# Science Advances

advances.sciencemag.org/cgi/content/full/6/23/eaay8493/DC1

# Supplementary Materials for

## Microfibers in oceanic surface waters: A global characterization

Giuseppe Suaria\*, Aikaterini Achtypi, Vonica Perold, Jasmine R. Lee, Andrea Pierucci, Thomas G. Bornman, Stefano Aliani, Peter G. Ryan

\*Corresponding author. Email: giuseppe.suaria@sp.ismar.cnr.it

Published 5 June 2020, *Sci. Adv.* **6**, eaay8493 (2020) DOI: 10.1126/sciadv.aay8493

#### The PDF file includes:

Supplementary Text Tables S1 to S5 Figs. S1 to S3 Legend for data file S1

#### Other Supplementary Material for this manuscript includes the following:

(available at advances.sciencemag.org/cgi/content/full/6/23/eaay8493/DC1)

Data file S1

#### Compensating for the effect of different mesh sizes and sample depth

Filter mesh size and, for large mesh sizes, sample volume, both influence fiber retention rates (Ryan et al. 2019). To compensate for differences in mesh sizes used to process samples (see Table S5), we estimated crude correction factors based on pairwise comparisons of samples collected at the same location and filtered through different mesh sizes (Ryan et al. 2019). The pairwise sample comparisons are noisy (see Fig 1 in Ryan et al. 2019) and not all effects were significant, but on average, 20  $\mu$ m mesh collected 41% more fibres than 63  $\mu$ m mesh (n = 69, P < 0.05), 0.7 mm filters retained 44% more fibres than 25 mm filters (n = 85 stations, P = 0.002), and 25  $\mu$ m mesh collected 10% more fibres than 50  $\mu$ m mesh (n = 30, P = 0.2). Combining these average retention data using linear interpolation, and assigning 100% retention score to the 0.7  $\mu$ m mesh, gives the retention rates for different mesh sizes in Table S1. We then modeled these data (Fig. S1) to predict appropriate correction factors for all mesh sizes used (Table S1), and applied these correction factors to fiber counts from all samples to compensate for differences in mesh size.

Similarly, comparison of samples of surface and subsurface water collected from the same site and filtered through the same mesh size showed that fiber densities in water collected 5 m subsurface averaged 2.6 times less than samples collected from surface waters (paired t-test;  $t_{109} = 5.555$ ; 1-tailed P < 0.001; n = 110). The correlation between these samples was significant ( $r_{108} = 0.187$ , P < 0.05), although the data were very noisy because of varying sample volumes (Fig. 3 in Ryan et al. 2019). When only samples with similar water volumes were compared (n = 21), the density of fibers in subsurface samples was still 2.4 times lower than in paired surface samples (IQR: 2.6; SD: 1.8; 95% CI: 1.7-3.2). Accordingly, we used a conservative correction of 2.4 to estimate surface values for sites were only sub-surface samples were available.

These correction factors are per force crude. However, a key conclusion from Ryan et al. (2019) is that replicate samples collected in the same way at the same location show high variability in fiber counts, irrespective of factors such as mesh size, depth or volume filtered. This highlights the need for multiple samples at each sampling location, and although we took 2-4 samples at most sites, larger sample sizes are needed to obtain robust density estimates. As a result, our fiber densities should be regarded as semi-quantitative, and suitable only for gross comparisons among regions. Given the crude nature of the correction factors used, both uncorrected and corrected counts are presented throughout.

**Table S1. Mesh size retention coefficients and extrapolated correction factors.** Estimated fiber retention rates (%) for the six different mesh openings used in this study. Retention coefficients were computed from the data presented in Ryan et al. (2019), and associated correction factors were estimated from the exponential model in Fig. S1.

| Mesh size<br>opening (µm) | Retention<br>rate (%) | Estimated<br>correction factors |
|---------------------------|-----------------------|---------------------------------|
| 0.7                       | 100                   | 1.00                            |
| 20                        | 76                    | 1.30                            |
| 25                        | 69                    | 1.38                            |
| 37                        | 67                    | 1.56                            |
| 50                        | 62                    | 1.71                            |
| 63                        | 54                    | 1.79                            |



**Fig. S1. Exponential fit of fiber retention rate data from Table S1.** The exponential model (shown) had a lower Akaike Information Criteria score (AIC: 39.626) than either linear or quadratic models. Mesh size correction factors estimated from this model are listed in Table S1.

