
Reviewers' comments: 

 

Reviewer #1 (Remarks to the Author): 

 

The manuscript “Role of ferroelectric polarization during growth of highly strained ferroelectrics 

revealed by in-situ x-ray diffraction” by Rui Liu et al. presents a significant contribution to our 

fundamental understanding of the role of electric polarization in the growth process of epitaxial 

thin films. This work helps to fill a gap in studies of complex oxide multilayer growth and 

properties as the contribution of polarization coupling effects is often overlooked. 

 

The central claim of the manuscript is that the electric polarization state of an oxide layer (lead 

titanate, PTO) affects the growth rate, relaxation, and polarization domain structure of the layer 

(barium titanate, BTO) that is grown on top of PTO. The ferroelectric polarization state of PTO 

layers is controlled by PTO film thickness and temperature before BTO layer deposition. As 

coincidence does not imply causation, it has been important for the authors to present strong 

arguments that the observed changes in structure and properties of BTO films are caused by PTO 

polarization and not by temperature or strain coupling. I think that experimental data presented 

along with thermodynamic theory modeling are sufficient to support the main claim of the article. 

The weaknesses of the manuscript in my opinion are that (1) the work is narrowly focused on one 

system only with little or no discussion of the applicability of findings for other systems and 

materials and (2) modeling does not include electrostatic interactions between materials explicitly. 

 

I believe this work can be important and of great interest to a broad range of fundamental science 

and materials engineering researchers. I can recommend this manuscript for publication in Nature 

Communications provided the authors consider the following questions and comments: 

 

1) The manuscript in its present form is very narrowly focused on one system, BTO/PTO, and 

broader impacts of this research are briefly mentioned only at the very end of the article. I think it 

is important to consider other ferroelectric/ferroelectric systems in which the authors expect to 

find similar polarization-controlled growth effects. Also, I suggest the significance of this research 

to broader audience in the field of thin-film research is emphasized more at the beginning of the 

paper (and/or in the abstract). 

 

2) What is the origin of polarization-controlled growth? Generally, the film growth depends on the 

surface and interface energies. It could be useful to estimate the changes of the surface energies 

with polarization (and temperature) instead of using the Gibbs free energy. 

 

3) Can we expect to find similar polarization-controlled growth effects in multilayers including non-

ferroelectric layers? STO on PTO? ZnO on PTO? 

 

4) The authors assume for thermodynamic theory calculations that the spontaneous polarization of 

the PTO layer can be imposed on BTO and used to analyze the stability of the BTO layer that grows 

on PTO. In fact, it is more likely that polarizations in both BTO and PTO layers will be different 

from their thermodynamic equilibrium values of pure substances due to electrostatic polarization 

coupling. The total free energy of the system will be the sum of G(BTO), G(PTO), and an extra 

energy term due to electrostatic polarization coupling (see, for example, Okatan et al. PRB 79, 

174113 (2009)). Ideally, and this is especially important when the film thickness increases, the 

authors should consider adding coupling to their calculations and present the total free energy of 

the multilayer system instead of the energies of individual non-interacting layers. 

 

5) It has been predicted that the electrostatic coupling is weaker in thicker ferroelectric layers. For 

instance, a transition from strong to weak coupling in BTO/PZT (Salev et al. PRB 93, 041423R 

(2016)) in the range of film thicknesses between 10 nm and 30 nm leads to different polarizations 

(close to single-layer polarization values) in different layers. Could it be that the BTO layer 

relaxation transition in films thicker than 25 u.c. (Fig. 6 in the manuscript) is related to the 



coupling transition that can only occur when the substrate (PTO) is ferroelectric? 

 

 

 

Reviewer #2 (Remarks to the Author): 

 

This is a very interesting paper that describes experiments demonstrating that the ferroelectric 

polarization of thin PbTIO3 layers can have a significant effect on the growth behavior and 

subsequent room T properties of BaTiO3. The authors demonstrate convincingly that the 

polarization magnitude of the PbTiO3 layer is responsible for this interesting behavior. Although I 

see one problem with the paper (described in the following), overall I feel that the study presents 

interesting and potentially important information of broad general interest. Thus, I strongly 

support publication of the paper in Nature Communications after editing to address the following 

issue. 

