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Systems Genetics in Human Endothelial Cells
Identifies Non-coding Variants Modifying Enhancers,
Expression, and Complex Disease Traits

Lindsey K. Stolze,1 Austin C. Conklin,1 Michael B. Whalen,1 Maykel López Rodrı́guez,2 Kadri Õunap,2

Ilakya Selvarajan,2 Anu Toropainen,2 Tiit Örd,2 Jin Li,3 Anna Eshghi,1 Alice E. Solomon,1 Yun Fang,3

Minna U. Kaikkonen,2 and Casey E. Romanoski1,*

The identification of causal variants and mechanisms underlying complex disease traits in humans is important for the progress of hu-

man disease genetics; this requires finding strategies to detect functional regulatory variants in disease-relevant cell types. To achieve

this, we collected genetic and transcriptomic data from the aortic endothelial cells of up to 157 donors and four epigenomic phenotypes

in up to 44 human donors representing individuals of both sexes and three major ancestries. We found thousands of expression quan-

titative trait loci (eQTLs) at all ranges of effect sizes not detected by the Gene-Tissue Expression Project (GTEx) in human tissues, showing

that novel biological relationships unique to endothelial cells (ECs) are enriched in this dataset. Epigenetic profiling enabled discovery of

over 3,000 regulatory elements whose activity is modulated by genetic variants that most frequentlymutated ETS, AP-1, andNF-kB bind-

ing motifs, implicating these motifs as governors of EC regulation. Using CRISPR interference (CRISPRi), allele-specific reporter assays,

and chromatin conformation capture, we validated candidate enhancer variants located up to 750 kb from their target genes, VEGFC,

FGD6, and KIF26B. Regulatory SNPs identified were enriched in coronary artery disease (CAD) loci, and this result has specific implica-

tions for PECAM-1, FES, and AXL. We also found significant roles for EC regulatory variants in modifying the traits pulse pressure, blood

protein levels, and monocyte count. Lastly, we present two unlinked SNPs in the promoter of MFAP2 that exhibit pleiotropic effects on

human disease traits. Together, this supports the possibility that genetic predisposition for complex disease is manifested through the

endothelium.
Introduction

Over the past decade, genome-wide association studies

(GWASs) for complex disease traits have established that

roughly 90% of the detectable signals reside in the non-

protein-coding genome. This suggests that a considerable

proportion of genetic risk is conferred through perturba-

tions of gene regulation.1 Compared to protein-coding

variants, identification of the underlying mechanisms

affecting complex disease through regulation is chal-

lenging because it often requires contextual information

about regulatory elements, target genes, operational cell

types, tissues, and organ systems. It is therefore valuable

that large consortia such as the Encyclopedia of DNA Ele-

ments (ENCODE),2 the Roadmap Epigenomics Project,3

the Gene-Tissue Expression Project (GTEx),4 and the

1000 Genomes Project5 are providing the scientific com-

munity with atlases for genetic, epigenetic, and gene

expression profiles of numerous human tissues and cell

lines.

A major challenge remains, however: non-coding gene

regulatory elements, particularly enhancer elements, are

frequently cell-type specific. Given that tissues are

composed of multiple cell types, their regulatory profiles

reflect the weighted sum of all composite cell types.

Numerous single-cell sequencing studies underscore this
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fact by demonstrating that tissues are more heterogeneous

than has previously been appreciated.6 The implication for

the identification of functional non-coding variants is that

cell-restricted enhancer profiles may be diluted and appear

as noise if the cell type is rare, or may not be appreciated as

truly cell-type specific. For these reasons, it is important to

empirically measure gene expression and epigenetic pro-

files in pure cell populations or in single cells. In addition,

it is particularly useful to know the identities of lineage-

determining transcription factors (LDTFs) that define

different cell types. LDTFs, also called ‘‘master regulators’’

or ‘‘pioneering factors,’’ establish and maintain cell-type

identity7 and prime cell-type-specific responsiveness to

new signals.8,9 We and others have shown that the identi-

ties of LDTFs can be ascertained from enriched DNAmotifs

in epigenomic profiles of pure cell types.8,10 Importantly,

knowing these factors and cognate binding motifs

improves predictions for fine-mapping functional non-

coding genetic variants that effect enhancer function,

target-gene regulation, and signal-dependent changes to

enhancer activation when specific cell types encounter

varied exposures.9,10 In this study, we measure binding of

the ETS-related gene ERG, as a LDTF in endothelial cells

(ECs).

ECs are a nearly ubiquitous yet dynamic cell type in the

human body. They regulate vascular tone and mediate an
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anti-thrombotic surface that lines arteries, veins, and cap-

illaries. ECs also participate in the onsets and progressions

of most complex diseases. Their activation and dysfunc-

tion are associated with common disease pathologies

including atherosclerosis, hypertension, and respiratory

diseases.11,12

In the current study, we performed epigenetic and gene

expression mapping in ECs originating from aortic ex-

plants in up to 157 different human donors from three

ancestral populations including both sexes. We considered

the epigenetic profiles as locus-specific quantitative traits,

and tested genotypes that are associated with differences

in epigenetics and gene expression in cis, under both

normal and pro-inflammatory conditions. This design

enabled identification of thousands of expression quanti-

tative trait loci (eQTLs) and hundreds to thousands of

epigenetic molecular quantitative trait loci (molQTLs).

Many variants associated with both epigenetic and expres-

sion traits, providing direct evidence for thousands of

functional regulatory SNPs in ECs. To prioritize variants

in this set to those that predispose individuals to complex

diseases, we intersected mol/eQTL co-mapped SNPs with

disease loci from GWASs and identified several common

variants linked to altered regulatory function, gene expres-

sion, and disease. While this study serves as a valuable

resource for research in vascular biology and is a proof-

of-principle study for the utility of epigenetic quantitative

trait locus (QTL) analysis in a pure cell type for functional

human genetics, it represents only a foundational step on

the path toward comprehensively understanding the com-

plement of diverse regulatory programs that vary in the

human genome.
Material and Methods

Cell Culture and Collection
Human aortic endothelial cells (HAECs) were isolated from de-

identified deceased heart donor aortic trimmings at the University

of California Los Angeles Hospital as described previously.13

Donor cells from up to 53 individuals were expanded and used

for chromatin immunoprecipitation with sequencing (ChIP-seq),

RNA sequencing (RNA-seq), and assay for transposase-accessible

chromatin with sequencing (ATAC-seq) assays. Cells were treated

prior to harvest for 4 h with 10 ng/mL human recombinant IL-

1B protein or no additional protein.

High-throughput Sequencing
For RNA-seq, total RNA was extracted and polyA was selected

ahead of library construction using previously described

methods.14 Cells used for ChIP-seq were fixed with 1% formalde-

hyde or 1% formaldehyde and 2 nM disuccinimidyl glutarate

according to previously described methods.14 ATAC-seq was per-

formed according to the originally published protocol15 with an

added size selection of 175–225 bp on Tris-borate-EDTA gels.

Sequence libraries were prepared as previously described14 and

sequenced on an Illumina HiSeq 4000. For quality control of all

sequencing assays, samples were removed from further analysis

if: (1) the sample contained less than three million unique map-
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ped reads, (2) the sample had an average of six or more duplicate

tags per site, (3) the sample was an extreme outlier in principal-

component analysis (PCA), or (4) if the RNA-based genotyping

at heterozygous loci could not replicate the genotyped-based iden-

tity on file for that individual through the use of hierarchical clus-

tering of variant call format (VCF) files.

Microarray data of was provided from previous publications16,13

on 157HAEC donors. Subsets of the same donors’ cells were grown

again and used for RNA-seq, ATAC-seq, and ChIP-seq in this study.

Microarrays were used to examine gene expression in 157 donors

in untreated conditions and 156 donors in Oxidized 1-palmitoyl-

2-arachidonoyl-sn-glycero-3-phosphocholine (oxPAPC) treated

conditions (see Supplemental Methods). These are publicly avail-

able at NCBI GEO database: GSE30169, GSE139377.

Mapping and Processing
The sequencing data were mapped utilizing Bowtie217 with

default parameters. Mapping bias correction and duplicate read

removal were implemented using the software package WASP.18

The correction resulted in a mapped binary alignment map

(BAM) file for use in allele-specific analysis.

Genotyping
Genomic DNAwas isolated fromHAECs and genotyped according

to the Affymetrix Genome-wide Human SNP Array 6.0 assay pro-

tocol and is available in the database of Genotypes and Pheno-

types (dbGaP; see Web Resources). The image data were processed

as described previously13 for determining the specific hybridizing

signal for each SNP call and copy-number detection. IMPUTE219,20

was used to impute genotypes utilizing all populations from the

1000 Genomes Project reference panel. Genotypes were called

for imputed SNPs with allelic R2 values greater than 0.9.

VCF File Preparation
To reduce multiple testing and to avoid false positives, VCF files

were restricted using vcftools to only include genetic variants ami-

nor allele frequencies of at least 0.05.21 This was performed for

each assay treatment set individually to account for the differences

in donor numbers passing the quality control measures from

above.

Covariate Discovery
Because the HAECs were de-identified, biological sex and ethnicity

were determined from genotyping data. Ancestry was determined

through the use of PCA clusters using genotypes of HAEC donors

and 1000 Genomes Project individuals of known ancestry. Biolog-

ical sex was determined in PLINK22 based on heterozygosity on X

chromosomes. To avoid spurious associations based on population

stratification, and to power discovery of cis-acting genetic variants,

we applied PEER to remove known and hidden systemic signals

from normalized gene expression measured by RNA-seq and mi-

croarray (see Supplemental Methods).

eQTL Analysis
eQTL analysis was done via linear regression in MatrixeQTL.

MatrixeQTL was run using a reads per kilobase million (RPKM)-

normalized expression matrix generated in HOMER (see Supple-

mental Methods), a VCF file, and a covariate file containing

biological sex, unique total tag counts, the top four principal com-

ponents (PCs) from a PCA performed on the genotypes to account

for ancestry, and either fifteen factors (RNA-seq) or thirty factors
rican Journal of Human Genetics 106, 748–763, June 4, 2020 749



(microarray) discovered by PEER. SNPs were tested against a gene’s

expression if they were in cis (i.e., within 1Mb of the gene). Results

were restricted to a gene-level Benjamini-Hochberg false discovery

rate (FDR) of less than 5% (see Supplemental Methods for more).

