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1 Supplementary Note

1.1 Derivations

1.1.1 Unstratified MESC with non-causal eQTL effect sizes

In this section, we show that when we carry out the regression procedure described in “Unstratified MESC”
(Methods) using eQTL effect sizes assayed in non-causal tissues T , we obtain an estimate of the quantity
h2med;assayed(T ) as defined in “Definition of expression-mediated heritability” (Methods).

Let β represent cis-eQTL effect sizes in causal cell types/contexts for the trait, and β′ represent cis-eQTL
effect sizes in assayed tissues T . We start with regression equation (2) from Methods:

E[ω2
k] = E[α2]

G∑
i

β2
ik + E[γ2]

The ordinary least squares estimate of the coefficient from regressing ω2 on
∑G
i β
′2
i is

α′2 =
Cov(ω2,

∑G
i β
′2
i )

V ar(
∑G
i β
′2
i )

≈ 1

G

G∑
i

Cov(ω2, β′
2
i )

V ar(β′2i )

≈ 1

G

G∑
i

Cov(α2
iβ

2
i + γ2, β′

2
i )

V ar(β′2i )

≈ E[α2]
1

G

G∑
i

Cov(β2
i , β
′2
i )

V ar(β′2i )

The third line follows given the Cov(γ2, β′
2
) = 0 and Cov(α2, β′

2
) = 0. Let r2g(T ) = 1

G

∑G
i

Cov(β2
i ,β

′
i
2)√

V ar(β2
i )V ar(β

′2
i )

represent the average squared genetic correlation between expression in T vs. in causal cell types. Given
this definition, we have

α′2 ≈ r2g(T )E[α2]
1

G

G∑
i

√
V ar(β2

i )

V ar(β′2i )
(1)

For simplicity, we make the assumption that V ar(β2
i ) ≈ V ar(β′2i ) across genes. Note that violations to this

assumption can realistically occur in practice but will not bias our estimate of h2med;assayed(T ) (see below).
Given this assumption, we have

α′2 ≈ r2g(T )E[α2]

We can then multiply α′2 by GE[h′2cis] to obtain an unbiased estimate of h2med;assayed(T ), where E[h′2cis] is
the average expression cis-heritability of genes in T .

Estimates of h2med;assayed(T ) when V ar(β2
i ) 6= V ar(β′2i ). There are reasonable scenarios in which V ar(β2

i )

can be systemically larger or smaller than V ar(β′
2
i ) across all genes (e.g. if causal genes for the trait are

primarily influenced by cell type-specific eQTLs that are weaker/absent in assayed tissues). This will cause
α′2 6= r2g(T )E[α2]. However, because we multiply α′2 by GE[h′2cis] to obtain h2med;assayed(T), we will still

have h2med;assayed(T ) = r2g(T )h2med;causal.

To illustrate this, consider a scenario where β′2 is both correlated with β2 and scaled by a factor c relative
to β2. (1) thus becomes
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α′2 = r2g(T )E[α2]
1

G

G∑
i

√
V ar(β2

i )

V ar(cβ2
i )

=
1

c
r2g(T )E[α2]

Note that scaling β′2 by c will not change the average squared correlation r2g(T ) between β′2 and β. We
then have

h2med;assayed(T ) = GE[β′2]
1

c
r2g(T )E[α2]

= GE[cβ2]
1

c
r2g(T )E[α2]

= r2g(T )h2med;causal

1.1.2 Unstratified MESC with summary statistics

We have previously derived an estimator for h2med in the idealized scenario that SNP effect sizes are given
(Methods). In practice, we use GWAS summary statistics, which are affected by sampling noise and by LD.
It has previously been shown that LD and sampling noise can be accounted for by regressing GWAS χ2

statistics on LD scores, which measure the total of LD for each SNP1,2. Under our generative model (see
equation (1) in Methods), the marginal OLS estimate of the total effect size of a SNP k on the trait is given
by

ω̂k =
1

N
XT

k y

=
1

N
(XT

k (Xγ +XBα+ ε))

=
1

N
XT

kXγ +
1

N
XT

kXBα+
1

N
XT

k ε

=

M∑
j

γj r̂jk +

G∑
i

αi

M∑
j

r̂jkβij + ε′

Let R̂ = 1
NX

TX denote the in-sample LD matrix, and let ε′ = 1
NX

T ε denote the noise term in the summary
statistics. The χ2 statistic for SNP k (defined as Nω̂2

k) is:

E[χ2
k | R̂,B] = N

M∑
j

E[γ2j | R̂,B]r̂2jk +N

G∑
i

E[α2
i | R̂,B]

M∑
j

r̂2jkβ
2
ij +NE[(ε′)2] (2)

= NE[γ2]

M∑
j

r̂2jk +NE[α2]

G∑
i

M∑
j

r̂2jkβ
2
ij +NE[(ε′)2] (3)

=
Nh2nonmed;causal

M

M∑
j

r̂2jk +
Nh2med;causal
GE[h2cis]

G∑
i

M∑
j

r̂2jkβ
2
ij + 1− h2med;causal − h2nonmed;causal

(4)

In order for the equation regarding the unconditional expectation of χ2
k to hold true (3), we must make two

independence assumptions involving LD-dependent genetic architecture, in addition to the independence
assumptions described in “Model assumptions” (Methods). LD-dependent architecture, if not accounted for,
is known to produce bias in heritability estimates3,4. These assumptions are:

• Across all genes (indexed by i), the magnitude of αi is uncorrelated with the LD scores of eQTLs for
gene i
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• Across all SNPs (indexed by k), the magnitude of γk is uncorrelated with the LD score of SNP k

(4) follows (3) from our definitions of h2med;causal and h2nonmed;causal. Since E[r̂2jk] ≈ r2jk + 1
N , we have

E

 M∑
j

r̂2jk

 ≈ M∑
j

r2jk +
M

N

and

E

 G∑
i

M∑
j

r̂2jkβ
2
ij

 ≈ G∑
i

M∑
j

(
r2jkβ

2
ij +

β2
ij

N

)

≈
G∑
i

M∑
j

r2jkβ
2
ij +

GE[h2cis]

N

Thus,

E[χ2
k] ≈

Nh2nonmed;causal
M

 M∑
j

r2jk +
M

N

+
Nh2med;causal
GE[h2cis]

 G∑
i

M∑
j

r2jkβ
2
ij +

GE[h2cis]

N

+ 1− h2nonmed;causal − h2med;causal

≈
Nh2nonmed;causal

M

M∑
j

r2jk +
Nh2med;causal
GE[h2cis]

G∑
i

M∑
j

r2jkβ
2
ij + 1

Defining LD scores `k =
∑M
j r2jk and expression scores Lk =

∑G
i

∑M
j r2jkβ

2
ij , we arrive at our main equation

for summary MESC regression:

E[χ2
k] ≈

Nh2nonmed;causal
M

`k +
Nh2med;causal
GE[h2cis]

Lk + 1 (5)

Analogous to the derivation in “Unstratified MESC with non-causal eQTL effect sizes” (see above), we show
that if we perform this regression using expression scores in assayed tissues T rather than expression scores
in causal cell types/contexts, we will estimate h2med;assayed(T ) rather than h2med;causal (see below).