 

The one concern I have is that the model described starting in the bottom paragraph of page 9 

indicates that stripe domains in the PbTiO3 layer play a significant role in controlling the domain 

structure of the BaTiO3. They cite a paper by Fong et al. (ref 9) as evidence that the thin PTO 

layers form 180° stripe domains. However, it should be noted that the results described in ref. 9 

were for films grown directly on SrTiO3 substrates. Subsequent studies by that same group found 

that films grown on conducting SrRuO3 layers on STO are monodomain, since the SRO layer 

provides electrical compensation at the lower PTO interface (see Fong et al. PRL 96, 127601 

(2006)). Since the PTO layers in the current study were grown on conducting SRO layers, they are 

very unlikely to have 180° stripe domains. The authors need to modify the manuscript to take this 

into account. 

 

 

Reviewer #3 (Remarks to the Author): 

 

Review of Liu et al, 

"Role of ferroelectric polarization during growth of highly strained ferroelectrics revealed by in-situ 

x-ray diffraction" 

 

The primary result of this paper is the intriguing observation that if BaTiO3 (BTO) is sputter-

deposited on a polarized interface, the growth rate unexepectedly is lowered in a systematic way 

based on the polarization strength at the surface. If the surface is tuned to be non-polar, then the 

growth rate is constant as expected. As noted by the authors, this points towards exciting 

additional ways to engineer ferroelectric thin films materials properties during growth. 

 

I agree that this is an interesting and novel observation and would be of interest to others in the 

community, although I apologize in advance to the authors that I do not recommend publication of 

the paper in its current form. 

 

The authors performed a set of experiments that tuned the polarization strength at the surface by 

using ferroelectric properties of specially prepared heterostructure substrates created with a 

ultrathin layers of coherently strained PbTiO3 (PTO) on top of 20nm SrTiO3 epitaxial on top of 

SrTiO3 (100) crystal substrate. At a range of temperature around the typical growth temperatures 

for the BTO, the PTO undergoes a phase transition from paraelectric or ferroelectric, and the 

magnitude of the polarization in the ferroelectric phase depends on temperature and thickness of 

the underlying PTO film. 

 

The authors show a plausible and reasoned argument that suggests this unanticipated effect is not 

due to details of sputter deposition process (such as the changing proportion of neutral/ionized 

BTO subspecies with sputtering conditions) but might be explained using a thermodynamic 

argument based attachment of BTO unit cell (uc) if it is required to be in a polarized versus un-



polarized state. 

 

In addition, there are several secondary complications which they also documented during their 

experiments. These are all related to the significant strain relaxation unavoidably occurring during 

their depositions as the BTO film becomes thicker than about 10-15 nm. I note that strain 

relaxation could be expected to have an effect on growth rate, although one might assume that 

deposition is 'easier' when the film is relaxed closer to the bulk lattice parameters than when 

species are trying to maintain a coherently strained lattice. If this had an effect on growth rate, it 

would be opposite to what is observed in this paper. 

 

They observe that the strain relaxation in the BTO film growth is suppressed somewhat for a BTO 

film grown on a polarized surface, coincident with the growth mode of BTO presenting a more 

smooth or layer-by-layer aspect on the polarized surface, but the growth mode is rather rough on 

the un-polarized surface. (See Supplemental Figure 6 and 7) The authors note that these two 

aspects are correlated and also suggest that the PTO polarization (which is expected to enhance 

tetragonality in the BTO) also helps the BTO maintain coherency for slightly thicker films. 

 

I am very interested in the results and their interpretations. 

 

Unfortunately, while I believe the authors have a careful and systematic set of experiments and 

have thoughtfully combined many techniques and supporting characterizations that may provide a 

complete picture to themselves, I also had a overly hard time parsing through this paper due to its 

limitations. 

 

The presentation of the work is disorganized and in places, sloppy. I do not recommend the 

publication of this work in its current form. I suggest that the authors take the time to tighten up 

the organization, check their statements for precision and clarity, check their figures and 

descriptions of their methods for accuracy. 

 

While the following is not exhaustive, I have outlined some of the issues that I puzzled over. If I 

have misinterpreted some of the experiments, that is consistent with the issues I had in working 

with this paper in its current form. 