To determine the similarity between the eQTL results from the

RNA-seq datasets and the microarray datasets, pairwise compari-

sons were made using the effect sizes of significant SNPs in one

set, which were graphically compared to the effect sizes of the

same SNPs in the second dataset regardless of significance in the

second set.

ChIP-seq and ATAC-seq QTL Analysis
molQTLmapping analysis was performed using the software pack-

age RASQUAL,23 which incorporates allele-specific mapping infor-

mation at heterozygous SNPs. The molQTL analysis using RASQ-

UAL23 was run with VCF files containing allele-specific counts, a

RPKM-normalized tagmatrix, and the covariates: sex, unique total

tag counts, and the first four genotype-generated PCs to adjust for

ancestry. SNPs were tested for association against normalized tag

counts at epigenetic peaks if they were within the boundaries of

the peak. The results were filtered using a per-site FDR of 5%.

GWAS Comparison
The enrichment of eQTLs in CAD GWAS data was done by com-

parison of observed, experimental overlap between HAEC eQTL

SNPs with the CAD GWAS SNPs and results from 1,000 random

permutations’ significant CAD SNPs with HAEC eQTLs. Signifi-

cance was assessed using Fisher’s Exact Test. For more details, see

Supplemental Methods. The R package ‘‘coloc’’ was also used to

verify the colocalization of the CAD GWAS SNPs and the eQTLs

found in this study. This was run using crude p values, minor allele

frequencies, and sample numbers using the command coloc.abf().

Motif Enrichment and Motif Mutation Analysis
Motif enrichment analysis in sequences underlying regulatory el-

ements was performed in HOMER using findMotifsGenome.pl.

Motif mutations were detected when the local sequence was

altered by alleles of a SNP such that one allele dropped the match

to the motif’s position weight matrix (PWM) below the motif

detection threshold that is defined in the HOMER motif data-

base.8 Significance testing for effects of motif mutations on epige-

netic trait pi values (from RASQUAL) was performed using

unpaired two-tailed t tests assuming unequal variance (e.g., Fig-

ures 3C and 4C–D. Pi values that deviate from 0.5 indicate

allele-specific effects.

Biological Validation
For the dual luciferase reporter assay, 198 bp fragments of the

enhancer regions were cloned into Addgene plasmid #99297 (see

Web Resources),24 which was co-transfected into telomerase-

immortalized human aortic endothelial cells (teloHAECs) with

the control vector pGL4.75 (Promega), which encodes the lucif-

erase gene hRluc (Renilla reniformis). Luciferase activity was

measured 48 h post-transfection. The data are presented propor-

tional to the control vector. Three independent experiments

with four technical replicates were performed. Intra-haplotype or

haplotype-control statistical analyses were performed with two-

tailed t test.

For the CRISPR interference (CRISPRi) assay, a fusion protein of

catalytically dead Cas9 (dCas9) fused to KRAB repressor protein

(addGene cat#46911) was produced in HAECs via transfection of
750 The American Journal of Human Genetics 106, 748–763, June 4,
in vitro transcripts. 8 h post-transfection, cells were lysed for

RNA collection, cDNA synthesis, and analysis via quantitative po-

lymerase chain reaction (qPCR). A guide RNA sequence targeted to

a previously identified endothelial enhancer in PLPP3 rs17114036

locus was used as a positive control.
Results

eQTL Mapping in HAECs

We measured gene expression through the use of RNA-seq

in Human Aortic Endothelial Cell (HAEC; EC for short) pri-

mary cultures from 53 individuals’ ECs in two different en-

vironments: control (untreated) and pro-inflammatory

cytokine interleukin 1 beta (IL-1b) treated (Table S1; with

an average per-individual unique mapped tag read count

of 12,120,267). We also utilized microarray-based expres-

sion data from our previous study in which 157 EC donors

were cultured at low passage with and without treatment

with pro-inflammatory oxidized phospholipid (oxPL)13

To identify genetic variants that are associated with gene

expression, we performed eQTL mapping using Matrix

eQTL on a total of four EC datasets: microarray-determined

expression in untreated (notx) and oxPL-treated ECs, and

RNA-seq-determined expression in notx and IL-1b-treated

ECs (overview in Figure 1A and Table 1). RNA-seq and mi-

croarray eQTL results were each utilized throughout this

study as deemed appropriate for the questions asked.

Notably, 5,784 more transcripts were tested for RNA-seq-

based eQTL analysis than for microarray due to the unbi-

ased nature of RNA-seq-based eQTL analysis in sampling

mRNAs independent of genomic build.

Focusing on cis-eQTLs, called eQTLs hereafter, discov-

ered at 5% locus-wide false discovery (within 1 Mb of

promoters), we observed depletion of SNPs tested at tran-

scription start sites (TSS) and enrichment of significant

eQTLs near TSSs and in gene bodies (Figure 1B,

Figure S1B); this result demonstrates that gene bodies are

enriched for functional SNPs in this EC population. Using

eQTL effect sizes, which reflect the direction and magni-

tude of allelic effects on associated genes, we found high

concordance in eQTLs called across our datasets (correla-

tion p < 2 3 10-16, Figure S1C and S1D); this concordance

demonstrated that EC eQTL results were robust to tech-

nical differences in platform and culture batch.

Half of Endothelial eQTLs are Not in GTEx

With data from 46 human tissues and two cell lines, GTEx

is currently the largest compendium of eQTLs.4 GTEx does

not include pure EC samples, so we sought to compare our

most statically powered EC eQTLs (the locus- and genome-

wide corrected, array-based notx set from 157 people) with

GTEx tissue eQTLs. We found that about one-half of EC

eQTLs were present in at least one GTEx tissue, and most

EC eQTLs were evident in less than 10 GTEx tissues

(Figure 1C and 1D). Because sample number and genotypic

effect size in part determine statistical power to detect

eQTLs, we compared whether the eQTL effect size showed
2020
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Figure 1. eQTL Analysis in ECs and Comparison to GTEx eQTLs
(A) Pipeline of eQTL analysis.
(B) Density plot of SNP localization relative to transcriptional start sites (TSSs).
(C) Venn diagram of unique eQTL transcripts in HAECs (5% FDR), shared between HAECs and any GTEx tissue, or unique to GTEx. All
eQTLs were tested in both datasets.
(D) Histogram of eQTL sharing across GTEx tissues (number of tissues with eQTL on x axis) for two sets: eQTLs only in GTEx (blue) or in
GTEx and HAECs (red).
(E) Histogram of the median GTEx eQTL effect sizes across all tissues for the array notx eQTL dataset.
(F) Histogram of median GTEx eQTL effect sizes in two exemplar comparisons: aorta and substantia nigra.
any difference in magnitude between eQTLs common to

GTEx and ECs versus GTEx-only eQTLs. We found some

variation in shared effect sizes between eQTLs unique to

GTEx versus shared with ECs (Figure 1E, values in

Table S2), but found no trend suggesting that our EC

eQTLs were selectively enriched in large GTEx effect sizes.

Instead, we found similar distributions of effect sizes

overall with two examples of the extremes in Figure 1F.

These data show that shared GTEx/EC eQTLs had similar

effect sizes in the aortic artery to those unique to GTEx,

whereas shared eQTL effects in the substantia nigra brain

region were smaller relative to eQTLs specific to this

brain region. Comparison of effect sizes measured in ECs

revealed no global differences in magnitude between

eQTLs shared with GTEx and EC-only sets (Figure S1E).

Together, these data show that our dataset uncovered

about 1,000 EC eQTLs that were not detected in tissue sam-

ples, and the data also demonstrate that genotypic effects
The Ame
in ECs are not merely a subset of large or small effects in

tissues.

Epigenetic Profiles Are Genetically Regulated by cis-

Variants and Enriched for eQTLs

Given the prevalence of non-coding eQTL SNPs

(Figure S1B), which is suggestive of perturbations to gene

regulatory function, we mapped variants that perturb reg-

ulatory function in human ECs (see Figure 2A for an over-

view of our strategy). To locate regulatory elements and

quantify their activity, we performed two epigenomic as-

says: (1) ChIP-seq for acetylation of lysine 27 on histone

H3 (H3K27ac), which is a robust and quantitative marker

of active regulatory elements at both promoters and en-

hancers,25 and (2) the assay for ATAC-seq15 that provides

highly resolved positions of open, transcription factor

(TF)-bound chromatin. These sequencing assays had

average per-individual unique mapped reads of
rican Journal of Human Genetics 106, 748–763, June 4, 2020 751



Table 1. Summary of eQTL Analysis in Endothelial Cells

IL-1B oxPL

Number of Transcripts
with cis-Variation at MAF
> 5% Tested for Association

Number of
Significant
SNP-Transcript
Pairs

Number of Lead
Significant SNP-
Transcript Pairs
(R2 < 0.6)

Unique
Transcripts
with R 1 eQTL

% of Transcripts
Tested with R 1 eQTL

% of Variants
Tested with
Significant eQTL

RNA-seq

- - 15,045 180,956 9,446 1,666 11.07% 2.01%

þ - 14,790 207,954 10,767 1,804 12.20% 2.35%

Array

- - 11,878 571,161 43,619 3,887 20.90% 4.19%

- þ 11,878 568,262 43,330 3,795 20.41% 4.12%

Total

N/A N/A 20,187 725,845 NA 4,911 24.33% 7.45%

Transcripts were associated with SNPs in cis (1 Mb from gene) for each expression quantitative trait locus (eQTL) dataset (row). These datasets were used to
discover functional regulatory variants in this study. Significance is defined by locus-wide Benjamini-Hochberg false discovery rate correction. IL-1b—interleukin
1 beta. N/A—not applicable. oxPL—oxidized phospholipid. MAF—minor allele frequency. RNA-seq—RNA sequencing.
13,956,326 and 11,547,593, respectively (Table S1). Regu-

latory elements were defined as loci with an ATAC-seq

peak and adjacent H3K27ac signal in at least one individ-

ual across EC donors in untreated notx (n ¼ 44 donors)

or IL-1b-treated (n ¼ 43 donors) conditions. This resulted

in 109,817 regulatory elements common to both treat-

ments, 46,263 specific to untreated, and 49,874 specific

to IL-1b-treated ECs (Figure 2B 5% FDR).

