Supplementary material for "Non-uniform distribution of myosin-mediated forces governs red blood cell membrane curvature through tension modulation"

H. Alimohamadi¹, A.S. Smith², R.B. Nowak², V.M. Fowler^{2,3} and P. Rangamani¹

¹Department of Mechanical and Aerospace Engineering, University of California San Diego, California, United States of America

²Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California, United States of America

³Department of Biological Sciences, University of Delaware, Newark, Delaware, United States of America

Table 2: Notation used in the model		
Notation	Description	Units
R_0	Radius of the RBC cell	nm
κ_0	Bending rigidity of the lipid	pN
Funiform	Uniformly applied force	$\mathrm{pN}/\mathrm{\mu m^2}$
F _{dimple}	Local force at dimple region	$\mathrm{pN}/\mathrm{\mu m^2}$
F _{rim}	Local force at rim region	$\mathrm{pN}/\mathrm{\mu m^2}$
A _{dimple}	Membrane surface are in the dimple region	m^2
A _{rim}	Membrane surface are in the rim region	m^2
V _{dimple}	Occupied volume by the dimple region	m^3
V _{rim}	Occupied volume by the rim region	m^3
r	Dimensionless radial distance	
z	Dimensionless height	
h	Dimensionless mean curvature	
m	Dimensionless M	
$ ilde{\lambda}$	Dimensionless surface tension	
$ ilde{p}$	Dimensionless pressure	
$\tilde{\mathbf{f}}$	Dimensionless force	
$ ilde{\kappa}$	Dimensionless bending modulus	
t	Dimensionless arclength	
F _{ratio}	Ratio of the force at the dimple versus the rim region	