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1 Model description

1.1 Assumptions

• We consider that the radii of the membrane curvatures are much larger than the thickness of the bilayer [1].
This allows us to treat the lipid bilayer as a thin elastic shell and model the bending energy of the membrane
by the Helfrich–Canham energy, which depends only on the local curvatures of the surface and compositional
heterogeneities [2, 3].

• Due to the high stretching modulus of lipid bilayers, we assume that the membrane is locally incompressible
[4]. We use a Lagrange multiplier to implement this constraint [5–7].

• We assume that the RBC is at mechanical equilibrium at all times, allowing us to neglect inertia [8–10]. This
assumption is consistent with the experimentally observed shapes for the resting RBCs in both vivo and vitro
[11, 12].

• We assume that the total surface area of the RBC membrane is constant and is 135 µm2 [13, 14]. All our
simulations are conducted using this constant area.

• For simplicity in the numerical simulations, we assume that the RBC is rotationally symmetric and also has
a reflection symmetry with respect to the Z = 0 plane (see Fig. 1C) [3, 13, 15, 16]. This assumption reduces
the computational cost of the simulation to simply calculating the shape of the curve shown by red dotted
line in Fig. 1C.

1.2 Membrane mechanics

In this section, we present a concise derivation of the governing mathematical shape equations for the RBC mem-
brane at mechanical equilibrium. The complete derivation with details are given in [5, 17–20].
The total free energy of the lipid bilayer (E) including the bending energy of the membrane (Eb) and the work done
by the applied forces by the membrane skeleton (Ef ) is given by [20–23]

E = Eb − Ef , (S1)
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where

Eb =

∫
ω
(W (H,K; θα) + λ(θα))da− pV, and (S2a)

Ef =

∫
ω

F(θα).(r− r0)da. (S2b)

Here ω is the total membrane surface area, W is the energy density, θα denotes the surface coordinate where
α ∈ {1, 2}, H is the mean curvature of the surface, K is the Gaussian curvature, λ is the membrane tension field
which is the Lagrange multiplier associated with the local area constraint, p is is the transmembrane pressure which
is the Lagrange multiplier associated with the volume constraint, V is the enclosed volume, F is the force per unit
area, r is the position vector in the current configuration, and r0 is the position vector in the reference frame.

Substituting Eq.s S2a and S2b into Eq. S1 and using the variational approach to minimize the total energy gives
us the so-called “shape equation” and the incompressibility condition [5, 18, 20]

∆
1

2
WH +WH(2H2 −K) + 2H(KWK −W )− 2λH = p+ F · n, (S3a)

λ,α +
∂W

∂xα|exp
= −F · as, (S3b)

where ∆(·) = (·);αβaαβ is the surface Laplacian where (.);α denotes the covariant derivative and aαbeta is the dual
metric, n is the unit normal vector to the membrane surface, aα is the unit tangent vector in the α direction, and
(.)|exp represents the explicit derivative with respect to coordinate θα.

1.3 Helfrich-Canham energy

In this study, to model the bending energy of the RBC membrane, we used the classical Helfrich-Canham energy
given by [1, 2, 23]

W (H,K; θα) = κH(θα)2 + κGK(θα), (S4)

where κ and κG are constants representing the bending and Gaussian moduli respectively.
Using Helfrich-Canham energy (Eq. S4) simplifies the shape equation (Eq. S3a) and the incompressibility

condition (Eq. S3b) as

κ∆H + 2κH(H2 −K) = p+ 2λH + F · n, (S5a)

λ,α = −F · aα, (S5b)

where (.),α is the partial derivative with respect to the coordinate θα.