Next, we performed QTL analysis to identify molQTLs

across our HAEC population. These molQTLs reflect non-

random associations between genotype and the quantita-

tive abundance of ATAC or H3K27ac ChIP sequence tags

in the immediate cis region (within the peaks). Using the

program RASQUAL, which combines terms for both

allele-specific reads in heterozygotes and diploid genotypic

effects across individuals,23 we identified thousands of

molQTLs (Table 2). Variants associated with differential

abundance in ATAC-seq data are termed chromatin acces-

sibility QTLs (caQTLs), and those in H3K27ac ChIP-seq

are termed histone modification QTLs (hmQTLs). Between

2,130 and 3,415 regulatory elements were significantly

associated (FDR < 5%) with an underlying cis variant, re-

flecting precise instances whereby the presumed activities

of regulatory elements are modulated by common genetic

variation in human ECs (Table 2).

Co-mapping analysis revealed a significant enrichment

of molQTL variants that were also eQTLs (Figure 2C),

with H3K27ac hmQTLs being �3 times and caQTLs �2

times more likely to also have expression associations (p

< 1 3 10-8) than by random expectation (Figure 2D). We

observed many different combinations of overlap among

molQTLs, with variants underlying hmQTLs in both data-

sets (n¼ 10,580) and variants at hmQTLþcaQTLs in all da-

tasets (n ¼ 436) as most likely to also be eQTLs (Figure 2E).

We interpret these data to mean that allelic perturbations

affecting H3K27ac signals are most predictive of eQTLs,

and this interpretation is consistent with a model whereby
752 The American Journal of Human Genetics 106, 748–763, June 4,
this post-translational modification closely reflects produc-

tive transcription.

Motif Mutation Analysis Identifies Genetic Variants

Whose Alleles Confer cis-Regulatory Function

With the eventual goal of identifying putative causal non-

coding variants, and because TF motif mutations are a

powerful means to identify causal variants, we performed

de novo motif enrichment analysis8 to investigate which

TF motifs are enriched in EC regulatory elements. Consis-

tent with our previous report in a single EC donor,14 we

found the AP-1, ETS, and GATA DNA binding motifs

were significantly enriched across the HAEC epigenetic

landscape in all subsets of regulatory elements (subsets:

notx-specific, IL-1b-specific, and common; Figure 3A,

top). Additionally, we found that CEBP, IRF, NF-kB, and

CEBP:AP-1 cognate motifs were enriched in regulatory ele-

ments gained upon IL-1b treatment (Figure 3A, bottom).

Consistent with previous work,14 this suggests that TFs

from these families regulate dynamic expression changes

downstream of IL-1b signaling.

For these TF motifs, we tested the hypothesis that SNPs

whose alleles differentiate between a ‘‘match’’ or a ‘‘muta-

tion’’ of the motif should be enriched in elements that

exhibit allele-specific molecular traits. Indeed, we found

that SNPs whose alleles mutate AP-1, ETS, and NF-kB mo-

tifs were significantly enriched in the extremes of ATAC-

seq allele-specific ratios, where 0.5 is an equal number of

reads from both alleles in heterozygotes, and 0.0 and 1.0

are ATAC-seq reads that map exclusively to reference or

alternative alleles, respectively (Figure 3B and 3C). Motif

mutations to the kBmotif were only enriched in allele-spe-

cific ATAC-seq regions after IL-1b treatment, and not in un-

treated cells; because NF-kB is only present in the nucleus

after IL-1b treatment, this result provides confirmation

that the motif mutation approach is able to capture func-

tional ‘‘mutations.’’
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Figure 2. Regulatory Element Identification and molQTL Analysis
(A) Pipeline of chromatin accessibility and histone modification QTL analysis.
(B) Venn diagram of the number of regulatory elements identified in notx ECs and IL-1B treated ECs using ATAC-seq-defined open chro-
matin with adjacent H3K27ac marks.
(C) Numbers of untreated caQTLs (left) and hmQTLs (right) in RNA-seq EC eQTLs, for datasets of corresponding treatment, are plotted in
blue for increasing cumulative p value thresholds (x axis) with empirical estimates of random samplings by 1,000 permutations (black).
(D) Enrichment scores for caQTLs and hmQTLs as a function of cumulative significance thresholds (x), calculated by dividing expected
by random values in c. molQTL enrichment is calculated in the RNA-seq eQTL dataset of corresponding treatment.
(E) Upset plot showing co-mapping of molQTL SNPs between caQTL and hmQTL datasets with proportions of eQTLs for RNA-seq data-
sets are shown by colored boxes to right.
Binding QTL Analysis Reveals SNPs and Motifs that

Affect DNA Binding by the EC Lineage-Determining

Factor ERG and Signal-Dependent Factor NF-kB

With insights afforded by molQTL mapping, we collected

ChIP-seq data for two TFs of particular importance to

ECs: (1) the ETS-related gene, ERG, and (2) NF-kB using

ChIP for the RelA/p65 subunit (Figure 4A). These

sequencing assays had per-individual average unique map-

ped read counts of 9,220,510 and 10,109,014 respectively

(Table S1). ERG was selected for ChIP-seq because it is

one of the predominant binders to the ETS motif that is

prevalent in endothelial enhancers14 (Figure 2A). Further,

ERG is expressed predominantly in ECs, and is an essential

gene for vascular development.14,26–28 We and others have

shown that ERG upregulates quintessential EC-specific

genes (e.g., NOS3, PECAM1, and VWF), and it directly or

indirectly represses pro-inflammatory genes (e.g., IL-8,

CCL2, and IL1B).14,29,30 The rationale for measuring NF-

kb’s binding profile across donors included its role as a
The Ame
master pro-inflammatory TF downstream of many signals,

including IL-1 signaling; we did this to inform interpreta-

tion of many diseases with a vascular inflammatory

component.14

Using RASQUAL, we performed TF-binding QTL (bQTL)

analysis for ERG in untreated ECs from 21 EC donors and

NF-kB in IL-1b treated ECs from 36 donors. We discovered

354 and 3,742 binding regions that were significantly asso-

ciated with at least one cis-variant (Table 2; 5% FDR). We

reason that fewer ERG bQTLs were discovered relative to

NF-kB based on lesser sample size, and therefore statistical

power. Still, we observed enrichment of ERG and NF-kB

bQTLs at eQTL loci (Figure 4B); this suggests that func-

tional non-coding variants are enriched in our bQTL sets.

To fine-map functional regulatory variants and identify

particular TF motifs whose mutation corresponds with

diminished binding, we analyzed the relationship between

ERG’s allelic binding ratios and the presence of motif muta-

tions. ERG binding in untreated conditions, as expected,
rican Journal of Human Genetics 106, 748–763, June 4, 2020 753



Table 2. Summary of molQTL Analysis in Endothelial Cells

IL-1B

# Peaks with cis-
Variation MAF >
5% Tested for Association

Significant molQTLs
(SNP-Peak Pairs)

Unique Peaks
with R 1 Significant
molQTL

% Peaks Tested
with R 1 Significant
molQTL

% Variants Tested
Underlying Significant molQTLs

H3K27ac ChIP-seq

- 84,820 25,621 2,620 3.81% 6.52%

þ 91,950 21,634 2,130 2.96% 5.61%

ATAC-seq

- 435,081 3,905 2,815 3.46% 3.62%

þ 390,257 4,704 3,415 4.88% 4.97%

ERG ChIP-seq

- 69,342 557 354 1.40% 1.52%

p65 ChIP-seq

þ 154,714 5,791 3,742 6.19% 6.41%

Pileups of unique mapped tags at regulatory elements (peaks) per donor were used as quantitative traits in quantitative trait locus (QTL) mapping, and associations
were termed molecular QTLs (molQTLs). molQTL results are shown for each epigenetic assay (rows), with significance defined by 5% false discovery at the locus
level using RASQUAL software. IL-1b—interleukin 1 beta. MAF—minor allele frequency. H3K27ac— acetylation of lysine 27 on histone H3. ChIP-seq— chromatin
immunoprecipitation with sequencing. ATAC-seq—assay for transposase-accessible chromatin with sequencing.
was influencedmost bymutations to its respective ETS bind-

ingmotif (Figure 4C, p¼ 53 10-27). More interestingly, ERG

bindingwas also affectedbymutations to theAP-1motif (p¼
4.43 10-19), whereas ERGbindingwas not affected bymuta-

tions in the kBmotif (p¼ 0.25, Figure 4C). We interpret this

to mean that ERG’s binding is influenced not only by the

sequence it binds, but also by the coordinated binding of

other TFs in the local chromatin landscape. Results from all

tested motifs are in Table S3.

For NF-kB binding after IL-1b treatment, we foundmany

TF motifs (e.g., ETS, AP-1, kB, CEBP, and CHOP), in which

mutated alleles corresponded to less NF-kB binding relative

to the non-mutated allele (all p< 33 10-3, Figure 4D). This

demonstrates that, while differences in NF-kB binding are

significantly affected by mutations in the kB motif, these

instances are �4 times less frequent in the genome relative

to differential NF-kB binding corresponding to ETS motif

mutations, and�3 times less frequent than AP-1motif mu-

tations. This observation builds upon our previous report,

which used a similar approach in macrophages taken from

inbred strains of mice;9 however, the current study is a

qualitative advancement in that we utilized allele-specific

binding in heterozygous human cells in an outbred popu-

lation. Together, these findings strongly support a model

whereby signal-induced TFs like NF-kB bind chromatin

with patterns that depend on previously established pat-

terns via cell lineage-determining TFs (reviewed by Roma-

noski et al.31).

Identification of Enhancers and Functional Regulatory

Variants for KIF26B, FGD6, and VEGFC

To examine the utility of our system’s genetic dataset, we

cross-referenced EC eQTLs, molQTLs, andmotif mutations

to fine-map functional regulatory variants. In total, there

were 2,818 instances of SNPs underlying all three data
754 The American Journal of Human Genetics 106, 748–763, June 4,
types. To exemplify these data, we focus on three exam-

ples: KIF26B, FGD6, and VEGFC (Figure 5).

As a first example, for KIF26B, RNA levels associated with

genotypes at the SNP rs12028528, located �725kb down-

stream, in an intron of the neighboring gene SMYD3.

