Enveloped Virus Inactivation on Personal Protective Equipment by Exposure to Ozone

Emmeline L. Blanchard,^a Justin D. Lawrence,^b Jeffery A. Noble,^c Minghao Xu,^c Taekyu Joo,^b Nga Lee Ng,^{b,d,e} Britney Schmidt,^b Philip J. Santangelo,^a M.G. Finn^{c,f *}

^aWallace H. Coulter Department of Biomedical Engineering, ^bSchool of Earth and Atmospheric Sciences, ^cParker H. Petit Institute for Bioengineering and Bioscience, ^dSchool of Chemistry and Biochemistry, ^eSchool of Chemical and Biomolecular Engineering, ^fSchool of Civil and Environmental Engineering, ^gSchool of Biological Sciences; Georgia Institute of Technology, Atlanta, GA, USA

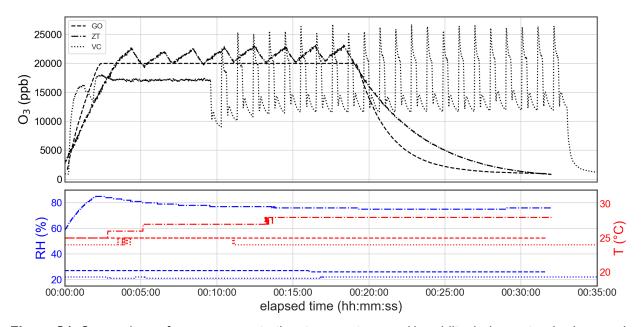
Supplemental Information

Table S1. Materials used in assessments of virus inactivation, mechanical robustness, and filtration efficiency.

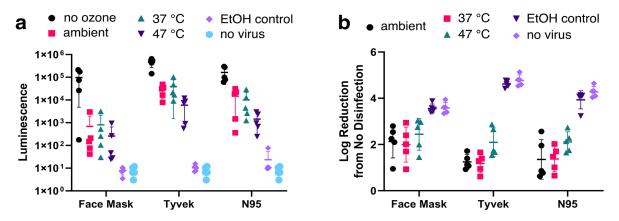
type	make and model used for virus test?		used for mechanical test?	
N95 respirator	3M, <u>8210</u>	yes	yes	
N95 respirator	3M, <u>8515</u>	yes	yes	
N95 respirator	Sperian, <u>N1115 XL</u>	yes	yes	
N95 respirator	Sperian, <u>N1125 S</u>	yes	yes	
KN95	ZKG9501	yes	yes	
N95 respirator	Int'l Sourcing, NX95V	yes	yes	
Tyvek gown	HDPE Dupont Tyvek	yes	yes	
PAPR hood	3M Breathe Easy®	yes	no	
cloth facemask	unmarked	yes	yes	
Tyvek bunny suit	unmarked	yes	no	

Device	Volume (m³)	Standard Time (m)	Standard [O₃] (ppm)	Typical Humidity	O₃ generator	Control Sensor, Logging Sensor
Global Ozone Decon-Zone <u>4201A</u> Cabinet	0.53	16	20	ambient*	corona discharge	EcoSensor SM-7 0-20 ppm, recorded to SD card at 0.1 Hz
<u>Global Ozone</u> <u>OT-100</u> <u>Trailer</u>	~30	< 99	≥ 20	ambient*	corona discharge	EcoSensor SM-6 0-20 ppm, recorded <u>via USB</u> <u>O₃ Sensor</u> at 1 Hz**
Zono SC 1 Cabinet	0.73	18	20	80%	deep UV	EcoSensor SM-7 0-50 ppm, recorded <u>via USB</u> <u>O₃ Sensor</u> at 1 Hz**
<u>VirtuCLEAN</u> 2.0 Waterless <u>CPAP</u> <u>Cleaning</u> <u>Pouch</u>	< 0.01	30	15-16	ambient*	unknown	No concentration readout. Recorded <u>via</u> <u>USB O₃ Sensor</u> at 1 Hz**

Table S2. Ozone treatment devices assessed.


*not controlled

**SPEC Sensors Digital O3 Sensor (DGS-O3 968-042)


Table S3. Characteristics of ozone,	temperature, and humidity sensors used.
-------------------------------------	---

Sensor	Range (ppm)	Accuracy	Response Time (s)	Other parameters?	
EcoSensors <u>SM-7</u>	0.3-20.0	greater of ±10% or ±0.03	< 60	temp, relative humidity	
EcoSensors <u>SM-7</u>	0.3-50.0	greater of ±10% or ±0.2	< 60	temp, relative humidity	
EcoSensors <u>SM-6</u>	0.8-50.0	greater of ±10% or ±0.2	< 60	temp, relative humidity	
SPEC Sensors DGS-O3 968-042	0-5*	±15%	< 30	temp, relative humidity	

* observed linearity to at least 45 ppm, as determined by comparison to response from SM-7

Figure S1. Comparison of ozone concentration, temperature, and humidity during a standard run cycle for each device. Line style convention for bottom plot follows from first plot. Also demonstrates these treatment devices do not exceed commonly recommended N95 respirator storage temperatures of < 30°C. GO = Global Ozone cabinet, ZT = Zono Technologies cabinet, VC = VirtuCLEAN portable PAP disinfection zippered pouch.