**Table S2: Mann-Whitney pairwise comparisons of fiber concentrations in all basins**. The results of Mann-Whitney pairwise comparisons of fiber concentration values (number  $1^{-1}$ ) measured in all oceanic basins (bold) and sub-basins surveyed and computed using (A) the corrected fiber concentration dataset and (B) the uncorrected dataset. Raw P values (uncorrected Bonferroni significance) are shown above the diagonal and Mann-Whitney U below the diagonal in both tables. Significant pairwise comparisons (P < 0.05) are highlighted in yellow.

| A) Corrected<br>dataset | Mediterranean<br>Sea | Indian<br>Ocean       | Atlantic<br>Ocean     | North<br>Atlantic     | South<br>Atlantic     | Southern<br>Ocean     | Southern<br>Ocean<br>(40-60 °S) | Southern<br>Ocean<br>(> 60°S) |
|-------------------------|----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|---------------------------------|-------------------------------|
| Mediterranean Sea       |                      | 2.1x10 <sup>-23</sup> | 7.3x10 <sup>-29</sup> | 2.1x10 <sup>-21</sup> | 3.8x10 <sup>-23</sup> | 9.0x10 <sup>-18</sup> | 3.4x10 <sup>-13</sup>           | 1.1x10 <sup>-15</sup>         |
| Indian Ocean            | 5842                 |                       | 0.0588                | 0.00142               | 0.7564                | 0.0521                | 0.0506                          | 0.3073                        |
| Atlantic Ocean          | 3321                 | 33200                 |                       | 0.04502               | 0.1527                | 0.00020               | 0.00055                         | 0.0120                        |
| North Atlantic          | 1078                 | 10807                 | 9417                  |                       | 0.00298               | 9.0x10 <sup>-06</sup> | 2.6x10 <sup>-05</sup>           | 0.00031                       |
| South Atlantic          | 2242                 | 22393                 | 16527                 | 5277                  |                       | 0.04486               | 0.04478                         | 0.1984                        |
| Southern Ocean          | 6149                 | 36209                 | 25635                 | 8247                  | 17388                 |                       | 0.7779                          | 0.6776                        |
| Southern Ocean (40-60°) | 4396                 | 22913                 | 16301                 | 5273                  | 11028                 | 21866                 |                                 | 0.5457                        |
| Southern Ocean (> 60°S) | 1753                 | 13296                 | 9334                  | 2974                  | 6360                  | 12004                 | 7586                            |                               |

| B) Uncorrected<br>dataset | Mediterranean<br>Sea | Indian<br>Ocean       | Atlantic<br>Ocean     | North<br>Atlantic     | South<br>Atlantic     | Southern<br>Ocean     | Southern<br>Ocean<br>(40-60 °S) | Southern<br>Ocean<br>(> 60°S) |
|---------------------------|----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|---------------------------------|-------------------------------|
| Mediterranean Sea         |                      | 2.0x10 <sup>-21</sup> | 2.7x10 <sup>-32</sup> | 1.1x10 <sup>-23</sup> | 4.3x10 <sup>-26</sup> | 8.5x10 <sup>-29</sup> | 5.4x10 <sup>-23</sup>           | 2.5x10 <sup>-22</sup>         |
| Indian Ocean              | 6316                 |                       | 1.8x10 <sup>-07</sup> | 5.9x10 <sup>-09</sup> | 0.00256               | 2.3x10 <sup>-05</sup> | 0.00025                         | 0.00195                       |
| Atlantic Ocean            | 2708                 | 27108                 |                       | 0.01796               | 0.08934               | 0.2794                | 0.3995                          | 0.3329                        |
| North Atlantic            | 854                  | 8272                  | 9119                  |                       | 0.00043               | 0.00163               | 0.00534                         | 0.00432                       |
| South Atlantic            | 1853                 | 18835                 | 16229                 | 4979                  |                       | 0.4488                | 0.454                           | 0.618                         |
| Southern Ocean            | 3754                 | 31744                 | 29924                 | 9315                  | 18841                 |                       | 0.906                           | 0.8618                        |
| Southern Ocean (40-60°)   | 2705                 | 20475                 | 19369                 | 6078                  | 12059                 | 22073                 |                                 | 0.8003                        |
| Southern Ocean (> 60°S)   | 1049                 | 11269                 | 10555                 | 3237                  | 6782                  | 12211                 | 7793                            |                               |