Greater KIF26B expression associated with the T allele

and less expression with C (Figure 5B). This SNP is within

a chromatin-accessible, H3K27ac-positive regulatory

element that is bound by ERG and NF-kB, and these quan-

titative measures each associate with genotypes at

rs12028528 in the same direction as does KIF26B RNA

(Figure 5B). Further analysis of 3D chromosome conforma-

tion capture Hi-C data from human umbilical vein ECs

(HUVECs),32 shown in the triangular heatmap above the

genomic tracks, revealed that this enhancer loops to phys-

ically interact with the genomic locus that contains the

KIF26B promoter (Figure 5A, top). Motif mutation analysis

revealed that the C allele of rs12028528 mutates an AP-1

motif, whereas the T allele maintains an intact motif

(Figure 5C). Analysis of ENCODE H3K27ac ChIP-seq data

in multiple cell types revealed that this enhancer is specific

to endothelial cells (HUVECs) (Figure 5A). Using the

CRISPRi approach (CRISPR/Cas9þ KRAB domain) to target

the repressive machinery by guide RNA within 200 bp of

rs12028528 resulted in �2 fold less KIF26B expression

than did the non-targeted control (Figure 5D). Further,

cloning of 198 bp of genomic sequence, centered on

rs12028528, into a luciferase reporter and transfecting

into ECs confirmed that the T allele-containing sequence

had over 30 times greater enhancer activity than did the

C-containing sequence (Figure 5E). KIF26B has been iden-

tified as a microtubule-associated kinesin protein that po-

larizes endothelial cells in response to sheer stress,33 and

these data demonstrate that rs12028528 in a distal

enhancer regulates its expression.
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As a secondexample, at theFGD6 locus, shown inFigure5F,

the SNP rs7975658, located in the second intron of FGD6, is a

significant eQTL for FGD6 and is also a molQTL for H3K27ac
The Ame
and NF-kB/p65 (Figure 5G). For each ‘omic assay, the T allele

associateswithgreaterexpression,acetylation,and/orbinding

than does the C allele. Analysis of ENCODE data shows this
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(A) Schematic of ChIP-seq collection and sample size for binding QTL analysis.
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from an unpaired two-tailed t test assuming unequal variance.
enhancer-like element to be acetylated on H3K27 specifically

in endothelial cells, suggesting cell-type specificity.Motifmu-

tation analysis identified a BACHmotif that ismutated by the

C allele, consistentwith the Tallele having regulatory activity

(Figure 5H).Wevalidated enhancer activity from this locus on

FGD6 through the use ofCRSIPRi in ECs (Figure 5I). Lastly,we

tested the allele-specific enhancer activity by using transient

transfection of luciferase constructs into teloHAECs, and we

found that only the T allele corresponded to enhancer func-

tion compared to both the empty vector (no enhancer) and

the enhancer sequence with the C allele (Figure 5J).

Asa thirdexample, at theVEGFC locus, showninFigure5K,

we found that SNP rs6825977 (�100kb downstream of

VEGFC) was both an eQTL for VEGFC and a molQTL for

H3K27ac and NF-kB. The T allele corresponded to greater

expression, acetylation, and binding (Figure 5L). Here, the T

allele preserves an ETS motif, whereas the C allele mutates a

key residue in the sequence (Figure 5M). Enhancer activity

was confirmed using CRISPRi at this enhancer (Figure 5N),

and was confirmed specifically for the sequence with the T

allele,whereas theCallele didnot enhance luciferase produc-

tion above background (Figure 5O). Taken together, these

data demonstrate how our unbiased genetics approach was

able to identify functional regulatory variants and enhancers

that direct target-gene expression in human ECs.

eQTLs are Enriched in CAD-Relevant Loci and molQTLs

Refine Candidate Causal Variants

To investigate the utility of our datasets for fine-mapping

functional variants underlying coronary artery disease
756 The American Journal of Human Genetics 106, 748–763, June 4,
(CAD), we cross-referenced EC eQTLs with summary statis-

tics from the most recent meta-GWAS for CAD.34 We

found that EC eQTLs are significantly enriched at CAD

loci above randomly permuted rates of expected overlap

(Figure 6A). EC eQTLs were enriched for both genome-

wide significant CAD SNPs (p < 1 3 10-8), as well in CAD

associations in the sub-genome-wide significant range

(1 3 10-7 < p < 1 3 10-3). This finding strongly supports

a model whereby the ‘‘mid-hanging fruit’’ in GWAS studies

are functionally affecting biological pathways, and sug-

gests that these effects for CAD are operating in part

through ECs. Next, we cross-referenced significant

molQTLs with the eQTL/CAD loci, resulting in a list of

18 variants associated with nine genes (Table S4).

Next, we compared the precision of this molQTL fine-

mapping method to another recent method, coloc.35 Co-

loc uses summary statistics and allele frequencies to test

whether a putative ‘‘causal’’ SNP signal underlying associa-

tions along one trait’s locus (e.g., eQTLs) are likely to also

drive associations at that locus for another trait (e.g.,

GWAS). We applied coloc to the eight of the nine loci

above which contained putative causal relationships (one

transcript was not on the microarray). This resulted in

confirmatory posterior probabilities (>0.821), indicating

that our molQTL fine-mapping strategy was well adept at

discovering functional regulatory variants.

The list of 18 variants includes the CAD-associated SNP

rs17114036, with eQTL for PPAP2B/PLPP3 (Figure S2A).

We have previously reported rs17114036 to be a functional

intronic enhancer variant that modulates PPAP2B
2020



Figure 5. KIF26B, FGD6, and VEGFC Loci
(A) Browser-style track of KIF26B locus with 3D Hi-C data from HUVECs shown by heatmap above with epigenetic tracks shown below.
Vertical yellow bar highlights enhancer-like region containing SNP of interest, with KIF26B promoter highlighted in pink. Cell types
listed for H3K27ac are from E—NCODE. GM12878human B-lymphocyte-lymphoblastoid cell line; H1-hESC—human embryonic
stem cells; HSMM—human skeletal musclemyoblasts; A549—human epithelial lung carcinoma-derived cell line ; HUVEC—human um-
bilical vein endothelial cells; K562—human chronic myelogenous leukemia-derived cell line; NHEK—human epidermal keratinocytes;
NHLF—human lung fibroblasts.
(B) The SNP shown in a is an eQTL for KIF26B, a molQTL for chromatin accessibility, H3K27ac (including allele-specific plot), ERG bind-
ing, and p65 binding (including allele-specific plot).
(C) rs12028528 mutates an AP-1 motif.
(D) ReducedKIF26B expression in HAECs treated with pooled gRNAswith CRISPR interference (CRISPRi) within 200 bp of rs12028528. n
¼ 5. Expressionmeasured by qPCR and normalized toGAPDH. Data showmean5 standard error of themean. *p< 0.05, ***p< 0.001 as
determined from unpaired t test.
(E) The functional effect rs12028528 was replicated via luciferase assay in teloHAECs (n ¼ 3 independent experiments; p < 0.05 by un-
paired 2-tailed t test).
(F) FGD6 locus with SNP rs7975658 in an enhancer-like region (yellow) within FGD6 intron.

(legend continued on next page)
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expression in a sheer stress-sensitive manner.36 Here,

consistent with previous reports, we find that

rs17114036 is also a molQTL for NF-kB/p65 binding with

the G allele associated with greater binding and PPAP2B

expression and CRISPRi confirming enhancer activity at

this SNP (Figure S2B and Table S4).

Another notable gene among those with CAD, eQTL,

and/or molQTL hits is PECAM1 (CD31), which is

frequently used as a cell-surface marker to identify endo-

thelial cells in tissues and is part of the mechano-sensitive

complex that senses hemodynamic forces.37 The associ-

ated region on chromosome 17 is a replicated CAD lo-

cus,34,38 and loss-of-function experiments in mice result

in decreased or increased atherosclerosis in relation to

the branching arteries and innominate artery or aortic

arch inner curve, respectively.39,40 These characteristics

make PECAM1 an attractive positional candidate at this

GWAS locus, one that would only be detectable in EC-en-

riched datasets. Our analysis identified six SNPs along

this locus that are eQTLs and hmQTLs in both IL-1b and

untreated H3K27ac datasets (Figure S2C and S2D and Table

S4). All six SNPs are near the 30 end of PECAM1 (three in-

tronic, one in 30 UTR, and two intergenic) with moderate

linkage disequilibrium (LD) (R2 ¼ 0.6–0.8). Further exper-

imentation will be required to test for causality among this

set.

Another interesting gene implicated by our CAD, eQTL,

and molQTL analysis was FES. We detected three SNPs

(rs1894400, rs35346340, and rs7497304) within FES that

were eQTLs for FES as well as hmQTLs for H3K27ac after

IL-1B treatment (Table S4). The nearby SNP rs12906125

was also a robust FES eQTL, a significant hmQTL, and a

suggestive caQTL (Figure S2E). rs12906125 is in near-per-

fect LD with all three CAD SNPs but was not tested or re-

ported in the CADmeta-GWAS (R2> 0.99, using European

and American combined LD structure, Figure S2F).

rs12906125 is a promising positional candidate because,

aside from its strong associations, it is located in the center

of the nucleosome-free region at the center of the FES pro-

moter, near the summit of chromatin accessibly and bind-

ing peak for ERG and NF-kB/p65. We previously demon-

strated that these characteristics increase the probability

that SNPs affect the activity of regulatory elements.9 In

addition, this promoter is selectively marked by H3K27ac

with nucleosome depletion selectively in HUVECs in

ENCODE and in our HAEC data, but not other cell types;
(G) Plots for eQTL for FGD6 in untreated and gene-by-environment e
hmQTL with allele-specificity (within heterozygotes) and an NF-kB b
(H) rs7975658 mutates a BACH motif.
(I) CRISPRi and guides at rs7975658 reduced FGD6 compared to con
(J) Luciferase reporter assay in teloHAECs as in (E).
(K) VEGFC locus with SNP rs6825977 in an enhancer-like region (yell
throughput chromatin conformation capture (HiC) data.
(L) The SNP is an eQTL for VEGFC, an hmQTL with allele-specificity
(M) rs6825977mutates an ETS motif.
(N) CRISPRi with gRNA targeting rs6825977 reduced VEGFC RNA ve
(O) Luciferase reporter assay in teloHAECs as in (E).
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this selective marking suggests that this gene and its allelic

regulation is likely restricted in its cell-type expression pro-

file (Figure S2F). The potential functional effect of

rs12906125 on FES expression is corroborated by signifi-

cant eQTLs in GTEx in numerous tissues including artery

aorta tissue and artery coronary tissue (Figure S2G). Lastly,

because the FES promoter is bound by ERG, we hypothe-

sized that it would be downregulated upon ERG knock-

down, and this was confirmed by analysis of our previously

published data (Figure S2H). Together, these data provide

functional evidence that FES is a likelymediator of vascular

health and that its function is likely modulated by the

haplotype including rs12906125.