1.4 Governing equations in axisymmetric coordinates

We assumed the RBC has a rotationally symmetric shape and define the surface of revolution (Fig. 1C) by

r(s, θ) = R(s)er(θ) + Z(s)k, (S6)

where s is the arclength along the curve, R(s) is the radius from the axis of rotation, Z(s) is the height from the base
plane, and (er, eθ,k) form the basis coordinate. Defining ψ as the angle made by the tangent with respect to the
vertical gives
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R′(s) = cos(ψ), Z ′(s) = sin(ψ), (S7)

which satisfies the identity (R′)2 + (Z ′)2 = 1, where ()
′

is the partial derivative with respect to the arclength.
Using Eq. S7, we can define the normal (n) and tangent (as) vectors to the surface as

n = − sinψer(θ) + cosψk, as = cosψer(θ) + sinψk. (S8)

This parameterization allows us to write the tangential (κν) and transverse (κτ ) curvatures as

κν = ψ′, κτ =
sinψ

R
. (S9)

The mean curvature (H) and Gaussian curvature (K) are obtained by summation and multiplication of the
tangential and transverse curvatures

H =
1

2
(κν + κτ ) =

1

2
(ψ′ +

sinψ

R
), K = κτκν =

ψ′ sinψ

R
. (S10)

Finally, we define M = 1
2κR(WH)′ to reduce the governing equations (Eq. S5a and Eq. S5b) to a system of

first- order differential equations with six unknowns R, Z, ψ, H , M , and λ [17, 24, 25],

R′ = cosψ, Z ′ = sinψ, Rψ′ = 2RH − sinψ, RH ′ = M,

M ′

R
=
p

κ
+

F · n
κ

+
2Hλ

κ
− 2H

(
H − sinψ

R

)2

and λ′ = −F · as.

(S11)

In order to solve the system of equations in Eq. S11, we need to provide six boundary conditions. We consider
an axisymmetric RBC with reflection symmetry with respect to the Z = 0 plane (see Fig. 1C). These assumptions
can be applied as the following boundary conditions,

R(0+) = 0, ψ(0+) = 0, Z(smax) = 0,

ψ(smax) =
−π
2
, M(smax) = 0, and λ(smax) = λ0,

(S12)

where smax is the maximum length of the computational domain and λ0 is the prescribed membrane tension. One
advantage of an asymmetric coordinate system is that the manifold area (A) and the occupied volume (V) can be
expressed in term of arclength,

A(s) = 2π

∫ s

0
R(η)dη, (S13a)

V (s) = 2π

∫ s

0
R(η)Z(η) cos(ψ)dη, (S13b)

which allows us to conserve the total area of the RBC by changing the maximum length of the computational
domain (smax).

Considering the spherical shape of RBC with no applied force, we can calculate the reduced volume (v) as

v = V/Vsphere (S14)

where Vsphere is the volume of the sphere that we get from simulation when there is no applied force along membrane
(F = 0).
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1.5 Nondimensionalization

In order to perform the numerical computations, we nondimensionalized the system of equations (Eq. S11) by
using two positive constants, the radius of the RBC (R0) and the lipid bilayer bending rigidity (κ0). This allows us
to define the dimensionless variables as

t =
s

R0
, r =

R

R0
, z =

Z

R0
, h = HR0 m = MR0

λ̃ =
λR2

0

κ0
, p̃ =

pR3
0

κ0
f =

FR3
0

κ0
, κ̃ =

κ

κ0
.

(S15)

Rewriting Eq. S11 in terms of the dimensionless variables, we get [25]

ṙ = cosψ, ż = sinψ, rψ̇ = 2rh− sinψ, xḣ = m,

ṁ

r
=
p̃

κ̃
+

f · n
κ̃

+
2hλ̃

κ̃
− 2h

(
h− sinψ

r

)2

,
˙̃
λ = −f · as,

(S16)

where ( ˙ ) is the partial derivative with respect to t. With the defined dimensionless variables in Eq. S15, the
boundary conditions simplified as

r(0+) = 0, ψ(0+) = 0, z(tmax) = 0

ψ(tmax) =
−π
2
, m(tmax) = 0, and λ̃(tmax) = λ̃0.

