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SUPPLEMENTARY INFORMATION

A. Additional examples of mortality-ratio evolutions

FIG. S1. Mortality ratio estimates. Estimates of mortality ratios (see Eqs. (8) and (14) in the main text) of SARS-CoV-2
infections in different countries. The case fatality ratio, CFR, corresponds to the number of deaths to date divided by the
total number of cases to date. Another population-based mortality ratio is M0

p (t), the number of deaths divided by the sum of
deaths and recovereds, up to time t. The data are derived from Ref. [5].

In Fig. S1, we show additional examples of mortality-ratio estimates for Iran, South Korea, Spain, Germany,
Switzerland, and the United Kingdom. As in Fig. 1 in the main text, we observe that, by definition, the population-
based mortality ratio M0

p(t) is significantly larger than the corresponding CFR in all cases.

B. Solutions for τ1-averaged probabilities

Using the method of characteristics, we find the formal solution to Eq. (1):

P (τ, t|τ1) = δ(τ − t− τ1)e−
∫ t
0

(µ(τ−t+s,s|τ1)+c(τ−t+s,s|τ1))ds, (S1)
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which can be used to construct the death and cure probabilities

Pd(t|τ1) =

∫ t

0

dt′ µ(τ1 + t′, t′)e−
∫ t′
0

(µ(τ1+s,s)+c(τ1+s,s))ds

Pr(t|τ1) =

∫ t

0

dt′ c(τ1 + t′, t′)e−
∫ t′
0

(µ(τ1+s,s)+c(τ1+s,s))ds. (S2)

If we now invoke the functional forms of µ and c given in Eq. (4), we find explicitly

Pd(τ, t|τ1) =



µ1

µ1 + c

(
1− e−(µ1+c)t

)
τ > t+ τinc

0 τinc ≥ τ > τ1

µ1e
−c(τinc−τ1)

µ1 + c

(
1− e−(µ1+c)(τ−τinc)

)
τ > τinc ≥ τ1

(S3)

and

Pr(τ, t|τ1) =



c

µ1 + c

(
1− e−(µ1+c)t

)
τ > t+ τinc

1− e−ct τinc ≥ τ > τ1

1− e−c(τinc−τ1) +
ce−c(τinc−τ1)

µ1 + c

(
1− e−(µ1+c)(τ−τinc)

)
τ > τinc ≥ τ1.

(S4)

FIG. S2. Phase plot for P (τ > t, t) and I(τ > t, t). The regions delineating different forms for the solution (Eq. (S5)).
Here, we have included an incubation time τinc before which no death occurs. The solution for P̄ (τ, t) or I(τ, t) in the τ < t
region must be self-consistently solved using the boundary condition Eq. (10). At any fixed time, the integral of I(τ, t) over
t < τ ≤ ∞ captures only the initial population, excludes newly infecteds, and is used to compute D1(t), R1(t), and M1

p (t). To
compute D0(t), R0(t), and M0

p (t), we integrate across all infecteds (including the integral over t > τ >≥ 0 shown in magenta).

Finally, we can also find the τ1-averaged probabilities for τ ≥ t by weighting over ρ(τ1;n, γ). For example,

P̄ (τ, t) =


ρ(τ − t;n, γ)e−(µ1+c)t τ ≥ t+ τinc

ρ(τ − t;n, γ)e−ct τinc ≥ τ > t

ρ(τ − t;n, γ)e−cte−µ1(τ−τinc) t+ τinc ≥ τ > τinc

.
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FIG. S3. Density plots of I(τ, t) in the t − τ plane. Numerical solution of the equation for I(τ, t) in Eqs. (9) under the
assumption of a fixed susceptible size β1S = 0.158/day. (a) The density without quarantine monotonically grows with time t
in the region τ < t as an unlimited number of susceptibles continually produces infecteds. (b) With quarantining after tq = 50
days, we set β1S = 0 for t > tq, which shuts off new infections. Both plots were generated using the same initial density ρ(τ1)
defined in Eq. (7). In both cases, the density I(τ > t) is identical to P (τ > t) if the same ρ(τ1) is used and is independent of
disease transmission, susceptible dynamics, etc. (c-d) Probability-density functions (PDFs) of the number of infected I(τ, t) for
t = 0, 60 (b) without and (c) with quarantine. The blue solid line corresponds to the initial distribution ρ(τ ;n = 8, γ = 1.25)
(see Eq. (7)).

These solutions hold for the different regions shown in the phase plot of Fig. S2 and are equivalent to those for
I(τ > t, t). Corresponding expressions for P̄d(t) and P̄r(t) can be found and used to construct M1

p(t). Fig. S3(a)
shows the magnitude of I(τ, t) in the t − τ plane when we set S(t) = S constant (so that the first equation in
Eq. (18) does not apply) such that β1SS ≈ 0.158/day. In this case, the epidemic continues to grow in time, but the
mortality rates M0,1

p (t) nonetheless converge as t → ∞. In Fig. S3(b), we set β1S = 0 for t > tq to model strict
quarantining after tq = 50 days. We observe no new infections after the onset of strict quarantine measures. In both
cases (quarantine and no quarantine), we use ρ(τ ;n = 8, γ = 1.25) (see Eq. (7) in the main text) to describe the initial
distribution of infection times τ . As time progresses, more of the distribution of τ moves towards smaller values until
quarantine measures take effect (see Fig. S3(c) and (d)).