EC QTLs Underlie Multi-Trait Associations

Finally, given the ubiquity of ECs throughout tissues of the

human body, we reasoned that our dataset would be valu-

able for fine-mapping regulatory variants that affect many

different complex traits in addition to CAD. We therefore

cross-referenced our set of overlapping eQTLs and

molQTLs with summary data from the GWAS Catalog41

containing lead variants from 3,616 complex traits and dis-

eases that span 3,551 studies.41 To test for enrichment, we

generated empirical null distributions of expected overlap

by 1,000 permutations of eQTL andmolQTL genomic loca-

tions, and we counted the random occurrences of overlap

with GWAS traits. The traits with significant eQTL and/or

molQTL enrichment are shown in Table S6, and top traits

include pulse pressure (p ¼ 1.03 3 10-11), blood protein

levels (p ¼ 2.48 3 10-10), monocyte count (p ¼ 1.77 3

10-6), and lung function by FEV1/FVC (p ¼ 1.2 3 10-5).

These data support the hypothesis that common genetic

variation in the EC regulome modifies EC biology to affect

these complex traits with implications in disease.

Next, to identify loci with pleiotropic effects, we tabu-

lated loci harboring an EC eQTL, a molQTL, and multiple

GWAS trait associations using all EC datasets combined.

The top 13 genes with multiple GWAS associations in

this analysis are shown in Figure 6B (a detailed list of over-

laps is in Table S7). Based on these criteria, the MFAP2 gene

locus demonstrated the most trait associations, including

peak expiratory flow, lung function, and chronic obstruc-

tive pulmonary disease, as well as several anthropometric

measures such as waist-to-hip ratio (Table S7).

Four variants were associated with expression of MFAP2.

Three of these variants (rs9435731, rs2284746, and
QTL (y axis¼ oxPL RNA� notx RNA for FGD6). This SNP is also an
QTL with allele-specificity.

trol as in (D).

ow), which loops with the VEGFC promotor (pink) based on high-

, and an NF-kB bQTL with allele-specificity.

rsus control as in (D).
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Figure 6. Enrichment of EC QTLs in CAD and Complex Disease GWAS
(A) Enrichment (y axis) of HAEC eQTLs at CAD loci (x axis) over permuted rates of random overlap for all HAEC eQTL datasets.
(B) HAEC eQTL genes co-mapping with a molQTL that are associated with multiple GWAS traits (x axis).
(C) Genomic region of MFAP2 locus. Linkage disequilibrium between GWAS-associated loci (top) epigenetic traits (bottom), and local
sequence surrounding SNPs of interest, rs9435732 and rs9435733.
(D) eQTL plots for MFAP2 where each dot is an HAEC donor, colored bars along the x axis represent genotypes at rs9435733, and the
colors of dots represent genotypes at rs9435732.
(E) Graph as in (D) for expression of ATP13A2.
(F and G) GTEx eQTLs in lung for MFAP2 replicates the direction of rs9435732 (F) and rs9435733 (G).
(H–J)molQTLs for rs9435733 for NF-kB binding (H), H3K27ac (I), and ATAC-seq (J), with dot colors representing genotypes at rs9435732.
rs9435733) are in high LD with each other (R2¼ 15,42) and

the alternate alleles are associated with higher expression

of MFAP2 (Figure 6C, LD shown by heatmap in red trian-

gles). These three variants are associated with the lung

function traits listed above. The fourth variant,

rs9435732, is not in high LD with the rest (max R2 ¼
0.245) and is associated with waist-to-hip ratio. The refer-

ence allele (C) for this variant is associated with greater

MFAP2 expression. Figure 6C shows the epigenetic land-

scape in ECs and ENCODE cell types across the MFAP2

and ATP13A2 locus that includes many regulatory ele-

ments with variable activity profiles across cell types.
The Ame
Whereas MFAP2 and ATP13A2 both have eQTLs at

rs9435731, rs2284746, and rs9435733, the ATP13A2

eQTLs are much less significant in the EC dataset than is

MFAP2 (Figure 6D and 6E). Further, rs9435732 is not an

eQTL for ATP13A2 in ECs, supporting the likelihood that

MFAP2 is the functional gene that mediates trait differ-

ences through ECs. Lastly, MFAP2 eQTLs at rs9435732/

rs9435733 are replicated in GTEx lung tissue in the same

direction we observe in ECs (Figure 6F and 6G).

Given our observation that two sets of alleles (the three

SNPs and rs9435732) are independently associated with

MFAP2 expression as well as distinct sets of traits by
rican Journal of Human Genetics 106, 748–763, June 4, 2020 759



GWAS, we tested whether combinations of alleles at this

locus further discriminated MFAP2 expression relative to

either set alone. Indeed, we found that within genotypes

of rs9435733, genotypes at rs9435732 further discrimi-

nated MFAP2 levels (Figure 6D) but not ATP13A2 levels

(Figure 6E). Interestingly, both of these SNPs are located

in the promoter of MFAP2 (Figure 6C, pink vertical line),

96 bp apart and with significant relationships to NF-kb/

p65 binding and H3K27ac levels (Figure 6H and 6I; all

with FDR < 5%) and ATAC-seq (Figure 6J; all with FDR <

8%) in the direction consistent with gene expression.

Taken together, these data provide robust functional evi-

dence that SNPs along the haplotypes created by these

MFAP2 promoter SNPs modify risk for pulmonary and

anthropometric traits by modulating MFAP2 expression

in ECs. Further experimentation will be required to under-

stand which of these variants are necessary and sufficient

for the epigenetic and transcriptomic differences observed.
Discussion

In this study, we identified non-coding, common genetic

variants that modify levels of target-gene expression in a

single cell type that is critical for health. The design was

to propagate genetically diverse human ECs in low-pas-

sage, model disease microenvironments through the use

of pro-inflammatory stimuli, and to quantitatively mea-

sure genome-wide features of gene expression and epige-

netic state. By analysis of enriched motifs at EC regulatory

elements, we provide genome-wide evidence that muta-

tions in ETS, AP-1, and NF-kB motifs by common alleles

perturb activities of regulatory function. We demonstrated

the utility of our integrated analysis and the accuracy of

our approach through experimental validation of a hand-

ful of candidate regulatory SNPs, modification of enhancer

activity, and target-gene expression (KIF26B, VEGFC,

FGD6) for regulatory elements up to 750kb away from their

targets. Intersection of these data with public catalogs,

including GTEx, ENCODE, and the GWAS Catalog led to

additional discoveries, including that roughly half of EC

eQTLs were not evident in GTEx tissues, and that EC

eQTLs and molQTLs are enriched at disease loci for several

disease traits (CAD, lung function, pulse pressure, and

blood protein levels) with some loci (MFAP2) harboring

pleiotropic effects. The thousands of eQTLs and molQTLs

detected here serve as a resource such that investigators

may query significant regulatory relationships for specific

genes or loci of interest. Lastly, while this work is a qualita-

tive advancement toward functional annotation of the

non-coding genome, much work remains to be done to-

ward this goal. These topics are discussed below.

Delineation of the cell and tissue-type patterns of opera-

tional regulatory elements is a challenging requirement to-

ward annotating the functional non-coding genome. It

will require a combination of experimental and computa-

tional approaches to discern epigenetic and expression
760 The American Journal of Human Genetics 106, 748–763, June 4,
states of single cell types that comprise human tissues dur-

ing health and disease. Here, the comparison of eQTLs be-

tween ECs and GTEx showed that eQTLs collected from a

single cell type enabled discovery of about 1,000 tran-

scripts with novel eQTLs not evident in GTEx at all ranges

of effect sizes (Figure 1). This suggests that eQTLs present

in a constituent cell type of tissue is often below the limit

of detection. We recognize that some of the eQTLs in this

study could result from genes whose expression is exagger-

ated in culture, for example by proliferation or exposure to

serum, but this cannot fully explain the differences,

because two cell lines in GTEx (Epstein-Barr virus (EBV)-

transformed lymphocytes and cultured fibroblasts) were

propagated in similar conditions, and their profiles are

distinct from ECs. Together, this finding indicates that a

large proportion of functional, common variants regu-

lating cell-specific target genes remain to be identified,

and that this can be achieved through eQTL analysis of sin-

gle cell types.

Perhaps one of the most exciting promises of molQTL

mapping is that, in conjunction with eQTLs, it enables

fine mapping of causal regulatory variants. Our study is

among the first to demonstrate this in human cells, and to

our knowledge, the first to do this in ECs.We provided three

examples in Figure 5: KIF26B, FGD6, and VEGFC, where

experimentation confirmed the predicted function of non-

coding SNPs in gene regulation through enhancers up to

750kb distant from the genes.While effective, validation us-

ing traditional experimental approaches (like ours) is rate

limiting. Application of high-throughput assays, such as

massively parallel reporter assays (MPRAs) and multiplexed

CRISPR applications, will accelerate the rate of validation

for predicted non-coding variants. It will be important, how-

ever, that these techniques be applied in the primary cell

types from which QTLs were generated, because only these

cell types will contain the relevant complement of TFs

needed to achieve cell-appropriate regulation.