(S17)

1.6 Parametrization of RBC biconcave morphology and shape error estimation

There are several parametric models to describe the biconcave morphology of an RBC [26–29]. Initially, Funaki
proposed the Cassini oval model for the RBC biconcave morphology given by [26]

(R2 + Z2 + a2)− 4a2R2 = c4, (S18)

where a and c are constants with the condition that a < c <
√

2a. Yurkin modified the Cassini oval model to an
implicit equation with four constants given by [27]

R4 + 2C4R
2Z2 + Z4 + C1R

2 + C2Z
2 + C3 = 0, (S19)

where C1, C2, C3, and C4 are constants that depended on the RBC dimension (C1 = −14.85, C2 = 40.40, C3 =
−6.65, and C4 = −0.30). Borovoi et al. introduced a function that represents the biconcave shape of an RBC in
the spherical coordinate as [28]

R(θ) = e sinq(θ) + b, (S20)

where e, b, and q are constants that were determined by fitting the function to the standard shape of an RBC
(e = 3 µm, b = 0.75 µm, and q = 5). The most realistic model for the biconcave shape of an RBC was proposed
by Evans and Fung based on direct experimental measurements [29]

Z(R) = ±0.5

√
1− (

2R

L
)(D1 +D2(

2R

L
)2 −D3(

2R

L
)4), (S21)
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where D1, D2, and D3 are the constants that were calculated by fitting the function to the average dimension of
an experimentally observed RBC and statistical analysis (D1 = 0.81 µm, D2 = 7.83 µm, and D3 = −4.39 µm).
We plotted these different proposed parametric models together for the biconcave shape of an RBC for fixed hmin,
hmax, and L (Fig. 2B). In this study, we used the given parametric function by Evans and Fung (Eq. S21) as the
reference geometry for the RBC experimental shape.

Typically, there is a mismatch between each RBC shape obtained from our mechanical model (Eq. S16) and
the RBC parametric shape (Eq. S21). Considering the three characteristic lengths (hmin, hmax, and L in Fig. 1C),
we can define three errors that characterize the difference between each of these lengths in the simulated shapes
and the reference experimental shape,

εhmax =
|hmax,par − hmax,sim|

Lpar
=
|∆hmax|

Lpar

εhmin =
|hmin,par − hmin,sim|

Lpar
=
|∆hmin|

Lpar

εL =
|Lpar − Lsim|

Lpar
=
|∆L|
Lpar

,

(S22)

where (.)sim is the calculated length from the simulated shape and (.)par is the measured length in the parametric
RBC shape (Eq. S21). The total error (εtotal) in the shape of the simulated RBC can be calculated by the root mean
square (RMS) between each two mapped points of the simulated and parametric shapes

εtotal =

√
1
N

[∑i=N
i=1 (Zi,sim − Zi,par)2 + (Ri,sim −Ri,par)2

]
Lpar

, (S23)

where N is the total number of nodes across the RBC shapes, i is the index node, Zi,sim and Zi,par are the height of
the simulated and the RBC parametric (Eq. 3) shapes at index i, respectively. Ri,sim is the radius of the simulated
shape at index i, and Ri,par is the radius of the RBC parametric shape (Eq. 3) at index i (see Fig. 2C). To trace
the simulated shape and the parametric shape (Eq. 3), we mapped the points with the maximum height, minimum
height, and maximum radius. Then, we discretized the domain equally between the points and calculated the errors.

1.7 Numerical implementation

We solved the system of first-order differential equations (Eq. S16) with boundary conditions Eq. S17 by the
finite element software COMSOL MULTIPHYSICS R 5.3a, using the “General Form PDE” module. Here, we
summarize the steps and assumptions that we used for each simulation.

• All the simulations were performed for fixed total arclength. However, in each simulation, the maximum
arclength (smax) varies to conserve the total area of the RBC membrane.

• The computational domain (t) was discretized equally with mesh size = 0.001.

• To have a sharp but smooth transition in the distribution of the force (f ), we used a hyperbolic tangent
function given by

f =
1

2
[tanh(g(t− sdimple))], (S24)

where g is a constant (here we set g=20) and sdimple represents the length scale that the local force at the
dimple is applied.

• The applied force in Figs. 3-5 and Fig. 7-8 was progressively increased such that each solution was used as
an initial guess for the next step.
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