Supplementary material for "Non-uniform distribution of myosin-mediated forces governs red blood cell membrane curvature through tension modulation"

H. Alimohamadi¹, A.S. Smith², R.B. Nowak², V.M. Fowler^{2,3} and P. Rangamani¹

¹Department of Mechanical and Aerospace Engineering, University of California San Diego, California, United states of America ²Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California, United states of

²Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California, United states of America

³Department of Biological Sciences, University of Delaware, Newark, Delaware, Unites States of America

Figure S8: For intermediate membrane tension (Tension $=10^{-3}$ pN/nm), deviation of the applied forces from normal ($\phi = 90^{0}$) to the tangential orientation ($\phi = 0$) results in the formation of pancake-shaped geometries with large shape error. The Heat maps show the total error in the shape of the simulated RBCs for a range of force densities in the dimple and rim regions. (A) The applied forces are assumed to be normal ($\phi = 90^{0}$). (B) The applied forces make angle $\phi = 60^{0}$ with the tangent vector \mathbf{a}_{s} . (C) The applied forces make angle $\phi = 45^{0}$ with the tangent vector \mathbf{a}_{s} . (D) The applied forces make angle $\phi = 30^{0}$ with the tangent vector \mathbf{a}_{s} . (E) The applied forces are tangent to the membrane surface ($\phi = 0$). In each heat map, the point with the minimum error is marked with '**X**'. Also, for each marked point, the volume of the simulated RBC (V) is calculated and the shape (solid yellow line) is shown in comparison with the reference parametric.