To quantify how many eQTLs we were able to ‘‘explain’’

with molQTLs in this study, we found that about 10% of

EC eQTLs are in linkage with molQTLs (R2 > 0.8). As

similar studies are published, it will be important for the

community to estimate this value, because it leads to esti-

mates of the proportion of expression differences between

people that stem from common regulatory variants in the

proximal genomic landscape. Analogous to the ‘‘missing

heritability’’ paradigm in GWAS, this value reflects the

proportion of expression differences we can explain using

single genetic loci. It is difficult to know from our data

how well this estimate reflects the effects of true causal

regulatory variants, but we provide here non-exclusive

scenarios that explain possibilities. It is possible this value

is an under-estimate of the true causal SNP set and that

nearly every expression trait has an underlying causal

variant. Explanations for why we cannot observe them

relate to statistical power due to sample size and technical

sensitivity in quantifying epigenetic traits. Quantitation

of RNA transcripts through the use of array or RNA-seq
2020



spans a large dynamic range, whereas epigenetic assays

like ATAC-seq are semiquantitative because they average

binary on-off states of proteins accessing DNA on two

chromosomes per cell. Single-cell approaches, or assay de-

velopments that improve sensitivity, performed with

larger sample numbers, should improve molQTL detec-

tion. In addition, our study might have missed informa-

tive regulatory marks simply because these marks were

not included in the design. Repressive marks, for example,

could help identify modulating regulatory SNPs. It is also

possible, and worth considering, that the ‘‘proportion ex-

plained’’ value is a somewhat accurate reflection of loci

harboring true causal regulatory variants, and that gene

expression is genetically regulated by yet undiscovered

mechanisms that are not reflected in the understood reg-

ulome of the cell. Such higher-dimensional possibilities

may include roles for combinatorial and/or hierarchical

relationships among regulatory elements, 3D chromatin

structure, histone positioning, or biophysical constraints,

among others. Nonetheless, our study confirms the utility

of molQTL mapping and provides a foundation for future

studies.

One of the most exciting findings in our study was the

potentially causal role for unlinked SNPs in the promoter

of MFAP2 to modify human disease. This locus associates

with multiple GWAS traits including lung function and

waist-to-hip ratio (Figure 6). While not fully understood,

MFAP2 encodes a secreted protein that has been shown

to bind microfibrils in the extracellular matrix.43–46

MFAP2 has been shown to bind active transforming

growth factor beta, and bone morphogenic proteins to

modulate downstream signaling in paracrine cells of

elastic tissues. Mfap2�/� knockout mice exhibit increased

body fat, weight, size, altered wound healing in bone

and skin, osteopenia, bone fractures, bleeding diathesis,

and increased metabolic dysfunction. Recently, MFAP2

was implicated in regulating EC functions through

sequestration of the endothelial-specific protein EGFL7,

which controls various endothelial functions including

repression of endothelial-derived lysyl oxidase (LOX),

adhesion molecule expression, and Notch signaling.47

Exactly how MFAP2 modifies traits in humans has yet to

be elucidated. Nonetheless, its eQTLs at rs9435733 and

rs9435732 are reproducible, as they are evident in multi-

ple GTEx tissues. Our data support the possibility that

these variants primarily regulate MFAP2 in ECs, rather

than the neighboring gene ATP13A2, which could be per-

turbed in other cell types. Further, our molecular data

demonstrate that haplotypes across rs9435733 and

rs9435732 better discriminate MFAP2 expression in ECs

than either variant does alone (Figure 6D). While future

work is required to establish the molecular explanations

for how these variants perturb MFAP2 function and

modify disease risk, these data support a model whereby

this gene is controlled by at least two regulatory variants

and the likelihood that this locus has pleiotropic effects

on human complex disease.
The Ame
In conclusion, we present an integrative analysis of the

effects of common genetic variation on human endothe-

lial cell molecular traits. The findings presented here

support the likelihood that numerous novel biological re-

lationships are present in this dataset, and this will serve

as a useful resource to accelerate discovery in the research

community.
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Figure S1. Characteristics of EC donors and EC eQTLs. A. Principal Component Analysis of 

genomic distances among individuals in 1000 genomes and HAEC donors in this study are depicted for 



 
 

 

Principal Components (PCs) 1-3. Genotypes on chromosome 1 were used for this analysis. B. 
Genomic annotations of eQTL SNPs in HAEC datasets and all SNPs tested. Datasets indicated by 

number with key. C. Hexbin plot showing relationship between effect sizes of eQTLs discovered in 

array notx eQTLs (y-axis) and corresponding effect size in RNA-seq notx eQTL data (x-axis). Statistics 

are from linear regression. D. Upset plot showing overlap of eQTLs detected between datasets at 5% 

FDR. Along the right are the total eQTLs discovered and the number of unique transcripts associated in 

parentheses. E. Density of the HAEC eQTL effect sizes from notx array data (x-axis) for eQTLs unique 

to ECs (blue) and eQTLs discovered in GTEx and ECs (red).  

 

 

 

 



 
 

 

Figure S2. Effects of regulatory SNPs and target genes across multiple loci in ECs. A. eQTL for 

PLPP3 at rs17114036 in the array notx dataset. B. NF-kB/p65 binding QTL for the enhancer region 



 
 

 

over rs17114036 with allele-specific ratios in heterozygotes to right and results on PLPP3 expression 

from CRISPRi targeting rs17114036. C. The PECAM-1 locus with UCSC browser-style tracks from 

HAECs below. Above shows the LD structure for genome-wide significant CAD-associated GWAS 

SNPs. Yellow bar highlights region with association and enhancer marks having molQTLs; pink 

highlights PECAM-1 promoter. D. The PECAM-1 eQTL for rs9892152 in the oxPL-treated dataset, with 

corresponding hmQTL in IL-1b HAECs to right. E. The FES eQTL for rs12906125 in the oxPL dataset is 

shown above, with molQTLs at this SNP for H2K27ac and ATAC-seq below. F. A browser-style view 

zoomed to the FES promoter shows epigenetic data below from HAECs and ENCODE. Above is LD 

structure for GWAS SNPs. Numbers of associated GWAS traits shown in parentheses. Local sequence 

with alleles of promoter SNP rs12906125 is shown beneath. G. The FES eQTL at rs12906125 is shown 

in Aorta and Coronary Arteries from GTEx. H. FES RNA expression in ERG siRNA knock-down siRNA 

in three HAEC donors is shown. P-value is from 2-tailed unpaired t-test.  

 
 
 
  



 
 

 

LEGENDS FOR TABLES S1-S7 
 
 
Table S1. Sequence tag characteristics are summarized per HAEC donor. The number of unique 
mapped reads after removal of duplicates and mapping bias correction for each HAEC donor (rows), 
with summary data (at bottom) for each assay (columns). These values were used as co-variates in 
association mapping. 
 
Table S2: Shared effect sizes between HAEC and GTEx eQTLs. Area under the curve for density of 
shared effect sizes between GTEx tissues (rows) and HAEC eQTL datasets (columns).  
 
Table S3: Motifs enriched for mutation in allele-specific molecular HAEC traits. Motifs tested for 
Motif Mutation Analysis in rows, with corresponding summary statistics in columns for the molecular 
QTLs of ATAC-seq (notx and IL-1b), ERG binding, and NF-kB/p65 binding. Difference in medians was 
calculated by subtracting median distributions of i) sequencing counts on alleles where the indicated 
motif was in-tact versus, ii) counts from the allele that mutated the motif. P-values are from unpaired, 2-
tailed t-test. 
 
Table S4. 18 variants are associated with CAD, EC gene expression, and EC epigenetics. Each 
row represents a SNP for which there may be multiple gene expression traits associated. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 

 

Region gene(s) 
with 
association 

CAD GWAS SNPs that share an 
eQTL and molQTL with Ecs 

Posterior probability that EC eQTL (array 
notx) and CAD GWAS locus share the 
same causal variant  

PPAP2B rs17114036 0.998 

FES rs1894400, rs35346340, 
rs7497304 

0.997 

AXL rs61459202 0.985 

MLH3 rs175071, rs175065, rs4903284 0.945 

NEK9 rs175071, rs175065, rs4903284 0.991 

EIF2B2 rs175071, rs175065, rs4903284 0.835 

BCKDHA rs2241709, rs11670757, 
rs2241708 

0.823 

PECAM1 rs1122800, rs11079536, rs2812, 
rs2070784, rs2070783, rs9892152 

0.974 

      
LDLR negative control: Doesn't have an 

eQTL in ECs. Does have CAD 
GWAS hits (rs6511720 and 
rs2738447).  

0.072 

 
Table S5. Posterior Probability from R package coloc, that the gene locus and CAD GWAS share 
underlying causal SNP(s) 
 
 
 
 
 
 
 
 
 
 



 
 

 

Table S6. GWAS traits with enrichments in EC QTLs.  Enrichment between co-mapped EC 
e/molQTLs and sets of GWAS SNPs. P-values were derived by Fisher's Exact Test. 
 
Table S7.  Top genes whose expression in ECs maps to an eQTL and molQTL, and is associated 
to multiple GWAS traits.  

 
  



 
 

 

SUPPLEMENTAL METHODS 
 
Cell Culture and Collection: Human aortic endothelial cells (HAECs) were isolated from de-identified 

deceased heart donor aortic trimmings at the University of California Los Angeles Hospital. The cells 

were isolated according to institutional guidelines as described previously1. These cells were cultured at 

passage 6 or less. The cells were cultured in M-199 (ThermoFisher Scientific, Waltham, MA, MT-10–

060-CV) supplemented with 1.2% sodium pyruvate (ThermoFisher Scientific, Catalog# 11360070), 1% 

100X Pen Strep Glutamine (ThermoFisher Scientific Cat# 10378016), 20% fetal bovine serum (FBS, 

GE Healthcare, Hyclone, Pittsburgh, PA), 1.6% Endothelial Cell Growth Serum (Corning, Corning, NY, 

Product #356006), 1.6% heparin, and 10 μL/50 mL Amphotericin B (ThermoFisher Scientific 

#15290018). Donor cells from up to 53 individuals were expanded at 5% CO2, at 37degC. 

Approximately 5 million cells were used per ChIP-seq assays, 500 thousand cells for RNA isolation, 

and 50 thousand cells for ATAC-seq. Cells were treated prior to harvest for 4 hours in media containing 

1% FBS and either no additional protein, or with 10 ng/mL human recombinant IL-1B protein (R&D 

Systems Cat# 201-LB-005/CF). 
 