 

A) What are the implications or issues of measuring a growth rate that may be varying over time?: 

 

Fig 1 shows the primary proof of the assertion of the BTO growth rate decreases with increasing 

surface polarization. As far as I can tell from the paper, I assume that the growth rates must have 

been (?) determined by sputter depositing an approximately 20nm BTO film, then knowing the 

time and measuring the thickness via XRD (Supplemental Fig 1) gives the growth rate. 

 

This protocol would give the *average growth rate* over 50 unit cells of the 20 nm BTO film (from 

coherency to partically or fully relaxed). Note that different systems shown spend different 

amounts of time in various stages of relaxation that depends on the thickness of PTO underlayer 

and the growth temperaure. 

 

Consider the comparison growth 'rate' for the 50nm BTO/PTO superlattice on SRO(?)/STO. I would 

assume that the 1st 3 unit cells of BTO grown on the 1st 3unit cells of PTO on the 'virgin' SRO/STO 

substrate), should act *identically* (SAME GROWTH RATE) to the 1st 3 unit cells of the 20nm BTO 

film grown on a 3uc PTO/SRO/STO substrate. The average growth rate, however, as documented 

in the figure, ends up completely different. 

 

In the subsequent synchrotron experiments, the authors note that they measured the growth rate 

from the CTR oscillations at the BTO (0 0 1/2) position (Supplemental Fig 6). This could distinguish 

the rate for the 1st few unit cells (before significant relaxation) and isolate it from an average. 

 



Were the in-situ synchrotron xray measurements consistent with the growth rates and trends 

shown in Figure 1? In particular, what are the rates for the first few BTO unit cells before 

relaxation complicates things? 

 

It is possible that these calibration growths were only done for a few samples (in order to set the 

sputtering conditions to get roughly the same growth rate in the new chamber as the in-lab 

experiments?). Perhaps the desired data doesn't exist, but that wasn't clear from the descriptions 

of methods. 

 

B) Supplemental Figure 1 - the x-axis is not labeled (sloppy): 

It is noted that the plot is from theta/2theta XRD scan, but is the x-axis listing the theta or 

twotheta values? Also why not label some of the features - I assume the peak is a resolution 

broadened STO(?) 001. I calculated fringe oscillations on this curve that the SRO and the BTO 

films are each closer to 10nm rather than the 20nm stated, but I could be mistaken. 

 

C) Inconsistency in domain size in AFM images and the x-ray results (micron compared to 30nm 

domains): 

Figure 3 shows piezo-AFM, with ferroelectric domain sizes being micron or sub micron. Diffuse 

scattering in Figure 4 shows domain sizes in these films should be approximately 20-60nm, or 

basically about 30nm at end of growth. 

1) Why are there only sub-micron/micron size domains in the p-AFM and no sign of the finer 

domain structure? 

2) If the domains coarsen that significantly when the samples are cooled, is this consistent with 

the x-ray results? (as the samples are cooled further, if the domains coarsen, the diffuse 

scattering would crawl back under the CTR. Was this observed? 

 

D) Inconsistency in the calculation of the domain size in Figure 4: 

Although the images are highly saturated in order to help show the diffuse scattering, in Figure 4a) 

the 3uc 300C image shows clear maxima in the diffuse scattering at about 0.01 inverse angstroms 

from the CTR. This is a periodicity of about 60 nm (600 angstroms = 2pi/.01). Assuming diffuse 

peak is from correlations from ~1up/~1down domain periodicity, then each up or down domain 

itself about 30nm. These images are on 10nm thick films, or about 25 unit cells. However, In 

Figure 4b, it suggests the automatic fitting procedure of the domains gave a domain size of 25nm 

which seems low compared to the image even despite the graphical estimations I did on the 

figures. 

 

To help with showing more features in the colormap, plot log(I) instead of Intensity. If intensity 

colormap is log(I), then that should be noted explicitly, right? 

 

E) Inconsistency in Supplemental Figure 7 (sloppy?): 

In supplemental figure 7a and b, the curves that are shown by the red dots in a and b should be 

identical since they are the identical sample [4uc PTO at 540C]. They are not identical. Is this in 

error? If these are nominally identically prepared samples but two different experimental runs, 

then it also gives some indication of reproducibility and should be taken into account in other 

aspects of the work. 