**Fig. S2. Correlation between latitude and fiber concentration**. Fiber concentrations (fibers·1<sup>-1</sup>) as a function of latitude (°) over the entire corrected dataset used in this study, excluding samples from the Mediterranean Sea (n = 808 samples). Spearman's correlation coefficient ( $r_s$ ) and P value are shown in the top-right corner. The vertical dashed line corresponds to the equator. Samples > 25 fibers·1<sup>-1</sup> (n = 5) are not shown for clarity.



**Fig. S3: Length and diameter of the fibers collected in blank and seawater samples**. The length (A) and diameter (B) of all fibers measured in the Southern Ocean (n = 1000), Atlantic Ocean (n = 338), Mediterranean Sea (n = 336), Indian Ocean (n = 342) and in blank samples (n = 161). Boxes show 25-75 percentiles with median values as central lines. Whiskers denote upper and lower inner fences and values outside them are shown as circles. Fibers longer than 5 mm (A) and thicker than 50  $\mu$ m (B) are not shown for clarity.

**Table S3: Mann-Whitney pairwise comparisons of fiber lengths and diameters.** Results of Mann-Whitney pairwise comparisons of (A) fiber lengths and (B) fiber diameters measured in the Southern Ocean (n = 1000), Atlantic Ocean (n = 338), Mediterranean Sea (n = 336), Indian Ocean (n = 342) and in the blank samples (n = 161). In both tables, raw *P* values (uncorrected Bonferroni significance) are shown above the diagonal and Mann-Whitney U below the diagonal. Significant pairwise comparisons (P < 0.05) are highlighted in yellow.

| A. Fiber lengths           | Southern<br>Ocean   | Atlantic<br>Ocean | Mediterranean<br>Sea  | Indian<br>Ocean | Blanks                |  |
|----------------------------|---------------------|-------------------|-----------------------|-----------------|-----------------------|--|
| Southern Ocean             |                     | 0.00050           | 2.6x10 <sup>-10</sup> | 0.04367         | 0.2070                |  |
| Atlantic Ocean             | 147620              |                   | 0.01777               | 0.2073          | 0.3060                |  |
| Mediterranean Sea          | 129315              | 50792             |                       | 0.00039         | 0.00511               |  |
| Indian Ocean               | 158519              | 54567             | 48413                 |                 | 0.9361                |  |
| Blanks                     | 75517               | 25667             | 22852                 | 27408           |                       |  |
|                            |                     |                   |                       |                 |                       |  |
| D Fibou di ana atama       | Southern            | Atlantic          | Mediterranean         | Indian          | Blanks                |  |
| <b>D</b> . Fiber alameters | Ocean               | Ocean             | Sea                   | Ocean           |                       |  |
| Southern Ocea              | n                   | 0.02356           | 5.7x10 <sup>-06</sup> | 0.3062          | 0.0735                |  |
| Atlantic Ocea              | n <sub>155131</sub> |                   | 4.1x10 <sup>-08</sup> | 0.00565         | 0.9423                |  |
| Mediterranean Se           | a 140281            | 42949             |                       | 0.00384         | 8.0x10 <sup>-06</sup> |  |
| Indian Ocea                | <b>n</b> 164678     | 50733             | 50089                 |                 | 0.02646               |  |
| Blank                      | <b>s</b> 73444      | 27100             | 20359                 | 24159           |                       |  |

