factors including population mean BMI 

and smoking rate, and meteorological variables including air temperature and relative humidity 

(converted from specific humidity). All covariates were linked to the COVID-19 data using FIPS code 

and additional details on data source and process are given in the Supplementary Appendix. 

Statistical methods: We fit zero-inflated negative binomial mixed models (ZINB) to examine the 

associations between long-term exposure to PM2.5, NO2, and O3 and COVID-19 case-fatality rate or 

mortality. The ZINB model comprises a negative binomial log-linear count model and a logit model for 

predicting excess zeros30,31. The former was used to describe the associations between air pollutants and 

COVID-19 case-fatality rate among counties with at least one reported COVID-19 case. The latter can 

account for excess zeros in counties that have not observed a COVID-19 death as of April 29, 2020. We 

fit single-pollutant, bi-pollutant, and tri-pollutant models, with all analyses conducted at the county level. 

For the negative binomial count component, results are presented as percent change in case-fatality rate or 
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mortality rate per interquartile range (IQR) increase in each air pollutant concentration. IQR was 

calculated on national levels. Similar results are presented as odds ratio for the excess zero component. 

We included a random intercept for each state because observations within the same state tend to be 

correlated due to similar COVID-19 responses, quarantine and testing policies, healthcare capacity, 

sociodemographic, and meteorological conditions.  

As different testing practices may bias outcome ascertainment, we adjusted for state-level 

COVID-19 test positive rate (i.e. high positive rate might imply that the confirmed case numbers were 

limited by the ability of testing, and the case-fatality can be biased high). To model how different counties 

may be at different time points of the epidemic curve (i.e., phase-of-epidemic), we adjusted for days both 

since the first case and since the 100th case (i.e., case counts reaching 100) within a county through April 

29 as a measure of epidemic timing. To account for how people may have reacted to the social distancing 

guidelines imposed during the COVID-19 outbreak, we adjusted for county-level travel mobility index. In 

addition, we considered potential confounding by county-level healthcare capacity, sociodemographic, 

SES, behavior risk factors, and meteorological factors. Because county-specific population densities span 

5 orders of magnitude, we adjusted for density using a logarithmic transformation. To control for 

potential residual spatial trends and confounding, we included spatial smoothers within the model using 

natural cubic splines with 5 degrees freedom for both county centroid latitude and longitude. We further 

calculated Moran’s I of the standardized residuals of tri-pollutant main models for each state, to examine 

the presence of spatial autocorrelation in the residuals. 

Data sources on covariates:  We adjusted for three county-level healthcare capacity covariates, 

including the number of intensive care unit (ICU) beds, hospital bed, and active medical doctor per 1000 

people. Number of ICU beds were based on Kaiser Health News analysis of 2018 and 2019 hospital cost 

reports filed to the Centers for Medicare & Medicaid Services. Numbers of active medical doctors and 

hospital beds of 2017 were obtained from the Area Health Resources Files. State-level number of 

COVID-19 tests performed up to April 29, 2020 was derived from the Covid Tracking Project, based on 
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which we calculated the positive rate in each state, i.e. the percentage of tests performed that are positive 

for COVID-19. The travel distance mobility data were released from the Descartes Labs and mapped by 

the GeoDS Lab using anonymized location data from smartphones (Warren and Skillman, 2020; Gao et 

al., 2020). The travel mobility index was a measure to compare the daily individual-level travel distance 

pattern to that in February. To enhance privacy, individual data are de-identified and aggregated to the 

county level. We calculated the county-level mean mobility index from March 1, 2020 to April 29, 2020 

to represent the dramatic mean human mobility changes in reaction to the COVID-19. County-level 

socioeconomic status (SES) in 2015 was measured by social deprivation index, which is a composite 

measure of area-level deprivation based on seven characteristics, including income, education, 

employment, housing, household characteristics, transportation, and demographics. SDI has commonly 

served as an area-level composite measure of SES in other studies of health and health outcomes. County-

level sociodemographic covariates in 2017 such as percentage of elderly (age≥60) and percentage of male 

were derived from Area Health Resource Files, and population density was derived from the 2018 US 

Census. County-level behavioral risk factors, including population mean BMI (an indicator of obesity) 

and percentage of ever smokers, were derived from the 2011 US CDC Behavioral Risk Factor 

Surveillance System (BRFSS). From Phase 2 of the North American Land Data Assimilation System 

(NLDAS-2), we acquired hourly 1/8th degree gridded near-surface air temperature and specific humidity 

data from January 22, 2020 through April 29, 2020 (Xia et al., 2012), based on which we calculated the 

mean temperature and relative humidity for each 1/8th degree grid. We linked each county’s centroid to 

the nearest 1/8th degree grid and assigned the mean temperature and relative humidity.  

Sensitivity analyses: We also conducted a series of sensitivity analyses to test the robustness of our 

results to outliers, confounding adjustment, and epidemic timing (Supplementary Appendix Figures S1 

and S2). Given that New York city has far higher COVID-19 cases and deaths than any other regions in 

the US, which can be a very influential observation, we excluded all five counties within New York city 

and repeated the analysis. In another set of sensitivity analyses, we restricted the study only to the most 
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recent 4 weeks (April 1 to April 29), when the case count and death count may be more reliable and 

accurate than earlier periods and when COVID-19 tests were more available. We also conducted 

sensitivity analysis by using air pollution data averaged between 2000 to 2016. To assess the impact of 

potential bias of individual covariates, we fit models by omitting a different set of covariates for each 

model iteration while comparing effect estimates. Statistical tests were 2-sidedand statistical significance 

was determined with an alpha of 0.05. All statistical analyses were conducted used R version 3.4. 
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