RNA-seq, ChIP-seq, and ATAC-seq: Total RNA was extracted using the Zymo Quick-RNA MicroPrep 

(Zymo Research Cat# R1051) 1 ug of total RNA was submitted to polyA selection ahead of library 

construction using previously described methods. Cells used for ERG and H3K27ac ChIP-seq were 

cross-linked with 1% formaldehyde for 10 min at room temperature and then quenched with 2.65M 

Glycine (Fisher BioReagents Cat# BP381). ChIP-seq samples for p65/NF-kb were additionally fixed 

with Disuccinimidyl glutarate (DSG ; ProteoChem Cat# c1104) for 30 min. Chromatin was sheered 

using the Bioruptor Pico (Diagenode) with 8- 30s on/60s off cycles. IPs were performed using 

antibodies conjugated to Protein A/G Dynabeads (Invitrogen Cat# 10002D; Invitrogen Cat# 10004D) 

with the following antibodies: EPR3863 (abcam #ab110639) for ERG, NFkB p65 (c-20)x (Santa Cruz 

Antibodies sc-372x, Lot #E0916) for p65, and Histone H3K27ac (Active Motif #39135) for H3K27ac. All 

other details of ChIP were described previously2. ATAC-seq was performed according to the originally 

published protocol3 with the exception of size selection from 175-225 bp prior to sequencing to enrich 

for regulatory elements. Sequence libraries were prepared as previously described2 and sent to The 

University of Chicago’s Genetics core for sequencing on an Illumina HiSeq 4000 for single-end 50bp 

reads. Sequencing depth is summarized in Table S1.  
 Microarray data was provided from previous publications4; 5 utilizing HAECs a subset of which 

was used for the previously mentioned RNA-seq, ATAC-seq, and ChIP-seq. Microarrays were used to 

examine gene expression in 157 and 156 donors in untreated and Oxidized 1-palmitoyl-2-arachidonoyl-

sn-glycero-3-phosphocholine (oxPAPC) treated conditions respectively. Data is in GEO Accessions 

GSE30169 and GSE139377. 



 
 

 

Mapping and Processing: The sequencing data mapped utilizing the mapping bias correction and 

duplicate read removal from software package WASP6, and mapping software Bowtie27 with default 

mapping parameters. This process involved mapping the sequencing data to the reference genome 

first, then remapping the sequencing data to a version of the genome with the alternate alleles at sites 

of common genetic variation. If the read did not align to both versions of the genome, the read was 

removed from further analysis. The correction resulted in a mapped bam file for use in allele specific 

analysis. The resulting sequencing data have an average of 11,390,742 unique reads per sample. 

(Table S1). HOMERs preferred file type (tag directories) were made using the command 

makeTagDirectory from software suite HOMER8. These tag directories were used in expression and 

peak file creation (see RNA-seq QTL analysis and ChIP-seq and ATAC-seq QTL analysis). 
 

Genotyping: Genomic DNA was isolated from HAECs with the DNeasy extraction kit including optional 

DNase treatment (QIAGEN) and quantified with NanoDrop 2000 (Thermo Fisher Scientific, Waltham, 

MA). All samples were randomly arrayed into three 96-well microtiter plates at 50 ng/ul. Per Affymetrix 

Genome wide Human SNP Array 6.0 assay protocol, 2 x 250 ng of gDNA were digested by restriction 

enzymes NspI and StyI separately and products were ligated to respective adaptors (Affymetrix Human 

SNP 6.0 assay). PCR was used for amplifying ligation products and checked for size and quality by 

QIAxcel (QIAGEN). Labeled PCR products were hybridized to the Human SNP 6.0 array. Array 

hybridization, washing and scanning were performed according to the Affymetrix recommendations. 

Scanned images were subjected to visual inspection and a chip quality report was generated by the 

Affymetrix GeneChip Operating System (command console) and the Genotyping console (Affymetrix). 

The image data was processed as described previously5 with the Affymetrix Genotyping Console or 

Birdsuite algorithm24 for determining the specific hybridizing signal for each SNP call and copy-number 

detection.  
 

Imputation: HAEC genotypes were used in conjunction with reference genomic sequence from 1000 

Genomes Project Data to impute missing genotypes. Genotype and haplotype data were downloaded 

from 1000 Genomes Phase 3 data (1000G)9 

(ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/release/20130502/; accessed 04/2017). Tri-allelic and very 

rare variants were removed from the reference panel using plink1.9 ‘--biallelic-only strict and --maf 

0.0000000001’ options10. SHAPEIT 11 was used to align reference alleles between HAEC and 1000G 

files and to pre-phase HAEC alleles prior to imputation. We included all populations in the 1000G 

reference panel and used the ‘k_hap 600 -Ne 20000’ options for imputation using IMPUTE212; 13 as to 

improve representation of shared haplotypes across recently admixed populations. Genotypes were 

called for imputed SNPs with allelic R2 values greater than 0.9.  



 
 

 

SNPs used in association analysis were included if they met the following criteria: Autosomal SNPs; 

Minor allele frequency (MAF) greater than 5%; and no missing genotypes across donors. SNP filtering 

was performed with vcftools14 and PLINK10. Sex was determined from heterozygous genotype calls on 

the X chromosome using PLINK. 

 

Quality Control of Sequencing Samples: Samples were removed from further analysis if: the sample 

contained less than 3 million unique reads, the sample had an average of 6 or more duplicate tags per 

site, the sample was an extreme outlier in PCA, or if the sample could not replicate the genotype 

identity on file for that individual. Genotype identity was assigned by calling genotypes from sequencing 

reads using samtools15 function “mpileup” followed by the bcftools function “call” and comparing the 

results to the SNP Chip data for each individual.  
 

VCF file Preparation: To reduce multiple testing as well as avoid false positives, VCF files were 

restricted to only include genetic variants with a minor allele frequency of at least 0.05 using vcftools 

(option --maf 0.05)14. This was performed for each set individually to account for the differences in 

donor presence due to the quality control measures from above. Therefore, each data set was 

analyzed using SNPs with sufficient variance within the individuals contained in the data set.  

 

Covariate Discovery: Since the HAECs were de-identified, biological sex and ethnicity were 

determined from the genotyping data. Ethnicity was determined by comparing genotype data to 1000 

Genomes data by PCA analysis. Biological sex was determined by heterozygosity on the X 

chromosome using PLINK10. 

 
RNA-seq eQTL analysis: Expression QTL analysis was done using linear regression via the R 

package MatrixeQTL16 (options “pvOutputThreshold.cis = 1”, “cisDist = 1e6”, “verbose = TRUE”, 

“min.pv.by.genesnp = FALSE”, “noFDRsaveMemory = FALSE”) . To obtain the rpkm normalized 

expression matrix used in testing, the command analyzeRepeats from software package HOMER8 was 

used (options “-rpkm”, “-tbp 1”, “-count exons”, “-condenseGenes”, and “-strand +”). MatrixeQTL was 

run using the rpkm normalized expression matrix, a VCF file using the number code for genotypes 

(Homozygous reference = 0, Heterozygous = 1, Homozygous alternate = 2), and a covariate file 

containing biological sex, unique total tag counts, the top four PCs from a PCA performed on the 

genotypes to account for ancestry, and fifteen factors discovered by PEER17.  The number of hidden 

factors discovered by PEER was determined by the version 7 GTEx protocols (15 factors for sample 

sizes <150). To be consistent with GTEx, SNPs were tested against a gene’s expression if they were 

within 1Mb of the start or end of the gene.  



 
 

 

Microarray gene expression: Cytoplasmic RNA was extracted with the RNeasy kit including optional 

DNase treatment (QIAGEN). RNA concentrations were measured with the NanoDrop 2000 (Thermo 

Fisher Scientific) and quality checked with the Agilent 2100 Bioanalyzer (Agilent) so that RNA Integrity 

numbers were greater than 8.5. RNA was prepared for hybridization to Affymetrix HT-HU133A 

microarrays using the standard protocol from the manufacturer. Intensity values were normalized using 

the robust multi-array average (RMA)18; 19 normalization method in R 2.5.0 with the justRMA() function 

of the affy package of Bioconductor20. We utilized an alternative CDF file that excluded misaligned 

probes that were artifacts of the previous transcriptome build that was used for creating the publicly 

available Affymetrix CDF file. To create an updated CDF, we used the custom CDF created by Zhang J 

et. al.21 that was created for the Affymetrix U133A array. Because of the differences in the underlying 

physical location of probes between the U133A and HT-U133A arrays, we created a probe-to-probe 

map between arrays and updated the alternate CDF file to the HT-U133A format. 

 
Microarray QTL analysis: Normalized microarray values were obtained as described above4, and run 

through PEER22 using the following known covariates: culture and treatment batch, sex, and the first 

four principal components from principal component analysis on genotypes. Expression QTL analysis 

was performed using the R package MatrixeQTL (options pvOutputThreshold.cis = 1, cisDist = 1e6, 

verbose = TRUE, min.pv.by.genesnp = FALSE, noFDRsaveMemory = FALSE). MatrixeQTL was run 

using the normalized expression matrix, a VCF file using the number code for genotypes (Homozygous 

reference = 0, Heterozygous = 1, Homozygous alternate = 2), and a covariate file containing biological 

sex, unique total tag counts, the top four PCs from a PCA performed on the genotypes to account for 

ancestry, and thirty factors discovered by PEER. The number of hidden factors discovered by PEER 

was determined by the version 7 GTEx protocols (30 factors for sample sizes >150). SNPs were tested 

against a gene’s expression if they were within 1Mb of the start or end of the gene.  
To determine the similarity between the eQTL results from the RNA-seq data sets and the 

Microarray datasets, each eQTL dataset was compared to all other datasets individually. The effect 

sizes of significant SNPs in one set were graphically compared to the effect sizes of the same SNPs in 

the second data set regardless of significance in this second set. The R package “hexbin” was used to 

plot this comparison. 

 

Multiple correction for eQTL Analysis: Results were then restricted to a gene-level Benjamini-

Hochberg (correction for all tests done for a single transcript) adjusted p-value of less than 0.05. For the 

majority of analyses performed in this paper, we used the gene-level correction. However, for 

comparison to GTEx, additional correction was done. The lowest adjusted pvalue at each gene was 

selected to ‘represent’ the gene in a second Benjamini-Hochberg correction. The resulting adjusted 



 
 

 

pvalue was restricted to 0.05, and the genes remaining were considered the eGenes for this analysis. 

SNP-Gene associations were only kept if they 1) were associations with an eGene by the secondary 

correction, and 2) if their gene-level adjusted pvalue was less than or equal to the most significant 

gene-level pvalue of the least significant eGene.  

 

Lead SNP determination: To report the number of lead SNPs present in each eQTL dataset, a 

combination of custom code in R, vcftools, and PLINK was used to LD prune the results. The following 

was done on each eQTL dataset separately. Custom R code was used to create SNP lists containing 

all SNPs associated with a single gene. The program vcftools 14 was used to filter the vcf file to the 

SNPs in the SNP list for each gene (option --snps). The program PLINK was then used to LD prune on 

an R2 of 0.8 for each gene’s associations (option “--indep-pairwise 2000000 1 0.6”), keeping the SNP 

with the highest significance in each LD block. 