 

F) (unclear or rationale unclear): 

In the preparation of the underlying heterostructures (n uc PTO/20nm SRO/STO(100) it was 

implied that each ultrathin layer of PTO was grown at different temperatures (based on its 

calculated Tc?) ("ultrathin PTO films were grown at temperatures in the vicinity of the ferroelecric 

phase transition temperature") , which would be a very odd temperature to grow the PTO 

underlayer rather than creating identically grown heterostructures and only varying the 

subsequent temperatures in the BTO growths, however, perhaps I didn't understand the rationale 

or misinterpreted the statement. 

Wouldn't using similar temperature and conditions be rather critical in creating as similar a surface 



morphology of the ultrathin PTO? 

 

G) Supplemental Figure 1 as shown adds to reader confusions rather than illuminates: 

This figure showing the CTR's for 3 samples grown to approximately 20nm. There is no significant 

difference in total final thickness and thus growth rate is roughly constant, despite the fact that 

they cover the three temperatures below/at/above the calculated TC of the 3uc PTO underlayer 

substrate. Initially this figure confused me as being inconsistent with the authors claims that the 

phase transition would affect the rate. Then I noticed that Figure 1 in the paper similarly shows NO 

significant change in growth rate for this particular sample at those particular temperatures). 

 

Wouldn't it be useful to add one further temperature for comparison or show different sample that 

actually has a growth rate difference to help reader visualize the experiments better. 

 

Or explain to reader more clearly what they are supposed to be learning or visualizing from this 

figure. 



Reviwer #2
The major claim of this manuscript is that computational performance of recurrent neural
networks is not necessarily maximized at their critical state, as opposed to the often
reported cases. Through the investigation of the temporal parity check problem where
the task complexity can be changed, the authors show that the criticality is beneficial
for complex computational tasks but not for simple ones. After demonstrating that the
distance to the critical point can be controlled by the single parameter (meaning the
level of external inputs Kext) in the small recurrent neural networks emulated with the
neuromorphic device (BrainScaleS 2), the relationship between the dynamical behavior of
the network (i.e. how close to the critical state) and the task performance is examined.
Further the task-independent information-theoretic measures are used to characterize the
computational properties of the recurrent neural networks. This manuscript deals with
the challenging topic (i.e. the relationship between dynamics and computational ability in
neural networks), which may attract much interests particularly from the communities
of nonlinear physics, neural networks, and neuromorphic hardware. The methods are
technically sound and the texts are well written.
We would really like to thank the reviewer for the interesting and valuable
comments which significantly improved our manuscript.
Major comments:

1. The claim of this manuscript is based on the results for the specific task (the parity
check problem). The complexity of this task is mainly related to the length of
the memory in the computational model, but other factors such as nonlinearity are
also involved in task complexity in general. To deduce the general statement as in
this manuscript, other benchmark tasks for evaluating the performance of reservoir
computing models should be tested and consistent results should be shown. In other
words, I feel that the claim is too generalized for the given computational results.
We thank the reviewer for this valuable suggestion. We added two types of
tasks: One which is more simple than the non-linear parity task, namely a
sum task (Fig. 5a). The other one is more challenging because the goal is to
read out the parity/sum from a very small set of neurons (Figs. 5c and 5d).
These two tasks are the most reasonable extensions we could come up with.
Keeping in mind that both, the input as well as the activity in the network are
binary, classical non-linear tasks like NARMA are not meaningful. Therefore,
the parity task seems to be the most general non-linear task. We could only
make it more difficult by restricting the input to the readout neurons. We
could not imagine a task with precise and continuous control of non-linearity
operating on binary inputs, but would welcome any ideas by the reviewer.
To detail the two new tasks, it turns out that especially non-linear tasks profit
from critical dynamics. Further, the non-linear information about the stimulus
is only globally available in the network response if dynamics are critical.
This nicely demonstrates how spatio-temporal correlations introduced by
critical-like dynamics can be exploited for actual computation (lines 252–304).

2. The significance of the use of the emulator with the existing neuromorphic circuits is
not clear. The same experiments can be done using software simulations. In fact,
some results (Fig.3) are based on software simulations. In addition, the readout
from the emulator outputs (linear regression in the parity check task) is done using
software computation. What is the essential merit of the use of the emulator only in
a part of the whole computational system? If thermal noise is essential, how does it
affect the results?