Table S4: FTIR composition of the fibers analyzed in blanks and seawater samples. The number of fibers analyzed through  $\mu$ FTIR (*n*) and the relative polymeric composition (%) of all fibers extracted from blank and seawater samples collected in the main oceanic basins and sub-basins surveyed.

|                             | Cellulosics |        | Animal |      | Synthetic |           |         |       |               |        |
|-----------------------------|-------------|--------|--------|------|-----------|-----------|---------|-------|---------------|--------|
|                             | п           | Cotton | Others | Wool | Silk      | Polyester | Acrylic | Nylon | Polypropylene | Aramid |
| Mediterranean Sea           | 336         | 47.3   | 39.6   | 5.4  | 0.9       | 4.2       | 0.3     | 0.9   | 0.9           | 0.6    |
| Indian Ocean                | 324         | 51.2   | 33.6   | 7.4  | 0.3       | 7.4       | 0.0     | 0.0   | 0.0           | 0.0    |
| North Atlantic Ocean        | 226         | 46.5   | 32.7   | 13.3 | 0.9       | 4.9       | 0.9     | 0.9   | 0.0           | 0.0    |
| South Atlantic Ocean        | 188         | 50.0   | 24.5   | 17.6 | 0.5       | 4.8       | 2.1     | 0.5   | 0.0           | 0.0    |
| Southern Ocean<br>(40-60°S) | 696         | 52.7   | 24.2   | 13.9 | 0.6       | 6.9       | 0.4     | 0.9   | 0.1           | 0.3    |
| Southern Ocean<br>(> 60°S)  | 214         | 47.2   | 25.7   | 13.6 | 0.9       | 7.9       | 1.9     | 0.9   | 1.4           | 0.5    |
| All                         | 1984        | 50.0   | 29.5   | 11.6 | 0.7       | 6.2       | 0.7     | 0.7   | 0.4           | 0.3    |
| Blanks                      | 150         | 62.0   | 25.4   | 4.7  | 0.0       | 3.3       | 2.0     | 0.7   | 2.0           | 0.0    |

Table S5: Details of the dataset used in this study. Name of research cruise, oceanographic vessel, number of samples collected for each sampling method and the mesh size used during each survey.

| Research cruise                                                  | Vessel name                 | Geographical coverage                | Number of samples                  | Mesh size                                                       |
|------------------------------------------------------------------|-----------------------------|--------------------------------------|------------------------------------|-----------------------------------------------------------------|
| Antarctic Circumnavigation<br>Expedition (ACE)                   | R/V Akademik<br>Tryoshnikov | Southern Ocean & Atlantic<br>Ocean   | Sub-surface (188)<br>Surface (220) | 20 μm (70 samples)<br>37 μm (265 samples)<br>63 μm (73 samples) |
| ICHNUSSA 17                                                      | R/V Minerva Uno             | Central-Western<br>Mediterranean Sea | Surface (108)                      | 20 μm (78 samples)<br>25 μm (30 samples)                        |
| IIOE2 (2 <sup>nd</sup> International Indian<br>Ocean Expedition) | SA Agulhas II               | Western Indian Ocean                 | Surface (304)                      | 0.7 μm (73 samples)<br>25 μm (231 samples)                      |
| Marion Island Relief Voyage                                      | SA Agulhas II               | Cape Town to Marion<br>Island        | Surface (18)<br>Sub-surface (18)   | 25 μm (18 samples)<br>50 μm (18 samples)                        |
| SEAmester II                                                     | SA Agulhas II               | South East Atlantic                  | Surface (60)                       | 0.7 μm (20 samples)<br>25 μm (20 samples)<br>50 μm (20 samples) |

## Supplementary Data file (dataset\_suaria.xlsx)

**Description:** date, time, cruise name, ocean basin, latitude, longitude, raw and corrected fibers concentrations found in all samples (n = 916). Filtered volume, number of counted fibers, number of fibers analyzed, as well as the number of cellulosic, animal and synthetic fibers found in all samples are also provided in the data file.