Supporting Information

Table S1. Strains and plasmids used in this manuscript; related to Bacterial Strains and Growth Conditions in Methods section

Designation	Strain	Background	Purpose	Reference
		(resistance)		
ZMG01	WT EHEC	86-24 (StrR)	O157:H7 parent strain	Griffin et al., 1988
ZMG02	AgraR FHFC	86-24 (StrR)	argR deletion in 86-24	This study
ZMG03	AartP EHEC	86-24 (StrR)	artP deletion in 86-24	This study
ZMG04	AaraH FHFC	86-24 (StrR)	argH deletion in 86-24	This study
ZMG05	WT EHEC pACYC184 empty vector	86-24 (StrR CmR TetR)	WT EHEC complementation control	This study
ZMG06	$\Delta argR$ EHEC pACYC184 empty vector	86-24 (StrR CmR TetR)	$\Delta argR$ EHEC complementation control	This study
ZMG07	$\Delta artP$ EHEC pACYC184 empty vector	86-24 (StrR CmR TetR)	$\Delta artP$ EHEC complementation control	This study
ZMG08	$\Delta argR$ EHEC pACYC184 $argR$	86-24 (StrR TetR)	$\Delta argR$ EHEC with $argR$ complementation vector	This study
ZMG09	ΔartP EHEC pACYC184 artP	86-24 (StrR TetR)	$\Delta artP$ EHEC with $artP$ complementation vector	This study
ZMG10	WT C. rodentium	DBS770 (CmR)	parent strain	Mallick et al., 2012
ZMG11	$\Delta argR C.$ rodentium	DBS770 (CmR)	argR deletion in DBS770	This study
ZMG12	$\Delta art P C.$ rodentium	DBS770 (CmR)	artP deletion in DBS770	This study
ZMG13	WT <i>C. rodentium</i> pACYC184 empty vector	DBS770 (CmR TetR)	WT DBS770 complementation control	This study
ZMG14	Δ <i>argR C. rodentium</i> pACYC184 empty vector	DBS770 (CmR TetR)	$\Delta arg R$ DBS770 complementation control	This study

ZMG15	∆ <i>artP C. rodentium</i> pACYC184	DBS770 (CmR TetR)	$\Delta artP$ DBS770 complementation	This study
		$DD(770) (C_{11}, D, T_{1}, t, D)$		T1-:
ZMG10	$\Delta arg R C.$ rodentium pACYC184	DBS//0 (Cmk Tetk)	$\Delta arg R DBS / 10 with arg R$	This study
	argR		complementation vector	
ZMG17	<i>ΔartP C. rodentium</i> pACYC184	DBS770 (CmR TetR)	$\Delta artP$ DBS770 with artP	This study
	artP		complementation vector	
Designation	Plasmid	Background	Purpose	Reference
		(resistance)		
pZMG01	pACYC184 empty vector	CmR TetR	Parent complementation vector	NEB, Ipswich,
-			-	MA
pZMG02	pACYC184 argR	TetR	argR ORF cloned into CmR cassette of	This study
_			pACYC184	
pZMG03	pACYC184 artP	TetR	artP ORF cloned into CmR cassette of	This study
-			pACYC184	
pZMG04	pBAD empty vector	AmR	Parent protein expression vector	NEB, Ipswich,
-				MA
pZMG04	pBAD <i>argR</i>	AmR	N-terminally tagged <i>argR</i> expression	This study
-			vector	·

Table S2. Primers used in preparation of this manuscript; related to Bacterial Strains and Growth Conditions in Methods section

Primer	Sequencing
ler F	CGAGAGCAGGAAGTTCAAAGTG
ler R	ACACCTTTCGATGAGTTCCG
<i>escC</i> F	CTGAAGACAATGGCAAGTAATGG
escC R	ACTGCATTAAGACGTGGATCAG
escVF	GAGTGCAAAAGGAAAGCCAG
escV R	ATGATACCAGCAATAGCGTCC
<i>tir</i> F	GAGGGAGTCAAATAGCGGTG
tir R	ATCTGAACGAAGGCTGGAAG
<i>eae</i> F	TGGGATGTTCAACGGTAAGTC
eae R	TTTAACCTCAGCCCCATCAC
espA F	AGCTATTTGAGGAACTCGGTG
espA R	CATCTTTTGTGCCGTGGTTG
espB F	GGTCAAGGCTACGGAAAGTG
espB R	TCTTCAGCAAAGTCAGAGGC
<i>Stx2a</i> F	TGTCTGAAACTGCTCCTGTG
<i>Stx2a</i> R	GATATTCTCCCCACTCTGACAC
rpoA RTF	GTGACCCTTGAGCCTTTAGAG
rpoA RTR	ACACCATCAATCTCAACCTCG
infgama F	CAGCAACAGCAAGGCGAAA
infgama R	CTGGACCTGTGGGTTGAC
<i>stx2d</i> F	GTGGATATACGAGGGCTTGATG
stx2d R	CGAACCCGGCCACATATA
slc7a2 F	GTGAAGAGGTTCGGAATCCACA
slc7a2 R	CGTTAAAGCTGCAGAAACCCC
nos2 F	CCTCTTTCAGGTCACTTTGGTAGG
nos2R	TTGGGTCTTGTTCAGCCACGG
Gapdh F	TGTAGACCATGTAGTTGAGGTCA
Gapdh R	AGGTCGGTGTGAACGGATTTG