The presented experiments can in principle be performed using software
simulations. In the control software simulations, we checked the validity
of our hardware implementation and the ability to scale to larger system
sizes. However, the neuromorphic chip is about a factor 100 faster when
using only N = 32 neurons. To give numbers, a single plasticity experiment
with a duration of 600 s biological time is simulated in 570 s in Brian 2, but
emulated in only 6 s on the neuromorphic chip (including IO and network
initialisation). We added these number to our manuscript (line 193–207) to
underpin the benefit in terms of emulation speed. Apart from this speedup, the
implementation on the neuromorphic chip is a major breakthrough itself. This
breakthrough is important scientifically, because when running such detailed
networks as classical simulations, the computational overhead scales with
O(N2) due to the all-to-all connectivity and synaptic plasticity on conventional
hardware. For the neuromorphic system, the execution time is independent
of the system size N (thus constant), as long as the network fits on the chip.
For details we referenced the work of Wunderlich et al. 2018 in the lines
132–135 in the main manuscript. In this work, the power consumption as
well as the execution speed is quantified.
In general, the readout could also be implemented on the neuromorphic chip
by making use of the plasticity processor. This would however involve major
effort (e.g. fixed-point precision) which we would like to postpone to future
projects.
Noise seems to be not that essential when comparing the results obtained with
the neuromorphic chip and with software simulations for N = 32. On the
one hand, thermal as well as parameter noise put stability at risk and have
therefore to be compensated. On the other hand, both forms of noise might
help to avoid pathological synchronization of neural firing. The investigation
of the impact of noise especially on larger systems is an interesting research
topic that we are currently following up.

3. I have a concern about a lack of quantitative correspondence between the information-
theoretic measures and the computational performance. The information-theoretic
measures change approximately monotonically as in Fig.6, but the task performance
does not as in Fig.5(a)-(b). It seems to be difficult to tune the input Kext/N at the
optimal value for maximizing the computational performance only from the analysis
of the information-theoretic measure. For a given task with a given complexity, what
is the strategy to set the optimal value of input Kext/N?
There are two aspects for considering information theory. First, criticality has
been claimed to maximize information capacity. Indeed, we find that our net-
works enfold their maximum capacity at the critical point (e.g. Fig. 8). Second,
it seems to be natural to use information theory to translate task-dependent
performance. Here, the lagged mutual information between neuronal activity
and the stimulus is informative for the transition from task-independent to
task dependent considerations. From Fig. 7, time-scales could be inferred: To
solve the 5-bit parity task, the network needs to memorize 5ms of the input
where the highest Kext shown in Fig. 7a causes highest information about the
input. In contrast, the 25-bit parity task requires memory of about 25ms.
Here, the network with lowest Kext in Fig. 7a leads to highest information.
We rewrote the manuscript accordingly (lines 104–111 and 510–515).



Minor comments:

1. Page 2, model overview. What is the reason for using the small-scale (N = 32)
recurrent neural networks? Is there any physical constraint of the emulator or is it
possible to perform the same emulation with a larger-scale system? It is better to
mention this point.
In brief the system has only 32 LIF neurons. In detail, due to the analog
implementation, the number of neurons is limited to the number of available
neuron circuits. We tried to clarify this by rephrasing the first sentence in the
model overview paragraph in the lines 114–117. Future version of the chip
will feature 512 neurons.

2. Page 3, left column. The text mentions figure 2a and then figures 4a, 4b, and
4d. It is a little bit confusing. The indication of figures should be in the order of
appearance.
We agree with the reviewer that the figure numbering is confusing at this
point. We accordingly referenced the figures 2 and 3 as a whole in the lines
150–155 as both of them cover the analysis of neural avalanches and the level
of detail is not required.

3. Page 4, left column. The reference [50] is not called liquid state machine. It is
called echo state networks. This citation is misleading. It is also better to mention
physical reservoir computing.
We are aware of the clash of nomenclatures. We had stuck to the nomenclature
of Wolfgang Maass, but would also prefer more neutral terms. Therefore, we
replaced liquid state computing with reservoir computing.

Overall, I feel that this work is worth publishing after revisions taking into account the
above comments.