1.1.3 Unstratified MESC with non-causal expression scores

In this section, we show that when we carry out the regression procedure described above using expression
scores in assayed tissues T rather than in causal cell types/contexts, we obtain an estimate of h2med;assayed(T ).

Let β represent cis-eQTL effect sizes in causal cell types/contexts for the trait, and β′ represent cis-eQTL
effect sizes in assayed tissues T . For simplicity, assume no sampling noise and non-mediated effects in GWAS
χ2 statistics. Upon regressing GWAS χ2 statistics on expression scores in assayed tissues (see equation (5)),
we have

α′2 ≈ 1

G

G∑
i

Cov(χ2,
∑M
j r2jβ

′2
ij)

V ar(
∑M
j r2jβ

′2
ij)

≈ 1

G

G∑
i

Cov(
∑M
j r2jα

2
iβ

2
ij ,
∑M
j r2jβ

′2
ij)

V ar(
∑M
j r2jβ

′2
ij)

≈ E[α2]
1

G

G∑
i

`2Cov(β2
i , β
′2
i )

`2V ar(β′2i )

≈ E[α2]
1

G

G∑
i

Cov(β2
i , β
′2
i )

V ar(β′2i )

Here, `2 = V ar(
∑M
j r2j ). The third and fourth line follow given that r2 is independent of α, β, and β′. See

“Unstratified MESC with non-causal eQTL effect sizes” (above) for the remainder of the derivation.
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1.1.4 Stratified MESC

Starting from equation (2):

E[χ2
k | R̂,B] = N

M∑
j

E[γ2j | R̂,B]r̂2jk +N

G∑
i

E[α2
i | R̂,B]

M∑
j

r̂2jkβ
2
ij +NE[(ε′)2] (6)

= N

M∑
j

 ∑
c:j∈Cc

τc | R̂,B

 r̂2jk +N

G∑
i

( ∑
d:i∈Dd

πd | R̂,B

)
M∑
j

r̂2jkβ
2
ij +NE[(ε′)2] (7)

E[χ2
k] = N

∑
c

τc
∑
j∈Cc

r̂2jk +N
∑
d

πd
∑
i∈Dd

M∑
j

r̂2jkβ
2
ij +NE[(ε′)2] (8)

In order for (8) to be true, we must make the following assumptions:

• Within each gene category Dd, πd is uncorrelated with the magnitude of eQTL effect sizes

• Within each SNP category Cc, τc is uncorrelated with the magnitude of eQTL effect sizes

• πd is uncorrelated with the LD scores of eQTLs that affect genes in Dd

• τc is uncorrelated with the LD scores of SNPs in Cc

Since E[r̂2jk] ≈ r2jk + 1
N , we have

E[χ2
k] = N

∑
c

τc
∑
j∈Cc

(
r2jk +

1

N

)
+N

∑
d

πd
∑
i∈Dd

M∑
j

(
r2jkβ

2
ij +

β2
ij

N

)
+NE[(ε′)2]

= N
∑
c

τc
∑
j∈Cc

r2jk +
∑
c

∑
j∈Cc

τc +N
∑
d

πd
∑
i∈Dd

M∑
j

r2jkβ
2
ij +

∑
d

∑
i∈Dd

M∑
j

(
πd|Dd|E[h2cis(Dd)]

)
+NE[(ε′)2]

= N
∑
c

τc
∑
j∈Cc

r2jk + h2nonmed;causal +N
∑
d

πd
∑
i∈Dd

M∑
j

r2jkβ
2
ij + h2med;causal + 1− h2nonmed;causal − h2med;causal

= N
∑
c

τc
∑
j∈Cc

r2jk +N
∑
d

πd
∑
i∈Dd

M∑
j

r2jkβ
2
ij + 1

Letting `k;c =
∑
j∈Cc

r2jk and Lk;d =
∑
i∈Dd

∑M
j r2jkβ

2
ij , we arrive at our main equation for stratified MESC:

E[χ2
k] = N

∑
c

τc`k;c +N
∑
d

πdLk;d + 1 (9)

1.1.5 Estimating expression scores from eQTL summary statistics

We can use summary statistics from eQTL studies to estimate expression scores Lk;d, which are equivalent

to the sum of marginal OLS estimates of eQTL effect sizes for SNP k on genes in Dd (
∑
i∈Dd

β̂2
ik(sumstat))

modulo an error term that depends on |Dd| and the sample size of the eQTL study. This error term will be
captured by the intercept during regression. To illustrate this, we model the expression of gene i for Nexp
expression panel samples as follows:

yi(exp) = Xβi + εi(exp)
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where yi(exp) is an Nexp-vector of gene expression measurements (standardized to mean 0 and variance 1),
X is an Nexp ×M genotype for M SNPs (standardized to mean 0 and variance 1), βi is an M -vector of
eQTL effect sizes, and εi(exp) is an Nexp-vector of environmental effects. Under this model, we have

E

[∑
i∈Dd

β̂2
ik(sumstat)

]
=
∑
i∈Dd

 M∑
j

r̂2jkβ
2
ij +

E[ε2i(exp)]

Nexp


=
∑
i∈Dd

M∑
j

r̂2jkβ
2
ij +

∑
i∈Dd

1− E[h2cis]

Nexp

=
∑
i∈Dd

M∑
j

r2jkβ
2
ij +

|Dd|E[h2cis]

Nexp
+
|Dd|(1− E[h2cis])

Nexp

= Lk;d +
|Dd|
Nexp

Thus, we can use the following alternate form of equation (9) to perform regression:

E[χ2
k] = N

∑
c

τc`k;c +N
∑
d

πd
∑
i∈Dd

β̂2
ik(sumstat) + 1 +

Nh2med;causal
NexpE[h2cis]

1.1.6 Impact of environmental noise in gene expression measurements on h2med estimates

In this section, we show that the level of environmental noise in gene expression measurements (which differs
across assays and affects both standardized eQTL effect sizes and the magnitude of expression cis-heritability,
h2cis) does not impact our estimates of expression-mediated heritability h2med. In other words, h2med depends
on only the genetic component of gene expression levels. One consequence of this fact is that the magnitude
of h2med does not a priori depend on the magnitude of h2cis. For example, mean h2cis can be very low in a
given gene expression data set due to e.g. large stochastic fluctuations in gene expression levels or other
sources of technical noise specific to the data set, while estimated h2med from this gene expression data set
can in principle be very high (i.e. close to total SNP heritability h2g).