EHEC-artP-LR-F	ATGAGTATTCAATTAAACGGCATTAATTGCTTCTACGGCGCGCATCAGGCG
	TGTAGGCTGGAGCTGCTTC
EHEC-artP-LR-R	TTAGTGAGAGAGATAGTTTTTAAATGCTTCGGTTTGCGGCTCGGTAAAGCC
	ATATGAATATCCTCCTT
EHEC-argR-LR-F	CAATAACTGCCTTAAAAATTAAAGCTCCTGGTCGAACAGCTCTAAAATCGCTT
	CATACAGGTCTTTGA
EHEC-argR-LR-R	GAGCTAAGGAAGCTAAAATGCGAAGCTCGGCTAAGCAAGAAGAACTAGTTA
	AAGCATTTAAAGCATT
EHEC-argH-LR-F	CAATAACTGCCTTAAAAAATTACCCCAACCGCGCCCTTGCAAAAGCAATCGCC
EHEC-argH-LR-R	GAGCTAAGGAAGCTAAAATGGCACTTTGGGGGCGGGCGTTTTACCCAGGCAG
Citro-artP-LR-F	ATGAGTATTCAATTAAACGGCATTAACTGCTTCTACGGCGCGCATCAGGCGCTGTTCGATA
	TCACGCTGGATTGCCCGCAGGGCGAAACGCTGGTGTTGCGTGTAGGCTGGAGCTGCTTC
Citro-artP-LR-R	TTAGTGAGAGAGATAGTTTTTAAACGCTTCGGTTTGCGGGGTTGGCAAAGCAACCTGCATCG
	CCAAGCTCGACGATATGACCGTTTTCCATATACACGACGCATATGAATATCCTCCTT
Citro-argR-LR-F	ATGCGAAGCTCCGCTAAGCAAGAAGAATTAGTAAAGGCGTTCAAAGCGCTCCTTAAAGAA
	GAAAAATTCAGTTCCCAGGGCGAAATCGTCCTCGCCTTGCCAATAACTGCCTTAAAAAA
Citro-argR-LR-R	TTAGAGCTCTTGCTCAAACAGCTCAAGAATGGCTTCGTATAAGTCTT
	TTACCGTGAAGCCGTTCGCCGGGGTGGTGAAAATGGTGTCGTCGCCA
	GCAATGGAGCTAAGGAAGCTAAA
EHEC-artP F	ATGCCGACATTTATGCTCGCC
EHEC-artP R	GCTTCGGTAGCAAAACGAATGGT
EHEC-argR F	GACGCAGGCATATTTCTCAATAACG
EHEC-argR R	GCGCTAACTGTTTCAGTTGATACT
EHEC-argH F	TAACGGTATGCCGATGGGTACG
EHEC-argH R	GACTGATAATTGCTCACAGAAACGG
CR-artP F	ATGAGTATTCAATTAAACGGCATTAACTGCTTC
CR-artP R	TTAGTGAGAGAGATAGTTTTTAAACGCTTCGGT
CR-argR F	TTGATAACAATTAATTTACTTTT
CR-argR R	ATACAACTACGCTAAATCGCACAAAT
pACYC184 F	TTTTAGCTTCCTTAGCTCCTGAAAATC
pACYC184 R	TTTTTTAAGGCAGTTATTGGTGCCCTTAAACGCCTGG

set1_ler F169	GTTGACATTTAATGATAATGTATTTTACACATTAG
<i>set1_ler R_+155</i>	CTCAATTACACTTTGAACTTCCTGCTCTCG
set2_ler F372	CCTGTAACTCGAATTAAGTAGAGTATAGTG
set2_ler R102	CTATCAAATTAGGACACATCTATTTCATCAAAC
set3_ler F575	GGTTACTGTTCAGCTATTTGTCCCTTGTTCC
set3_ler R301	GCGTTTCTCTTTATAAGATAGATCTCATTGC
set4_ler F493	GTCCCACCTTAGCGCTAAGCACTTTTGAATCAC
set4_ler R768	GACGAGTATATATATCTATTAGCTGTTTCCC
set5_ler F693	GGAAACTTATTTTGGCCTGTATATAATGTGATG
set5_ler R967	GTCCGTTTTACTTGGCATCAGATCATCGCCG
set6_ler F_883	GCATCATATAGTGTCAATAATATACAAG
Set6_ler R_1229	GGCAACTTGAAAAGGGAAAGC
argI F	AACTGCAGCAGGCTGTTGA
argI R	CCTCTTAATGTCCTGCCGAT
Kan F	CCGGAATTGCCAGCTGGGGCG
Kan R	TCTTGTTCAATCATGCGAAACGATCC