Reviewer #3
In this paper, the Authors investigate the relation between criticality and task-performance.
To achieve some simulations, they implemented a SNN in hardware neuromorphic chip.
They performed several simulations showing that simple tasks are suffering from criticality.
Tuning the input force, the system can be closed to criticality or far depending the
complexity of the studied tasks. This paper is well written and clear to read. However the
main thesis of this paper is to explain that criticality is not good for simple tasks. This is
quite interesting and then a tuning of the state of the network depending applications is
a good improvement. However, in my opinion, I am not sure this conclusion is a big
ground-break in this field.
It is a common belief that criticality is beneficial for information processing. We
clearly show that this is not the case for simple tasks, although criticality maximizes
abstract computational properties. As this belief is common in neuroscience and
other fields, we think that our work is of interest for the broad readership of
Nature Communications.

To strengthen our point further, we added additional tasks and also showed the
dynamics of switching the working point of our networks as suggested by the
reviewer.
I have several comments:

1. As you use BrainScaleS 2 prototype which can perform high number of neurons,
why are you using just 32 neurons? In other simulations, why are you using Brian
2? And not keeping on with BrainScaleS 2? You wrote: as the physical system
at hand is of limited, what is the limitation? It could be better to use the same
tool for all experiments and also to enlarge the size of the simulated network. In
discussion part, you said that analog neuromorphic devices (like BrainScaleS) have
some internal noise. In that case, the simulation of the 32 neurons in hardware and
simulations should present some differences (even minor ones). Could you compare
them? To summarize, I do not understand in this work the need of a hardware
neuromorphic system as you work with few number of neurons and you don’t need
real-time or accelerated time.
In brief, getting the neuromorphic chip to run stably is a achievement in itself.
Our results will be highly valuable for future chips.
First, we would like to clarify the hardware constraints: Currently, high
neuron counts are only available for the BrainScaleS 1 system which lacks
a plasticity processor. The neuromorphic chip used in this work is a small
prototype of the BrainScaleS 2 platform with only 32 LIF neuron circuits. A
full size version with 512 LIF neurons will be available in the future. In order
to clearly delimit from the large BrainScaleS 1 system, we added a photograph
of the small prototype setup in Fig. 1a and a footnote on page ii containing
information about the future system.
Checking for finite-size scaling is a basic requirement in any criticality analysis.
To perform finite-size scaling with more than N = 32 neurons, we had to
utilize software simulations (Brian 2). Moreover, these simulations served as
control experiments to validate our hardware implementation. We tried to
clarify this by revising the lines 180–182 in the main manuscript.
In our setting, the accelerated time has greatly helped us to collect large
amounts of data timely. We needed large amounts of data for two reasons:
First, information theory requires sufficient statistics. Second, for the long-
lasting adaptation phase of critical systems real-time emulation would be



lengthy. To give numbers, a single plasticity experiment with a duration
of 600 s biological time is emulated in only 6 s on the neuromorphic chip
(including IO and network initialisation). Further, we used the aforementioned
neuromorphic chip as a case study for possible usage scenarios of noise affected
analog neuromorphic systems. We included a paragraph dealing with the
execution time in the lines 193–207 of the main manuscript.
The results from the neuromorphic chip and the software simulations show
only minor differences for N = 32; the estimated cutoff parameter and the
critical exponents are comparable. Thermal, as well as fixed-pattern noise
might be helpful to avoid pathological synchronization of neural firing. The
investigation of the impact of noise especially on larger systems is an interesting
research topic that we are currently following up.

2. You said that with low degree of input, the network is closed to criticality. However
on Figure 2 d) it seems that with very low input the % decision decreases. Could
you explain it? Same questions for Figure 5 a) and b) with low input Kext/N
We thank the reviewer for the valuable comment. For low values of the input
Kext the networks tend to get unstable most likely due to the small system
size. Because of this, we were not able to get closer to the critical point.
Alternatively, the distance to criticality could equally be controlled by scaling
the input rate where we observe a similar behavior, but for different values
of Kext (cf. supplementary material, Figs. 3 and 4). Here, the characteristic
decrease when crossing the critical point can also be observed. We added this
information in the lines 174–177 in the manuscript.

3. You are using LIF neurons, do you have similar results with more complex neurons?
As Brainscale 2 can simulate multi-compartmental neurons, it could be nice to try
if the neural dynamics change and if criticality are similar. Why did you choose this
number of neurons?
Indeed, it would be interesting to look at more complex neuron models with
additional mechanisms as adaptation or multi-compartment features and
their effect on critical-like dynamics. However, the used prototype lacks the
aforementioned features and implements LIF neurons. As Adex (adaptive
exponential) neurons with multi-compartment option are only scheduled for
the full-size BrainScaleS 2 chip, we had to stick to the LIF neuron model.