To understand this intuitively, one can think of the units in which all SNP effect sizes operate. Recall
our model for the effect size of SNP j on complex trait:

ωj =
∑
i

βijαi + γj

where ωj represents the total effect size of SNP j on the complex trait, βij represents the effect size of
SNP j on the expression levels of gene i, αi represents the effect size of gene i on the complex trait, and
γi represents the non-mediated effect size of SNP j on the complex trait. When complex trait and gene
expression levels are standardized to zero mean and unit variance, βij is expressed in terms of additive
increase in standardized expression levels per unit increase in standardized genotype (which we abbreviate

as std(expr)
std(geno) ), while αi is expressed in terms of additive increase in standardized phenotype per unit increase

of standardized expression levels (which we abbreviate as std(pheno)
std(expr) ). When we multiply α2

i by
∑
i β

2
ij , we

obtain a quantity corresponding to the heritability mediated by gene expression levels for SNP j in units of(
std(expr)
std(geno)

)2 (
std(pheno)
std(expr)

)2
=
(

std(pheno)
std(geno)

)2
.

Because std(expr) cancels out in this above product, the units in which gene expression levels are repre-
sented does not actually affect our final estimate of the heritability mediated by gene expression levels for
SNP j (provided that both αi and βij use the same units of expression). To elaborate, when we regress ω2

j on∑
i β

2
ij , we obtain an estimate of E[α2] in units of

(
std(pheno)
std(expr)

)2
. To obtain an estimate of per-SNP expression-

mediated heritability, we then multiply E[α2] by E
[∑

i β
2
ij

]
(or equivalently E[h2cis]), which is in units of(

std(expr)
std(geno)

)2
. Suppose we were to scale

∑
i β

2
ij by an arbitrary factor c, in which case our estimate of E[α2]
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would be in units of
(

std(pheno)
c·std(expr)

)2
and E

[
c
∑
i β

2
ij

]
would be in units of

(
c·std(expr)
std(geno)

)2
. When multiplying

E[α2] by E
[
c
∑
i β

2
ij

]
, the product would be expressed in units of

(
c·std(expr)
std(geno)

)2 (
std(pheno)
c·std(expr)

)2
=
(

std(pheno)
std(geno)

)2
and would thus be unchanged compared to before. This is essentially the same argument as made in the
section “Estimates of h2med;assayed(T ) when V ar(β2

i ) 6= V ar(β′2i )” (see above), in which we show that true
differences in eQTL effect size magnitude agnostic of environmental noise in expression assays also do not
affect our estimates of expression-mediated heritability.

Adding environmental noise to gene expression levels has the effect of scaling both squared standardized
eQTL effect sizes and h2cis by a constant factor, which we have shown above does not affect estimates of
h2med. To illustrate this, consider the following generative model for the expression levels of gene i, in which
genotypes are standardized to zero mean and unit variance but gene expression levels are not standardized:

yi(exp) = Xβi + εi(exp)

where yi(exp) is a vector of non-standardized gene expression levels for gene i, X is a matrix of standardized
genotypes, βi is a vector of non-standardized cis-eQTL effect sizes for gene i, and εi(exp) is a vector of
environmental effects. In order to standardize cis-eQTL effect sizes (so that

∑
β2
i(std) = h2cis), we divide

all non-standardized cis-eQTL effect sizes βi by
√∑

β2
i + V ar(εi(exp)) to obtain βi(std). Now, note that

adjusting the variance of the noise term εi(exp) is akin to scaling both h2cis and β2
i(std) by the same constant

factor. For example, let V ar(εi(exp)) be the original environmental variance, and let V ar(ε′i(exp)) be the new

environmental variance. Both original h2cis and β2
i(std) are multiplied by the factor

∑
β2
i +V ar(εi(exp))∑
β2
i +V ar(ε

′
i(exp)

)
to obtain

the new h2cis and β2
i(std).

In summary, we show that the level of environmental noise in gene expression panels (due to e.g. stochastic
fluctuations in gene expression levels or other sources of assay noise) does not impact our estimates of h2med.

1.1.7 Prospects for estimating disease heritability mediated by trans-eQTLs

In all our analyses, we aim to estimate disease heritability mediated by gene expression in cis, rather than the
full genetic component of gene expression that includes trans effects. In theory, we can also estimate disease
heritability mediated by gene expression in trans using MESC, where we would simply replace cis-eQTL
effect sizes with trans-eQTL effect sizes in all our analyses. However, trans-eQTLs are much more difficult
to estimate than cis-eQTLs due to their much smaller effect sizes, impacting resulting estimates of h2med. In
this section, we show that h2med estimates produced by MESC are bounded by the average genetic prediction
r2 of gene expression multiplied by true h2med, so r2 < 1 results in downward bias in estimated h2med (note
that here r2 refers to the prediction accuracy of the only the genetic component of gene expression, which
does not include environmental effects). For gene expression in cis, this downward bias is minimal at current
sample sizes (see simulation result in Figure 2a), as we can obtain a prediction r2 close to 1 for cis-eQTLs5.
However, for gene expression in trans, this downward bias becomes problematic at current sample sizes,
since trans-eQTLs are highly polygenic and thus more difficult to estimate6–8. In order to obtain a reliable
estimate of disease heritability mediated by trans-eQTLs, we would ideally want a genetic prediction r2 of
0.8 or greater (comparable to the prediction r2 of cis-eQTLs from currently available gene expression data
sets), which we show requires expression panels on the order of 1,000,000 or more samples (see below). Note
that these sample sizes are comparable to those needed for very accurate polygenic disease risk prediction.
We also show that the expected prediction r2 of trans-eQTLs from the largest gene expression data set
(eQTLGen7, N = 31,684) is only 0.026, which is far too low to yield meaningful estimates of h2med. Thus,
estimating disease heritability mediated by trans-eQTLs using MESC is not feasible with currently available
gene expression data sets.

Relationship between genetic prediction r2 of gene expression and magnitude of estimated h2med. Let β
represent eQTL effect sizes (either cis or trans) in causal cell types/contexts for the trait, let β′ represent

eQTL effect sizes in assayed tissues T , and let β̂′ = β′ + ε represent estimated eQTL effect sizes in assayed
tissues T , where ε is a noise term. We assume that ε is independent of β′. Upon regressing squared GWAS

effects sizes ω2 on squared estimated eQTL effect sizes
∑G
i β̂
′2
i , the estimate of the coefficient α̂′2 is:
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α̂′2 ≈ E[α2]
1

G

G∑
i

Cov(β2
i , β̂
′
i
2)

V ar(β̂′i
2)

≈ E[α2]
1

G

G∑
i

Cov(β2
i , β
′2
i + ε2i )

V ar(β̂′i
2)

≈ E[α2]
1

G

G∑
i

Cov(β2
i , β
′2
i )

V ar(β̂′i
2)

The first line follows from the same derivation as “Unstratified MESC with non-causal eQTL effect sizes.”