Supplementary Figure Legends

Fig. S1. Heat map for non-LEE encoded genes, *in vitro* growth for WT EHEC, select virulence genes for WT and $\Delta argR$ EHEC in the presence or absence of arginine in high-

glucose DMEM. (A) Heat map showing the effect of arginine on non-LEE encoded genes and *recA* from WT EHEC grown in the presence (+arg) or absence (-arg) of 482 μ M arginine. (B) *In vitro* growth curve of microaerophilic grown WT EHEC in low-glucose DMEM in the presence (+arg) or absence (-arg) of arginine (482 μ M). (C) Western blot analysis of secreted protein EspA from WT, $\Delta argR$ EHEC. Experiments in C were performed in microaerophilic conditions using high-glucose DMEM with or without arginine, and samples were harvested in late log phase. Error bars represent standard error of mean (SEM). *P< 0.05, **P < 0.01.

Fig. S2. In vitro growth for WT, $\Delta artP$ and $\Delta argH$ EHEC and respective complement strains. (A) In vitro growth curve of microaerophilic grown WT or $\Delta artP$ or complement EHEC (complemented with artP gene on the pACYC184) in low-glucose DMEM with arginine. In vitro growth curve of microaerophilic grown WT or $\Delta argH$ EHEC in low-glucose DMEM with arginine (B) or without arginine (C).

Fig. S3. In vitro growth for WT and $\Delta argR$ EHEC and complement strains. Select virulence genes for WT and $\Delta argR$ EHEC in the presence or absence of arginine. (A) In vitro growth curve of microaerophilic grown or complement EHEC (complemented with argR gene on the pACYC184). (B) qRT-PCR analysis to compare the expression of *nleA* and *recA*

genes WT or $\Delta argR$ in low-glucose DMEM with arginine or without arginine. (C) qRT-PCR analysis to compare the expression of select virulence genes and (D) Western blot analysis of secreted protein EspB from WT, $\Delta argR$ and cpl EHEC in low-glucose DMEM without arginine.

(E) Western blot analysis of secreted protein EspB from WT without arginine and $\Delta argR$ with arginine. Error bars represent standard error of mean (SEM). *P< 0.05, **P < 0.01.

Fig. S4. ArgR is a regulator of LEE. EMSA of His-tagged ArgR and kanamycin probe (negative control), *argI* promoter probe (positive control), and six segments of the EHEC LEE1 regulatory region numbered from the proximal transcriptional start site.

Fig. S5. Arginine induces *Citrobacter rodentium* virulence *in vitro*. (A) qRT-PCR of LEE genes and Shiga toxin 2a, (B) Western blot analysis of secreted proteins EspB and EspA from WT *C. rodentium* grown in the presence (+arg) or absence (-arg) of arginine (482 μ M). (C) qRT-PCR analysis to compare the expression of select virulence genes and (D) Western blot analysis of secreted proteins EspB and EspA from WT, $\Delta argR$ and cpl *C. rodentium* (complemented with *argR* gene on the pACYC184). All experiments were performed in microaerophilic conditions using low-glucose DMEM, and samples were harvested in late log phase. Error bars represent standard error of mean (SEM). *P< 0.05, **P < 0.01, ***P<0.001.

Fig. S6. \triangle *ArtP Citrobacter rodentium* strain do not colonize lower intestine of mice. Each symbol indicates the value for an individual mouse 8 days postinfection. (A) Colonization in cecum, colon and stools of mice infected with either WT or \triangle *artP C. rodentium*. (B) Expression of *nos2* in colon of mice infected with WT or \triangle *artP C. rodentium* or gavaged with PBS. (C)

Survival curve of mice infected with WT or $\Delta artP$ C. rodentium. A total of n=10 mice per group were used for survival curve. (E) Histological score and (F) representation (10X) of colon eight days after WT or $\Delta artP$ C. rodentium infection. Error bars represent standard error of mean (SEM). *P< 0.05, **P < 0.01, ****P<0.0001.

Fig. S7. The role of dietary arginine in murine *C. rodentium* infection. Each symbol indicates the value for an individual mouse. (A) CFU in stools and (B) arginine levels in colon content of mice in either arginine minus or arginine plus diet infected with WT *C. rodentium* for four days. Error bars represent standard error of mean (SEM). *P < 0.05.

С

Α

Β

Bacterial attachment Hemorrhage Hyperemia Infiltration Epithelial integrity Hyperplasia Goblet cells Edema