4. About STDP influence in the discussion part, how could you improve this part as
full STDP (depression and potentiation) is useful for a lot of applications?
Actually, our rule features both, depression by anticausal spike pairings as
well as unspecific potentiation. However, the potentiation is implemented by a
positive drift of synaptic weights and not by causal spike pairings. Standard
STDP causes a bimodal weight distribution and thus instabilities. We think
that our rule represents an elegant way to circumvent the aforementioned
observation as we have depression and unspecific potentiation. However, it
is not fully clear yet whether one of the STDP variants has advantages in
terms of applications. We clarified that by adding underbraces to Eq. 7 in the
methods, specifying each term.

5. For neural avalanche, how do you choose the bin size (δt)? Reducing or increasing
it have influence on the results?
The bin size is an important parameter for the evaluation of neural avalanches
and should be mentioned in the result section. Specifically, we stick to the
common choice, and use the mean inter-event interval. We added this detail
directly to the result section in the lines 164–167. The concerns of the reviewer



regarding the binsize are absolutely right, the dependence of the distribution
of neural avalanches on the binwidth is an intrinsic problem. Because of
this, we had tested also different binsizes and found similar results. More
importantly, we considered all the other measures which are more robust
(Wilting & Priesemann 2018). We decided to still include the distribution of
neuronal avalanches as standard method to quantify the distance to criticality.

6. You analyze all data after STDP. What happens if simulations are done at beginning
of STDP process, middle and end? Is there an influence on the criticality following
the STDP rule and then on the performance?
The investigation of the temporal evolution is an interesting research direction.
We decided to include the case study proposed by the reviewer in comment 7,
where we switch the degree of the input and monitor dynamics. We would
like to refrain from an analysis starting from an initial state where all synaptic
weights are zero as the activity is rather epileptic before convergence of synaptic
weights (mainly due to discrete synaptic weights and device mismatch). For
these dynamics, many of the considered measures are ill-defined. The network
activity is much more well behaved when switching the degree of the input.

7. In my point of view, this paper can be improved adding one case study. For instance
solving two different tasks (one simple, one complex) with the same SNN but with
tuning parameters and input strength (to switch from criticality or not) during the
simulation.
We included a case study where we switched Kext for a single SNN and
evaluated task performance after various update steps (Fig. 6). In more detail,
we selected two Kext leading to good performance for either the simple or
complex parity task and switched between them. As implementation, we only
thought about a hierarchy of networks, each of which tuned to a different
Kext, but really liked the idea by the reviewer and now discuss it as well (lines
305–331).
Moreover, we added two further types of tasks. For details we refer to
comment 1 of Reviewer #2.



REVIEWERS' COMMENTS: 

 

Reviewer #2 (Remarks to the Author): 

 

The authors almost appropriately revised the manuscript according to the comments from the reviewers.  

In particular, the additional results on the computational performance under temporally switched inputs  

are interesting. 

 

The two newly added tasks are not so complex compared with other practical temporal tasks.  

Any non‐binary information can be in principle coded by binary information at a certain precision, and so  

the neuromorphic system can handle more complex tasks. I would like to know why the authors do not  

challenge such tasks. If the parity problem is the most difficult nonlinear task that can be performed with  

spiking neural networks, how are the studies on computational performance of spiking neural networks  

developed to the level useful for understanding human brain capable of more complex tasks? 

 

The authors claim that the scale of the neural networks used for the emulation is small because of the  

limitation of the neuromorphic system, BrainScaleS 2. I don't know whether the emulation with this  

small‐scale neuromorphic system is really significant or not. 

 

 

 

Reviewer #3 (Remarks to the Author): 

 

In this paper, the Authors investigated the relation between criticality and task‐performance. For some  

small neural network (up to 32), they performed simulations on hardware neuromorphic chip (Brainscale2). 

They performed several simulations showing that simple tasks are suffering from criticality. Tuning the  

input force, the system can be closed to criticality or far depending the complexity of the studied tasks. 

This paper is well written and clear to read. 

The authors answered to most of my comments and improved the paper adding two additional tasks and  

several detailed explanations including the limitations of the hardware neuromorphic board. 