As before, we define r2g(T ) = 1
G

∑G
i

Cov(β2
i ,β

′
i
2)√

V ar(β2
i )V ar(β

′2
i )

as the average squared genetic correlation between

expression in assayed tissues T vs. in causal cell types/contexts. Given this definition, we have:

α̂′2 ≈ r2g(T )E[α2]
1

G

G∑
i

√
V ar(β2

i )V ar(β′2i )

V ar(β̂′i
2)

We can establish an upper bound for α̂′2 in terms of the genetic prediction accuracy of expression. Let

r2pred(T ) = 1
G

∑G
i

Cov(β̂′
i
2,β′

i
2)√

V ar(β̂′
i
2)V ar(β′2

i )
represent the average squared genetic prediction accuracy of expres-

sion across genes in tissues T . Note that

√
V ar(β2

i )V ar(β
′2
i )

V ar(β̂′
i
2)

≤ Cov(β̂′
i
2,β′

i
2)√

V ar(β̂′
i
2)V ar(β′2

i )
under the assumption that

V ar(β2
i ) ≈ V ar(β′

2
i ). To illustrate this, see that the numerators of both sides of the inequality are equiv-

alent: Cov(β̂′i
2, β′i

2
) = Cov(β′

2
i + ε2i , β

′
i
2
) = Cov(β′

2
i , β
′
i
2
) = V ar(β′

2
i ) ≈ V ar(β2

i ) on the left side, and√
V ar(β2

i )V ar(β′2i ) ≈
√
V ar(β2

i )V ar(β2
i ) ≈ V ar(β2

i ) on the right side. However, in the denominators,

V ar(β̂′i
2) ≥

√
V ar(β̂′i

2)V ar(β′2i ), since V ar(β̂′i
2) ≥ V ar(β′2i ). Thus, we have:

α̂′2 ≤ r2pred(T )r2g(T )E[α2]

We can multiply α̂′2 by GE[h′2cis] to obtain an estimate of h2med;assayed(T ) that has the following property:

ĥ2med;assayed(T ) ≤ r2pred(T )h2med;assayed(T )

Expected genetic prediction r2 of gene expression in trans. Unlike cis-eQTLs, trans-eQTLs are known to
be polygenic. Thus, we can invoke the following equation that relates sample size to polygenic prediction
accuracy for gene expression in trans using the best linear unbiased predictor (BLUP)9,10:

r2pred;trans(T ) =
1

G

G∑
i

h2i;trans

h2i;trans + M
N (1− r2pred;trans(T ))

≈ N

M

1

G

G∑
i

h2i;trans

where h2i;trans is the expression trans-heritability of gene i, M is the effective number of independent SNPs

(approximately 60,00011), and N is expression panel sample size. The largest expression panel available to
date is from eQTLGen7, with N = 31,684 in blood. The average h2trans of expression is around 0.055,8, 12.
Thus, we can expect r2pred;trans(T ) trained on eQTLGen data to be around 31,684·0.05

60,000 = 0.026, which is far

too low to yield meaningful estimates of h2med. In order to obtain r2pred;trans(T ) of 0.8 (comparable to the

prediction r2 of gene expression in cis from current expression panels), we would need 0.8·60,000
0.05 = 960,000

samples.
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1.1.8 Relationship between MESC and stratified LD score regression

MESC is similar in form to stratified LD score regression (S-LDSC), which aims to estimate total heritability
partitioned across SNP categories from summary statistics2,13. In particular, the τ coefficient estimated by
S-LDSC is directly related to the π coefficient we obtain from MESC in equation (9). In S-LDSC, the
variance of total effect size of SNP k on the trait (ωk) is modeled as follows:

V ar(ωk) =
∑
c

ac(k)τc

where ac refers to a continuous-valued SNP annotation. Meanwhile, in MESC, V ar(ωk) is modeled as follows:

V ar(ωk) =
∑
d

πd
∑
i∈D

β2
ik +

∑
c:k∈C

τnonmedc

We label τnonmedc as so in order to distinguish it from τc used in S-LDSC. Here, note that we can treat the
value

∑
i∈D β

2
ik as a continuous SNP annotation ac, which means that the expression scores Lk;d used in

equation (9) are equivalent to LD scores with continuous annotation ac(k) =
∑
i∈D β

2
ik. Thus, πd as defined

above and in equation (9) is equivalent to τc as defined in S-LDSC for the SNP annotation that corresponds
to
∑
i∈D β

2
ik.

The main implication for this equivalence between MESC and S-LDSC is that significantly nonzero πd
as estimated by MESC can be interpreted as significantly nonzero τc from S-LDSC. There is considerable
interest in identifying SNP annotations with significantly nonzero τc conditional on the baselineLD model
and other SNP annotations2,13–18, since this means that the SNP annotation is informative for explaining
trait heritability beyond the set of comprehensive but non-trait-specific SNP annotations contained in the
baselineLD model (as well any additional SNP annotations included in overall model). When using MESC,
we also include all SNP annotations in the baselineLD model in our analyses, albeit for a different purpose
than in studies using S-LDSC; our reason for including the baselineLD model is to account for correlations
between the magnitude of non-mediated effect sizes and eQTL effect sizes (see “Violations of effect size
independence assumptions” below). Nevertheless, we can still interpret significantly nonzero πd for a given
gene category D as implying that the SNP annotation corresponding to the eQTL effect sizes of all SNPs
on genes in D is informative for explaining trait heritability beyond the baselineLD model.

1.1.9 Relationship between MESC and Mendelian randomization

In this section, we describe the motivation behind the regression procedure carried out in MESC and compare
it to Mendelian randomization (MR). Our goal is to estimate h2med, where h2med =

∑G
i

∑M
j β2

ijα
2
i . One way

we could estimate h2med would be to first estimate α2
i for each individual gene, then multiply α2

i by the
cis-heritability of the gene and sum up this quantity across all genes to obtain h2med. In principle, we could
estimate αi for each individual gene i using some type of MR approach, where the exposure of interest is the
expression level of gene i, and the outcome is the trait. However, typical MR approaches are problematic for
this aim. In the presence of non-mediated effects of genetic variants on the trait, MR is highly underpowered
to estimate αi with a small number of genetic instruments19,20. This is a common scenario if we use gene
expression as the exposure, since many genes have only a few detectable cis-eQTLs for their expression6.
Alternatively, we could consider a MR approach with multiple genetic variants, which in principle can
distinguish mediated from non-mediated effects so long as the InSIDE (instrument strength independent of
direct effect) assumption holds20 (Note that the InSIDE assumption is essentially the same as the pleiotropy-
eQTL independence assumption we describe in “Model assumptions” in Methods). However, this approach
is highly underpowered in the common scenario that genes have only a few detectable cis-eQTLs19, and
this approach cannot be applied to genes with only one cis-eQTL. In summary, we cannot use typical MR
approaches to estimate h2med due to the sparse cis-genetic architecture of gene expression.