 

ChIP-seq and ATAC-seq QTL analysis: Molecular QTL analysis was done using an allele specific 

method via software package RASQUAL23. To obtain allele specific data, the function createASVCF.sh 

from RASQUAL was used. This process utilized the mapping bias corrected bam files for each data set 

and counted the number of tags which contained each allele at a given genetic variant on an individual 

basis. This information was added into the VCF file for each set to be used by RASQUAL for allele 

specific QTL testing. Non-allele specific tag counts for each region in the genome were obtained and 

RPKM normalized using commands findpeaks and annotatePeaks from software package HOMER24 to 

create an individual by peak matrix. The options used for findpeaks for the transcription factors was “-

style factor” and “-o auto”. The options used in findpeaks for H3K27ac were “-style histone” and “-o 

auto”. The options used in findpeaks for ATAC-seq were “-style histone”, “-L 8”, “-F 8”, “-size 75”, “-

minDist 75”, minTagThreshold 6”, and “-o auto”. All annotatePeaks commands were run with the option 

“-rpkm”. The QTL analysis portion of RASQUAL23 was run using the allele-specific VCF files, RPKM 

normalized tag matrix, and the covariates: sex, unique total tag counts, and the four top principal 

components from a PCA run on the genotypes to adjust for ancestry. SNPs were tested against a 

peak’s intensity if they were found within the boundaries of the peak. The results were filtered using a 

per site false discovery rate of 0.05. 
 

Enrichment Analysis: To determine enrichment of a QTL dataset within either a GWAS or eQTL 

dataset, we took the unique significant SNPs of a test QTL dataset (FDR <0.05) and pulled the 

corresponding p-values (GWAS data) or FDRs (QTL analyses) from the target dataset. These values 

were binned by cumulative cut off points (1e-8, 1e-7, 1e-6, 1e-5, 1e-4, 1e-3, 1e-2, 0.1, 1). The number 

of test dataset SNPs in each cumulative bin were then compared to the number of SNPs that would be 



 
 

 

found in that bin by random chance. This was determined by randomly taking a subsample of the same 

size as the significant test dataset from the full list of SNPs tested in the QTL analysis of the test 

dataset. To get the ‘enrichment score’ used in the paper, the number of SNPs found experimentally 

was divided by the average number of SNPs found by random sampling. 

 

Comparison to GWAS Catalog Data: To find diseases and traits that are enriched for EC QTLs, the 

summary statistics for all lead SNPs of all the diseases and traits available on the GWAS catalog25 (as 

of August 2019). Four datasets were created from this study for comparison to the GWAS Catalog data: 

Untreated RNA-seq eQTLs with any molQTL, IL1B treated RNA-seq eQTLs with any molQTL, 

Untreated Microarray eQTLs with any molQTL, and oxPL treated Microarray eQTLs with any molQTL. 

Enrichment in a trait was tested via a Fishers Exact test performed in R. This was done by creating a 

two by two contingency table (in R: matrix(c(x,y,z,a),2,2)) where x is the number of overlaps between 

the eQTL dataset and the GWAS trait of interest, y is the number of overlaps between the SNPs tested 

in the eQTL dataset (that were not significant eQTLs) and the GWAS trait of interest, z is the number of 

eQTL SNPs that do not overlap with the GWAS trait of interest, and a is the number of SNPs tested in 

the eQTL dataset (that were not significant eQTLs) that do not overlap with the GWAS trait of interest. 

This two by two matrix was input into the function fisher.test() in R. Enrichment was concluded if there 

was significant overlap (pval<0.05) by this test. 

 Enrichment of specific genes in multiple traits was tested by assessing the frequency at which a 

gene’s expression was seen associated across multiple diseases/traits by a HAEC eQTL.  

 

Candidate SNP-gene pair selection: The SNP-gene pairs that eventually became our candidate 

SNPs for functionality with CAD were selected via the fine-mapping with molQTLs. The eQTLs that also 

were significant molQTLs were compared against the genome-wide significant CAD associated SNPs26 

resulting in the 18 SNPs seen in Table S4. 
 

Annotation and SNP localization Analysis: To determine the annotated localization of eQTLs in the 

genome in comparison to all tested SNPs, we used HOMER command “annotatePeaks.pl” to assign an 

annotation to location of the SNP of “intergenic”, ”coding”, ”non-coding”, “intronic”, “exonic”, 

“Transcription Start Site” (TSS), or “Transcription Termination Site” (TTS). The proportions of each of 

the annotations found in each of the eQTL datasets and the total tested SNPs were compared via 

circular bar graph in Microsoft Excel.  

 To determine the location of eQTLs with respect to TSSs, we used HOMER command 

“annotatePeaks.pl” using options “-hist 1000” and “-size 1000000”. The data sets were only compared 



 
 

 

to gene TSSs of genes that had at least one associated significant eQTL within that dataset. The total 

tested SNPs were compared to all genes.  

  

Motif Mutation Analysis:  Motif mutations were detected when the local sequence altered by alleles of 

a SNP such that one allele dropped the match to the motifs position weight matrix (PWM) below the 

motif detection threshold that is defined in the HOMER motif database8. The analysis pipeline has been 

described previously2.  

 

GTEx analysis: To compare GTEx eQTLs to the EC eQTLs, EC RefSeq IDs were converted to 

Ensembl IDs using Biomart. Next, variant IDs tested in both GTEx and EC eQTL studies were 

overlapped on chromosome, position, and nucleotide. Any variants tested in only one study were 

discarded, and then EC variant IDs were converted to match those in GTEx. Finally, intersection of 

datasets was performed using unique eQTL/eGene pairs as identifiers. 
The distribution comparisons were compared using a shared area under curve metric. To 

calculate this, we performed kernel density estimation in R using the density function for both of the 

datasets to be compared. Following this, the area between curves for the two density estimates was 

calculated. The distance metric is equal to 2 - area between curves. 

 
Graphical Packages: R was used for the visualization of results using packages: “graphics”, 

“ggbeeswarm”, “beeswarm”, “hexbin”, and “UpSetR”. Additional images were used from UCSC 

Genome Browser27 and the 3D Genome Browser28. 
 

Dual Luciferase Reporter Assay: For the dual luciferase reporter assay, 198 bp fragments of the 

enhancer regions, ordered from Agilent Technologies, were cloned into ClaI and SalI sites of Addgene 

plasmid #9929729. The integrity of plasmids was verified by Sanger sequencing. The control vector or 

the luciferase constructs were co-transfected with the pGL4.75 vector (Promega) that encodes the 

luciferase gene hRluc (Renilla reniformis) in TeloHAEC cells using Lipofectamine Stem Transfection 

Reagent (ThermoFisher Scientific) according to manufacturer instructions. A total of 500 ng of DNA per 

well in 24 well plates was transfected, keeping a 10:1 molar ratio between the constructs or the vector 

with respect the pGL4.75 plasmid.  The molar ratio between the target constructs and the control was 

1:1. Luciferase activity was measured 48 h post transfection with a Dual-luciferase Reporter Assay 

(Promega) in a CLARIOstar (BMG Labtech) plate reader coupled with a dual injector system. The firefly 

luciferase signal was normalized to Renilla signal and the data is presented proportional to the control 

vector. Three independent experiments with four technical replicates were performed. Intra-haplotype 

or haplotype-control statistical analyses were performed with two-tailed t-test.     



 
 

 

CRISPR Interference (CRISPRi):  
CRISPRi experiments were conducted in HAECs to determine the enhancer activity of cis-regulatory 

elements of interest. A fusion protein of catalytically dead Cas9 (dCas9) fused to KRAB repressor 

protein (addGene cat#46911) was expressed in HAEC using transfection of in vitro transcripts. In a 24-

well plate, 25 ng of dCas9-KRAB in vitro transcripts and 3 pmol of sgRNA were diluted in 25 μl of opti-

MEM. Next, 0.75 μl of Lipofectamine Messenger MAX (Invitrogen) was diluted into 25 μl of opti-MEM. 

Each dilution pool was combined, incubated for 10 minutes at RT, and added to cells. After 8 hours at 

37degC, cells were lysed for RNA collection, cDNA synthesis, and analysis via qPCR. Non-targeting 

control guide RNA was purchased from IDT. Guide RNA sequence targeted to a previously-identified 

endothelial enhancer in PLPP3 rs17114036 locus was used as a positive control (5’-

GTTGATATCACTAAGTTTTCAGG- 3’, 5’ -CAAGAGCTGAAGTCAGGCAGTGG- 3’). Guide RNA 

sequences for targeted loci of interest are listed here: (PPAP2B-rs17114036-sgRNA-1: 5’-

GTTGATATCACTAAGTTTTCAGG-3'; 

PPAP2B-rs17114036-sgRNA-2: 5’-CAAGAGCTGAAGTCAGGCAGTGG-3’;   

FGD6_intronic_enhancer_sg1: TATTCTGAGCCCCTTTACCA;   

FGD6_intronic_enhancer_sg2: TGGAATCTGCAGTCCTATAA;   

VEGFC_upstream_enhancer_sg1: TGCGAGATGCACACATTCCC;   

VEGFC_upstream_enhancer_sg2: ACCCTAAACACCCATAATGA;   

KIF26B_upstream_enhancer_sg1: GGAGTGATAACTCCTATTGT;   

KIF26B_upstream_enhancer_sg2: TTCTTATAACGGGAAAGTGT). qPCR primers: (FGD6_F2  5'-

CTGTTCGAGAGATTGGGCAGT-3',  

FGD6_R2  5'-TCATTGCTCTGATTGCCTTCAT-3',   

VEGFC_F2  5'-GAGGAGCAGTTACGGTCTGTG-3',   

VEGFC_R2  5'-TCCTTTCCTTAGCTGACACTTGT-3',   

KIF26B_F2  5'-TTCTCGGCTGTGATTCACGAC-3',   

KIF26B_R2  5'-AGGTGAGTGGCGCAAATGT-3',  PPAP2B_F2  5'-AAGTCCAGGAAGCCAGGAAGT-3',   

PPAP2B_R2  5'-GACAGTCCCGTGTAGAAGGC-3'). 
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