Figure S2. Inactivation of influenza A virus by ozone as a function of temperature, holding atmospheric moisture roughly constant. Here the data are displayed for illustrative purposes in terms of (a) observed luminescence from the NanoLuc assay and (b) reduction of viral infectivity derived from the data in panel (a). Approximate water vapor concentrations: ambient (25 °C), 14.3 g/m³ = 62% RH; 37 °C, 14.5 g/m³ = 33% RH; 45 °C, 17.7 g/m³ = 27% RH.

item	make and model	exposure time (20 ppm)	observations of appearance and mechanical properties	
N95 respirator	3M, <u>8210</u>	320 m	no significant changes	
N95 respirator	3M, <u>8515</u>	160 m	No changes in respirator material, elastic bands failed at staple attachment	
N95 respirator	Sperian, <u>N1115 XL</u>	320 m	No changes in respirator material, elastic bands failed at staple attachment	
N95 respirator	Sperian, <u>N1125 S</u>	230 m	No changes in respirator material, elastic bands failed at staple attachment	
N95 respirator	<i>KN</i> 95, <u>ZKG9501</u>	160 m	no significant changes	
N95 respirator	<u>NX95V</u>	160 m	No changes in respirator material, elastic bands failed at staple attachment	
Surgical mask	unmarked	320 m	no significant changes	
clear polycarbonate (face shield, goggles)	unmarked	160 m	no significant changes	
Tyvek disposable gown	unmarked	160 m	no significant changes	
Tyvek PAPR hood fabric	3M Breathe Easy [®]	160 m	no significant changes	

Table S4. Results of mechanical assessments.

Manufacturer	Model	Duration of ozone exposure	Control ^a	Result ^b
3M	<u>8210</u>	320 min	yes	pass
3M	<u>8515</u>	160 min	no	pass
Sperian	<u>N1115 XL</u>	320 min	yes	pass
Sperian	<u>N1125 S</u>	230 min	no	pass
KN95	<u>ZKG9501</u>	160 min	no	unknown ^c
International Sourcing	<u>NX95V</u>	160 min	no	unknown ^d
unmarked	surgical mask	320 min	yes	pass ^e

Table S5. Results of particle filtration efficiency assessments.

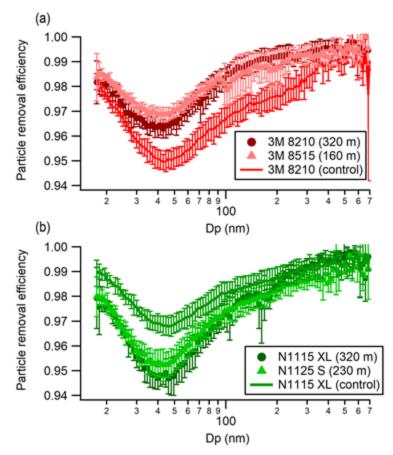

a) Filtration efficiency was not measured for the corresponding untreated sample. b) "Pass" denotes similar filtration efficiency compared to a corresponding control measurement, or filtration efficiency >95% for respirators lacking a control measurement. c) Filtration efficiency >89%; without comparison to a control sample, change due to ozone treatment could not be assessed. d) Filtration efficiency >92%; without comparison to a control sample, change due to ozone treatment could not be assessed. e) Filtration efficiency appears to be higher for the treated sample (reason unknown), but both untreated and treated samples have low overall filtration efficiency.

Figure S3. Example of strain-induced ozone damage (20 ppm, 30 minutes, 24°C, 38% RH) to bands separated from a Sperian N1125 respirator. (*Top*) Relaxed (not stretched) band underwent no visible damage and remained functional; (*bottom*) band tied off at 2.4 times its relaxed length during ozone exposure failed.

Figure S4. Respirators assessed for headband compatibility with ozone disinfection. All of the respirators with failed bands feature stapled attachments.

Figure S5. Particle filtration efficiency of untreated (control) and ozone-treated N95 respirators. Uncertainties are calculated from one standard deviation of aerosol volume concentration measured by the SMPS instrument. a) 3M 8210 and 8515 respirators. b) Sperian N1115 XL and N1125 S respirators.