Unlike MR approaches, MESC is able to estimate h2med in the presence of sparsity of eQTLs for individual
genes by estimating gene-trait effects across many genes. To illustrate this, we contrast MESC and MR
with multiple genetic variants (see Supplementary Figure 12 for an illustration). MR with multiple genetic
variants essentially involves regressing SNP-trait effects on eQTL effects for a single gene. The slope from
this regression will be the effect of the gene on the trait given that the InSIDE assumption is satisfied.
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Meanwhile, MESC essentially involves regressing squared SNP-trait effects on squared eQTL effects summed
across a set of genes. The slope from this regression will be the average squared effect of all genes in the
gene set on the trait given that both the pleiotropy-eQTL independence assumption (which is effectively the
InSIDE assumption extended across eQTLs for all genes in the gene set) and an additional assumption are
satisfied. This additional assumption is that eQTL effect sizes are independent of gene-trait effect sizes across
genes (see “Model assumptions” in Methods). We can then calculate h2med with our average gene-trait effect
estimate using an equivalent definition of h2med that models β and α as random variables (See “Definition
of expression-mediated heritability” in Methods). Thus, MESC can still reliably estimate h2med if individual
genes have one or a small number of eQTLs, since it essentially aggregates information about gene-trait
effects across many genes.

In summary, MESC can be conceptualized as an analogue to MR that models exposure effects as random
and jointly estimates the average squared effect of multiple exposures on an outcome.

1.2 Modes of expression causality

In Supplementary Figure 8, we depict 9 different causality scenarios between SNPs, gene expression levels,
and complex trait. Scenarios A-D constitute the main causality scenarios described in the main manuscript
text; scenarios E-I describe additional causality scenarios. We provide a description of each scenario and its
contribution to estimates of h2med.

A. Mediation. Here, the SNP affects the expression levels of the gene in cis, which then affect the complex
trait. This is the desired scenario, since it is consistent with the hypothesis that SNPs exert their effects
on complex traits via modulating gene expression levels. The presence of mediation will result in nonzero
estimates of h2med.

B. Pleiotropy. Here, the SNP independently affects the expression of the gene in cis and the complex trait.
Under the assumption that the magnitude of pleiotropic effects is uncorrelated with the magnitude of eQTL
effects (see “Model assumptions” in Methods), the presence of pleiotropy will not contribute to estimates of
h2med.

C. Linkage. Here, the SNP that affects gene expression in cis is in LD with another SNP that independently
affects the trait. Under the assumption that the magnitude of linkage effects is uncorrelated with the
magnitude of eQTL effects (see “Model assumptions” in Methods), the presence of linkage will not contribute
to estimates of h2med.

D. Reverse mediation. Here, the SNP directly affects the complex trait, which then affects the expression
levels of the gene in cis. Although this scenario can in theory contribute to nonzero estimates of h2med, the
contribution will be negligible given that genetic effects on a complex (i.e. polygenic) trait are much smaller
than genetic effects on gene expression (see below for justification).

E. Mediation in unobserved cell type/context. Here, the SNP affects the expression levels of the gene in the
causal cell type/context for the complex trait, which then affects the complex trait. In practice, we only have
access to assayed expression levels. Estimates of h2med using assayed expression levels will be nonzero if the
assayed expression levels are correlated with expression levels in causal cell types/contexts (see “Definition
of expression-mediated heritability” in Methods).

F. Trans mediation. Here, the SNP affects the expression levels of the gene in trans, which then affects the
complex trait. If trans-eQTL effect sizes are uncorrelated with cis-eQTL effect sizes, this scenario will not
contribute to estimates of h2med. Note that this scenario refers to purely trans effects that are not mediated
in cis at any point. An alternative scenario is cis-by-trans mediation (see below), which is subsumed by
scenario A.

G. Cis-by-trans mediation. Here, the SNP affects the expression levels of gene 1 in cis, gene 1 affects gene 2
in trans, and gene 2 affects the complex trait. Although the SNP acts as a trans-eQTL for gene 2, its effects
are mediated in cis at some point, so this scenario is subsumed by scenario A (i.e. mediation).
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H. Mediation by unobserved cis intermediary. Here, the SNP affects an unobserved intermediary in cis,
which then has pleiotropic effects on a gene’s expression levels and the complex trait. The intermediary can
be the expression levels/splicing/activity of another gene, and can also refer to any other molecular process.
Note that this scenario refers specifically to cis intermediaries; the distinction between cis intermediaries and
trans intermediaries is that SNP effect sizes on known molecular phenotypes are much larger in cis than in
trans8,21,22. In scenario H, it is not appropriate to assume that eQTL effect sizes and pleiotropic effect sizes
are independent, as they are both affected by a common intermediary. Thus, this scenario can contribute to
nonzero estimates of h2med. Because this scenario does not strictly speaking involve mediation through the
gene’s expression levels, its contribution to h2med might be viewed as spurious.

However, there are several reasons why scenario H’s potential contribution to h2med is likely not of major
concern. First, if the intermediary represents the expression levels of another gene, then scenario H’s con-
tribution to h2med is justifiable given that mediation is actually occurring through the expression levels of
the intermediary. Second, because we perform regression using all SNPs in the genome, scenario H must be
pervasive across most loci in the genome in order for it to have a substantial impact on estimates of h2med.
Third, if the intermediary does not refer to the expression levels of a gene (e.g. it represents splicing or
coding changes in a gene, or it represents some unknown molecular process), we argue that the contribution
of the non-causal gene to h2med is still of biological interest due to the fact that the gene’s expression levels
are correlated with a truly causal intermediary.

I. Mediation by unobserved trans intermediary. Here, the SNP affects an unobserved intermediary in trans,
with then has pleiotropic effects on gene expression levels in cis and the complex trait. The only difference
between scenario I and scenario H is that here the intermediary is affected in trans rather than in cis.
Because trans-effects on molecular phenotypes are much smaller than cis-effects, the contribution of scenario
I to nonzero h2med will be much smaller than the contribution of scenario H (see “Impact of reverse mediation
on h2med estimates” below for related intuition).

1.2.1 Impact of reverse mediation on h2med estimates

In our generative model, we do not model the effects of reverse mediation, which we define as the scenario
in which a SNP influences the complex trait independently of the SNP’s effects on the expression of a gene,
and the complex trait itself then influences the expression of the gene. Such a scenario will induce a genetic
correlation between the gene’s expression and the complex trait and could potentially bias our estimates
of h2med. However, we posit that the bias (if present at all) is negligible for the following reasons. (1)
Because we use an external expression panel to estimate eQTL effect sizes, the complex trait of interest
must be represented in the expression panel samples in order for its effects on expression to be present in
our analyses5,23. Thus, we can rule out the possibility of reverse mediation influencing our results for any
disease phenotypes. (2) Assuming that the complex trait of interest is represented in the expression panel
samples, the total bias in estimates of h2med caused by reverse mediation is guaranteed to be very small
under the assumption that SNP effect sizes on a trait are much smaller than eQTL effect sizes23, which is
true for polygenic traits. To illustrate this point, it is useful to think of h2med in terms of the covariance
between eQTL effect sizes β and total SNP effect sizes ω (for simplicity, we assume that each gene has only
one eQTL):

h2med =

G∑
i

Cov(βi, ωi)
2/V ar(βi)

