Supplementary material for "Non-uniform distribution of myosin-mediated forces governs red blood cell membrane curvature through tension modulation"

H. Alimohamadi¹, A.S. Smith², R.B. Nowak², V.M. Fowler^{2,3} and P. Rangamani¹

¹Department of Mechanical and Aerospace Engineering, University of California San Diego, California, United states of America ²Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California, United states of

²Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California, United states of America

³Department of Biological Sciences, University of Delaware, Newark, Delaware, Unites States of America

Figure S1: The error in the characteristic lengths is a nonlinear function of dimple force density (F_{dimple}). (A) Calculated error in the maximum length of the simulated RBC (ϵ_L) as a function of F_{dimple} . (B) Calculated error in the maximum height of the rim of the simulated RBC (ϵ_{hmax}) as a function of F_{dimple} . (C) Calculated error in the minimum height of the dimple of the simulated RBC (ϵ_{hmin}) as a function of F_{dimple} . In all three graphs, with increasing F_{dimple} from zero, initially the error decreases about an order of magnitude and attains a relative minimum. Any further increase in F_{dimple} toward the large dimple force density ($F_{dimple} > 4pN/\mu m^2$) leads to a larger error in all characteristic lengths.