C. Effects of undertesting

Note that I(τ, t) in the SIR equations determines the dynamics of the actual infected population. However, (i)
typically only a fraction f of the total number of infecteds might be tested and confirmed positive and (ii) the testing
of newly infecteds may also be delayed by a distribution ρ(τ ;n, γ).

If positive tests represent only a fraction f of the total infected population, and the confirmation of newly infecteds
occurs immediately, the known infected density is given by I∗(τ, t) = fI(τ, t) where I(τ, t) is the true total infected
population. If testing of newly infecteds occurs after a distribution ρ(τ ;n, γ) of infection times, I∗(τ, t) = f

∫ τ
0
I(t−

τ + τ1, t)ρ(τ1;n, γ)dτ1.
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In our development of M0,1
p (t) and CFRd(t, τres) in the manuscript, we assumed the entire infected population was

tested and confirmed. Thus, M0,1
p (t) and CFRd(t, τres) were computed using f = 1 and more accurately represent the

mortality ratios of the population conditioned on being tested positive.

FIG. S4. Fractional testing. An example of fractional testing in which a fixed fraction f of the real total infected population
is assumed to be tested. The remaining 1− f proportion of infecteds are untested. Equivalently, if the total tested fraction has
unit population, then the total population of the untested pool is 1/f − 1. (a) At short times after an outbreak, the known
tested infected population has not yet resolved and is composed of deaths (gray), recovereds (green), and infecteds (red). We
assume that the untested fraction of infecteds (red) have mild or no symptoms, do not die, and can only recover (green). (b)
At longer times, the infecteds further resolve. The Mp(t) and CFR metrics that are based on only the tested fraction will
overestimate the true mortality fraction of all infected cases.

To estimate the mortality ratio of the population conditioned simply on being infected, we have to estimate the
larger number of recovereds that went untested. As shown in Fig. S4, the untested recovered fraction can be estimated
by assuming that the death rate for the untested infecteds is zero and by writing an SIR model without death for the
untested pool of infecteds

dS(t)

dt
= −S(t)

∫ ∞
0

dτ ′ β(τ ′, t)(I∗(τ ′, t) + Iu(τ ′, t)),

∂I∗(τ, t)

∂t
+
∂I∗(τ, t)

∂τ
= −(µ(τ, t) + c(τ, t))I∗(τ, t),

∂Iu(τ, t)

∂t
+
∂Iu(τ, t)

∂τ
= −c(τ, t)Iu(τ, t),

dR(t)

dt
=

∫ ∞
0

dτc(τ, t)(I∗(τ, t) + Iu(τ, t)), (S5)

where I(τ, t) = I∗(τ, t) + Iu(τ, t). The true mortality ratio is then straightforwardly defined by, for example,

M0
p(t) =

D∗0
D∗0(t) +R∗0(t) +Ru

0(t)
, (S6)

where

D∗0(t) =

∫ ∞
0

dτ

∫ t

0

dt′ µ(τ, t′)I∗(τ, t′), R∗0(t) =

∫ ∞
0

dτ

∫ t

0

dt′ c(τ, t′)I∗(τ, t′),

and Ru
0(t) =

∫ ∞
0

dτ

∫ t

0

dt′ c(τ, t′)Iu(τ, t′), (S7)

with analogous expressions for D∗1(t), R∗1(t), and Ru
1(t). At long times, after resolution of all infecteds, the untested

recovered population is

Ru
0,1(∞) =

(
1

f
− 1

)
(D∗0,1(t) +R∗0,1(t)), (S8)
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which yields the asymptotic true ratio M0,1
p (∞) = fM0,1

p (∞) as described in the Discussion and Summary. In this
simple rescaling to account for untested populations, we have assumed that all deaths come from the tested pool and
that the recovery rate c is the same in the tested and untested pools.

D. Influence of different transmission rates

In Fig. 3 of the main text, we observe that the population-level mortality ratio M0
p(t) approaches a plateau during

the initial exponential growth phase of an epidemic (i.e., for S(t) ≈ S0). If the number of new infections decreases
(e.g., due to quarantine measures), M0

p(t) starts growing until it reaches its asymptotic value M0
p(∞). Interestingly,

the pre-asymptotic values of M0
p(t) are smaller for larger infection rates β1 (see Fig. S5(a)). This counter-intuitive

effect arises because larger values of β1 generate relatively larger numbers of new infected which have a lower chance
of dying before τinc (see Eq. (4) in the main text). A similar effect occurs for non-delayed transmission (i.e., τβ ≈ 0).

FIG. S5. Population-level mortality for different infection rates. (a) The population-level mortality ratio M0
p (t) for

different values of β1 and an incubation time of τinc = 6.4 days. In the initial exponential growth phase of the epidemic
(i.e., S(t) ≈ S0), larger infection rates β1 lead to smaller values of M0

p (t). (b) We observe a similar effect for non-delayed
transmissions (i.e., τβ ≈ 0). As long as S(t) ≈ S0, smaller transmission delays τβ lead to larger relative numbers of new
infections and smaller M0

p (t).

As the transmission delay decreases, more secondary cases will result from one infection, leading to smaller values of
M0

p(t) in the initial exponential growth phase of an epidemic (see Fig. S5(b)).

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted March 30, 2020. .https://doi.org/10.1101/2020.03.26.20044693doi: medRxiv preprint 

https://doi.org/10.1101/2020.03.26.20044693
http://creativecommons.org/licenses/by-nc-nd/4.0/