Assuming that Cov(βi, ωi) for SNP i is nonzero due to proper mediation, we have the following expression
for Cov(βi, ωi)

2
med:

ωi = βiαi + γi

Cov(βi, ωi)
2
med = α2

iV ar(βi)
2

A typical trait has h2med = 0.1 and V ar(βi) = 0.05, so a realistic value for α2
i is

h2
med

GV ar(βi)
= 0.1

20000·0.05 =

0.0001 (we assume here that all genes are causal; the proportion of causal genes will not affect the points
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conveyed by these calculations so long as the number of causal SNPs is at least as large as the number of
causal genes; see below). Thus, we have Cov(βi, ωi)

2
med ≈ 0.0001 · 0.052 = 2.5× 10−7. On the other hand, if

we assume that Cov(βi, ωi) for SNP i is nonzero due to reverse mediation, we have the following expression
for Cov(βi, ωi)

2
revmed:

βi = θi

M∑
j

ωj + βi(SNP )

Cov(βi, ωi)
2
revmed = θ2i V ar(ωi)

2

Here, θi represents the effect size of the complex trait on the expression of gene i and βi(SNP ) represents
the direct effect size of SNP i on gene i without the effects of reverse mediation. The upper limit for θ2i is
β2
i /h

2, which occurs if βi(SNP ) = 0. Thus, we can rewrite the above as

Cov(βi, ωi)
2
revmed ≤ β2

i /h
2V ar(ωi)

2

A typical complex trait has h2 = 0.5. If we assume that the number of causal SNPs is at least as large as
the number of causal genes, we have V ar(ωi) ≤ h2/G = 2.5 × 10−5. Thus, we have Cov(βi, ωi)

2
revmed ≤

0.05/0.5 · (2.5 × 10−5)2 = 6.25 × 10−11. The reason why Cov(βi, ωi)
2
revmed is orders of magnitude smaller

than Cov(βi, ωi)
2
med is that Cov(βi, ωi)

2
revmed involves the product of the square of the squared per-SNP

effect on complex trait and the squared SNP effect on gene expression, while Cov(βi, ωi)
2
med involves the

product of the squared per-gene effect on complex trait and the square of the squared SNP effect on gene
expression. Because individual SNP effects on gene expression are much larger than individual SNP/gene
effects on a polygenic trait, squaring the latter causes the overall magnitude of Cov(βi, ωi)

2 to be much
smaller than squaring the former.

1.3 Violations of effect size independence assumptions

In this section, we describe realistic scenarios in which the two main effect size independence assumptions
(see “Model assumptions” in Methods) might be violated, and we describe how conditioning on SNP- and
gene-level annotations can ameliorate any resulting bias.

1.3.1 Gene-eQTL effect size independence

Gene-eQTL effect size independence is violated in the scenario that less heritable genes have larger causal
effect sizes on the trait, which is supported by evidence that evolutionarily constrained genes tend to have
fewer eQTLs6. A negative correlation between the magnitude of gene effect sizes and eQTL effect sizes across
the genome will result in downwardly biased estimates of E[α2] and upwardly biased estimates of E[γ2], as
illustrated in Supplementary Figure 13a. The downward bias in h2med arises due to the fact that during
regression, SNPs with larger eQTL effect sizes are implicitly weighted more than SNPs with smaller eQTL
effect sizes, so the average slope will be biased toward the value of α2 for high heritability genes.

In order to account for violations to gene-eQTL effect size independence, we can stratify genes by the
magnitude of their cis-heritability so that within each gene category, gene-eQTL effect size independence
approximately holds. We can then obtain unbiased estimates of E[α2

D] for each gene category D as illustrated
in Supplementary Figure 13b. In practice, we stratify genes by 5 bins according to their cis-heritability, which
we show adequately captures genome-wide dependence of gene effect sizes on eQTL effect sizes in simulations
(Figure 2d).

1.3.2 Pleiotropy-eQTL effect size independence

Pleiotropy-eQTL effect size independence is violated in the presence of regulatory hotspots with high biolog-
ical activity in the genome2,24–27, resulting in an increased number and/or magnitude of both eQTLs and
pleiotropic/linkage effects in these hotspots. A positive correlation between the magnitude of non-mediated
effect sizes and eQTL effect sizes across the genome will result in upwardly biased estimates of E[α2] and
downwardly biased estimates of E[γ2], as illustrated in Supplementary Figure 14a.
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In order to account for violations to pleiotropy-eQTL effect size independence, we can stratify SNPs
by the magnitude of their eQTL effect sizes so that within each SNP category, pleiotropy-eQTL effect size
independence approximately holds. We can then obtain unbiased estimates of overall E[α2] and E[γ2C ] for
each SNP category C as illustrated in Supplementary Figure 14b. Note that in practice, LD between SNPs
makes it is difficult or impossible to identify the exact SNPs that act as eQTLs. This in turn makes it
impractical to stratify SNPs according to eQTL effect size. Therefore, we instead stratify SNPs by a set
of comprehensive functional SNP annotations, the baselineLD model2,13, which should capture most known
regulatory hotspots in the genome and act as a reasonable proxy to eQTL effect sizes (see Figure 2e for
simulation results)

1.4 Rare vs. common variant h2
med

In all our analyses, we restrict the regression SNPs used by MESC to only Hapmap3 SNPs28. Because
Hapmap3 SNPs essentially only tag common variants, by restricting to Hapmap3 SNPs we estimate the pro-
portion of common disease heritability mediated by the cis-genetic component of gene expression (h2med(common)/h

2
common).

We define h2med(common) as
∑
j∈C

∑
i β

2
ijα

2
i (given standardized genotypes and phenotypes), where C rep-

resents the set of all SNPs with minor allele frequency (MAF) > 0.05, βij represents the cis-eQTL effect
size of SNP j on gene i, and αi represents the effect size of gene i on disease. This quantity differs from
the total disease heritability mediated by gene expression (h2med(common) + h2med(rare)), where h2med(rare)
is defined in the same manner as h2med(common) but C is replaced with the set of all SNPs with MAF <

0.05. We do not aim to estimate h2med(rare) because doing so requires eQTL effect size estimates for rare
variants, which cannot be reliably obtained from current expression panel data sets. Even if we had the
data to estimate h2med(rare) (i.e. many thousands of whole-genome sequencing expression samples), there
are several reasons why we would expect the proportion of total disease heritability mediated by gene ex-
pression (h2med(common) + h2med(rare))/(h

2
common + h2rare) to be either similar or smaller than the quantity

h2med(common)/h
2
common that we estimate:

1. Most SNP heritability is explained by common variants29,30. Thus, we can expect the quantity
(h2med(common) + h2med(rare))/(h

2
common + h2rare) to depend mostly on h2med(common) and h2common.