 

Minor revisions: 

In Introduction part, the physical implementation part (line 78‐79) referred to old work. I recommend to  

add also some recent works as: 

S. Furber, D. Lester, L. Plana, J. Garside, E. Painkras, S. Temple, A. Brown, Overview of the SpiNNaker system 

architecture, IEEE Transactions on Computers, 62:12, 2454‐2467, 2012 

P. Merolla et al., A million spiking‐neuron integrated circuit with a scalable communication network and  

interface, Science, 345:6197, August 2014 

F. Khoyratee, F. Grassia, S. Saighi, T. Levi, Optimized real‐time biomimetic neural network on FPGA for  

bio‐hybridization, Frontiers in Neuroscience, 13‐377, 2019 

G. Indiveri et al., Neuromorphic silicon neuron circuits, Frontiers in Neuroscience, 5:73, 2011 



Reviewer #2 

The authors almost appropriately revised the manuscript according to the comments from 
the reviewers. In particular, the additional results on the computational performance 
under temporally switched inputs are interesting. 

The two newly added tasks are not so complex compared with other practical temporal 
tasks.  Any non-binary information can be in principle coded by binary information at       
a certain precision, and so the neuromorphic system can handle more complex tasks. I 
would like to know why the authors do not challenge such tasks. If the parity problem is 
the most difficult nonlinear task that can be performed with spiking neural networks, how 
are the studies on computational performance of spiking neural networks developed to the 
level useful for understanding human brain capable of more complex tasks? 

There must be a misunderstanding. If the network is able to perform on the XOR 
or the n-bit parity task (and sum, n-sum, OR), then it can in principle do any 
other task. However, computational capacity in our case is limited, because the 
prototype chip is still quite small. For completeness, we now show results for the 
NARMA task as well (Fig. 5e). As expected the network shows fair performance 
on the NARMA task, given its size. Moreover, as shown previously (Boedecker et 
al, and Bertschinger & Natschläger 2004), the performance on the more complex 
NARMA task is better closer to criticality. 
The authors claim that the scale of the neural networks used for the emulation is small 
because of the limitation of the neuromorphic system, BrainScaleS 2. I don’t  know 
whether the emulation with this small-scale neuromorphic system is really significant or 
not. 

First, we want to clarify that the used neuromorphic chip is a prototype of the 
BrainScaleS 2 system. A full size version with 512 LIF neurons will be available in 
the future. Our work represents a stepping stone to larger systems. With our work, 
we demonstrate the principles of how to use the analog neuromorphic systems – 
which are prone to noise (thermal as well as fixed-pattern) – and how they can be 
used for actual computation. These principles are applicable to networks of any 
size, and are therefore of general relevance. 



Reviwer #3 

In this paper, the Authors investigated the relation between criticality and task-performance. 
For some small neural network (up to 32), they performed simulations on hardware 
neuromorphic chip (Brainscale2). They performed several simulations showing that simple 
tasks are suffering from criticality. Tuning the input force, the system can be closed to 
criticality or far depending the complexity of the studied tasks. This paper is well written 
and clear to read. The authors answered to most of my comments and improved the paper 
adding two additional tasks and several detailed explanations including the limitations of 
the hardware neuromorphic board. 

Minor revisions: In the Introduction part, the physical implementation part (line 78-79) 
referred to old work. I recommend to add also some recent work. 

We would really like to thank the reviewer for the encouraging feedback. As 
suggested, we included the references named by the reviewer in line 79 in the 
main manuscript. In addition, we added further citations to cover a broad range 
of neurormophic devices that are currently being developed. 



REVIEWERS' COMMENTS: 

 

Reviewer #2 (Remarks to the Author): 

 

The authors addressed the previous comments and appropriately showed the results on additional 

experiments on the NARMA task. 

The revised manuscript can be accepted. 

 

 

 

 

 

Reviewer #3 (Remarks to the Author): 

 

The authors improved their manuscript and answered to my comments. 



Reviewer #2
The authors addressed the previous comments and appropriately showed the results on
additional experiments on the NARMA task. The revised manuscript can be accepted.
We would really like to thank the reviewer for the encouraging feedback and the
insightful comments.



Reviwer #3
The authors improved their manuscript and answered to my comments.
We would really like to thank the reviewer for the suggestions and the insightful
comments.