2. Rare variant heritability has a much larger enrichment in coding regions than common variant heri-
tability31, suggesting that the effects of rare variants on disease tend to be mediated by protein-coding
changes rather than changes in gene expression. Protein-coding changes are not reflected in h2med, so
we would expect that h2med(rare)/h

2
rare < h2med(common)/h

2
common.

Role of singletons in h2med. A recent study32 has shown that a substantial proportion of total expression
cis-heritability (around 20%) in an expression panel of 360 individuals is explained by singletons with MAF
< 0.0001 (i.e. singletons that are not observed in large genome reference panels). However, as mentioned
above, rare variant effects do not contribute to h2med(common) since they are not tagged by Hapmap3 SNPs.
Furthermore, even if we had the data to estimate eQTL effect sizes for singletons, there is evidence that
singletons contribute very little or nothing to disease heritability, as a recent study33 has shown that virtually
all narrow-sense heritability for height and BMI can be explained by SNPs with MAF > 0.0001 (which
excludes the class of ultra-rare SNPs defined as singletons in Hernandez et al.). In light of this result, we
would not expect singleton effects on expression to substantially mediate any disease heritability.

1.5 Additional simulation results

1.5.1 Additional details on simulations under frequency-dependent genetic architectures

We sought to assess the bias of MESC in estimating h2med(common) (see “Rare vs. common variant h2med”

above for definition) in the presence of frequency-dependent genetic architectures (including rare and low-
frequency variants). To this end, we conducted simulations in which both eQTL and GWAS per-allele effect
size magnitude were inversely proportional to minor allele frequency, consistent with purifying selection
acting on gene expression32,34 and complex trait29,30. We conducted our simulations using real genotypes
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imputed to include rare and low-frequency variants from UK Biobank35 (NGWAS = 100,000; M = 1,539,668
SNPs from chromosome 1). We simulated cis-eQTLs for G = 1000 genes with variance of per-allele effect
sizes proportional to [pi(1 − pi)]]α, where p is the minor allele frequency of SNP i and α is a parameter
ranging from −0.33 (corresponding to 5% of heritability explained by rare variants with MAF < 0.01 in our
data set) to −1.33 (corresponding to 50% heritability explained by rare variants). We simulated frequency
dependent non-mediated SNP effect sizes in a similar fashion as eQTL effect sizes. Finally, we simulated
gene effect sizes on complex trait corresponding to h2med(common)/h

2
common = 0.2 and h2 = 0.5. From these

effect sizes, we simulated GWAS summary statistics, as well as eQTL summary statistics using a separate
set of genotypes (NeQTL = 10,000).

We applied MESC to these summary statistics while performing the regression using only Hapmap3 SNPs
(consistent with what we do in practice). In order to capture dependence between LD scores and GWAS effect
sizes (which constitutes a model violation and leads to biased h2g estimates if uncorrected3,4), we stratified
regression SNPs by 10 MAF bins, which has been shown to adequately account for this dependence4,13. In all
simulations, we obtained unbiased/slightly conservative estimates of h2med(common)/h

2
common across diverse

values of α, including scenarios in which α for non-mediated effect sizes was different than α for eQTL effect
sizes (Supplementary Figure 3). Thus, MESC is robust to frequency-dependent genetic architectures for
both gene expression and disease.

1.5.2 Additional details on simulations under violations of effect size independence assump-
tions

We sought to assess the bias of MESC in estimating h2med under violations of gene-eQTL independence
and pleiotropy-eQTL independence. Correlations between eQTL effect size magnitude and gene effect size
magnitude or non-mediated effect size magnitude will result in biases in h2med estimates in the same direction
of the correlation. In other words, if eQTL effect size magnitude is positively correlated with gene effect size
magnitude and/or non-mediated effect size magnitude, h2med estimates will be upwardly biased; whereas if
eQTL effect size magnitude is negatively correlated with gene effect size magnitude and/or non-mediated
effect size magnitude, h2med estimates will be downwardly biased. Given our biological knowledge, we would
expect in practice that eQTL effect size magnitude is negatively correlated with gene effect size magnitude
due to negative selection removing large-effect eQTLs for large-effect genes, while we would expect that eQTL
effect size magnitude is positively correlated with non-mediated effect size magnitude due to the presence of
regulatory hotspots in the genome. Thus, we impose these specific correlations in our simulations.

Violation of pleiotropy-eQTL independence. To simulate violations of pleiotropy-eQTL independence, we
initially attempted to emulate realistic levels of overlap between expression heritability enrichment and
disease heritability enrichment. We selected three functional SNP categories from the baselineLD model2,13—
transcription start sites, coding regions, and conserved regions—that have been shown to be highly enriched
for both expression cis-heritability22 and complex trait heritability2. We then simulated 10x expression
cis-heritability enrichment and 10x total heritability enrichment for SNPs in any of these three categories,
which is close to empirical estimates2,22. However, in this particular simulation, we observed no discernible
upward bias in our estimates of h2med/h

2
g (Supplementary Figure 15), demonstrating that stronger violations

to pleiotropy-eQTL effect size independence were necessary to induce bias in estimates of h2med/h
2
g.

We only observed upward bias in h2med/h
2
g when simulating more extreme patterns of colocalization

between eQTL effects and non-mediated effects, i.e. in which 100% of eQTLs and disease heritability were
entirely concentrated in one of transcription start sites, coding regions, or conserved regions respectively.
We estimated h2med/h

2
g for each simulation in two ways: (1) with SNPs stratified by the full baselineLD

model, and (2) with SNPs stratified by a misspecified baselineLD model missing the causal category and
window around the causal category, emulating a realistic scenario in which the SNP model does not fully
capture all sources of non-mediated effects. The results from these simulations are reported in Figure 2e and
Supplementary Figure 6. We note these particular simulations are not meant to be realistic, but rather serve
to illustrate the flexibility of the baselineLD model in correcting for biases under even extreme violations of
pleiotropy-eQTL independence.
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1.5.3 Additional details on simulations comparing MESC to stratified LD score regression

We sought to compare the performance of MESC to that of stratified LD score regression (S-LDSC). Although
the two methods do not estimate the same quantity, h2med (as estimated by MESC) shares some similarities
with the h2g enrichment of the SNP category corresponding to the set of eQTLs (as estimated by S-LDSC)
in that h2med > 0 implies h2g enrichment > 1. The converse is true only when pleiotropy-eQTL independence
is satisfied, but we expect that pleiotropy-eQTL independence is almost certainly violated in practice.

First, we show that S-LDSC indeed has a well-calibrated false positive rate for detecting heritability of
the eQTL category when h2med = 0, with increasing power to detect heritability enrichment of the eQTL
category as h2med increased (Supplementary Figure 16).

However, in the presence of violations to pleiotropy-eQTL effect size independence, S-LDSC will detect
significant heritability enrichment of the eQTL category even in the absence of mediation. Like the simulation
performed in Supplementary Figure 15, we simulated 10x enrichment of eQTL effect sizes in three SNP
categories (coding regions, transcription start sites, and conserved regions). With h2med fixed at 0, we then
varied the heritability enrichment of the three SNP categories from 2.5x to 10x. We observed that S-LDSC
detected significant heritability enrichment of the eQTL category in the absence of mediation when total
heritability enrichment was 5x or greater, whereas MESC had a well-calibrated false positive rate at all
levels of enrichment (Figure 2f). Note that this result does not imply that S-LDSC or other heritability
partitioning methods are flawed, but rather that they cannot specifically distinguish mediated effects from
non-mediated effects when they are applied to annotations generated from eQTL data. We did not compare
MESC to the colocalization methods of Chun et al.36 or Ongen et al.37, since these methods only operate
on genome-wide significant GWAS loci and also do not attempt to distinguish pleiotropy from mediation.

1.5.4 Simulations comparing different methods of estimating expression scores

In this set of simulations, we evaluated the prediction accuracy and bias of different methods of estimating
expression scores from simulated expression data with varying numbers of samples. Note that this set of
simulations does not involve complex trait phenotypes.

In total, we compared five different methods of estimating expression scores Lk for SNP k. Here, G
represents genes within 1 Mb of SNP k, while M represents SNPs within 1 Mb of SNP k:

1. eQTL summary statistics. L̂k =
∑G
i β̂

2
ik(sumstat), where β̂2

ik(sumstat) represents the squared eQTL
summary statistic of SNP k for gene i.

2. LASSO. L̂k =
∑G
i

∑M
j r2jkβ̂

2
ij(LASSO), where r2jk represents the squared correlation between SNP j

and SNP k, and β̂2
ij(LASSO) represents squared causal eQTL effect sizes of SNP j on gene i estimated

by LASSO38.

3. LASSO with REML correction. L̂k =
∑G
i

∑M
j r2jkciβ̂

2
ij(LASSO). This method is identical to LASSO

except that we scale β̂2
ij(LASSO) by a factor ci. We define ci = ĥ2cis;i/

∑M
j β̂2

ij(LASSO), where ĥ2cis;i
is the expression cis-heritability of gene i predicted by REML. This approach is the same as the one
described in “Estimation of expression scores” in Methods. For computational ease, we did not actually
use REML to predict expression cis-heritability for each gene in each simulation, but rather we took the
true expression cis-heritability of the gene and added a realistic amount of noise in order to simulate
REML prediction error.

4. BLUP. L̂k =
∑G
i

∑M
j r2jkβ̂

2
ij(BLUP ). Here, β̂2

ij(BLUP ) represents squared causal eQTL effect sizes of

SNP j on gene i estimated by best linear unbiased predictor (BLUP)39.

5. BLUP with REML correction. L̂k =
∑G
i

∑M
j r2jkciβ̂

2
ij(BLUP ). Same as LASSO with REML correction,

but using BLUP rather than LASSO.

We report mean prediction accuracy (in terms of R2 between predicted and true expression scores) and
bias (in terms of the slope from regressing predicted expression scores on true expression scores) with mean
standard errors over 100 independent simulations. Across all expression panel sample sizes, we obtained
the best prediction R2 when using LASSO with REML correction (Supplementary Figure 9). The superior
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prediction R2 of LASSO compared to other methods can be attributed to the fact that LASSO enforces a
sparsity prior on effect sizes, which matches the sparse nature of cis-eQTL effect sizes. However, LASSO also
produces biased estimates of effect sizes, which is why we need to scale the effects to match the expression
cis-heritability estimated by REML (which is unbiased) to obtain unbiased estimates of expression scores.
LASSO with REML correction gave us approximately unbiased estimates of expression scores at large enough
sample sizes (>500). For OLS summary statistics, we observed unbiased estimates of expression scores at all
sample sizes but inferior prediction R2 to LASSO with REML correction. The remainder of the estimation
methods were biased at all sample sizes and had comparable prediction R2 to OLS summary statistics. We
observed concordant results when varying the number of eQTLs per gene (Supplementary Figure 9a-c), eQTL
window size (Supplementary Figure 9d), and REML prediction error (Supplementary Figure 9f). Prediction
R2 and bias across all methods varied when changing the mean cis-heritability of expression, though the
relative performance of the five methods compared to each other remained consistent across different mean
cis-heritability values (Supplementary Figure 9e).

Notably, we observed poor prediction R2 of all methods for expression data sets of size 100-200, which
is comparable to the size of most individual tissue expression panel data sets. This result suggests that we
cannot reliably predict expression scores using available individual tissue expression panel data sets.

1.5.5 Simulations assessing calibration of standard errors for h2med enrichment estimates

We conducted an additional simulation aiming to test the calibration of jackknife standard errors computed
by MESC for the h2med enrichment of a gene category D, defined as (proportion of h2med in D) / (proportion
of genes in D). h2med enrichment is the main quantity that we aim to estimate for analyses involving gene sets.
We simulated a gene category containing 200 genes. We then performed two sets of simulations in which this
gene category was either enriched or not enriched for h2med. We observed well-calibrated h2med enrichment
standard errors for the gene category under both the null and causal enrichment scenarios (Supplementary
Figure 17).

1.5.6 Simulations assessing REML prediction error

In this section, we justify that our simulation procedure which takes the true expression cis-heritability
(h2cis) of each gene and adds noise drawn from N(0, 0.012) is a reasonable proxy for estimates of expression
cis-heritability obtained from REML. We did not directly use REML to estimate h2cis in our simulations for
computational ease.

First, we sought to confirm that REML (as implemented in GCTA40) produces unbiased estimates of h2cis
in sparse genetic architectures. GCTA models all SNP effects as coming from a one-component Gaussian
distribution, which differs from the sparse cis-genetic architecture of gene expression. However, we conducted
simulations involving sparse genetic architectures consisting of a single large effect and many small ones
(mimicking the cis-genetic architecture of gene expression) and found that GCTA still produced unbiased
estimates of h2cis (Supplementary Figure 18).

Next, we observed that REML prediction error appears to be heteroskadastic as a function of h2cis
(Supplementary Figure 11), so we conducted simulations in which we modeled the standard error of h2cis
according to the best quadratic fit line between h2cis and SE(h2cis) (Supplementary Figure 19). We found
that we obtained virtually identical estimates of h2med/h

2
g when modeling the standard error of h2cis in this

fashion compared to simply drawing noise from N(0, 0.012) regardless of the magnitude of h2cis.
These two results demonstrate that our simulation procedure which adds normally distributed noise to

true h2cis is reasonable.

1.6 Additional real data analyses

1.6.1 h2med/h
2
g estimates with other choices of SNP/gene categories

First, we sought to investigate whether modifying the expression cis-heritability bins and baselineLD model
influenced our h2med/h

2
g estimates. When we stratified genes in 10 bins rather than 5, we obtained very

similar h2med/h
2
g estimates (Supplementary Figure 20). Moreover, we observed that our h2med/h

2
g estimates

were robust when making small changes to the baselineLD model (mean h2med/h
2
g when individually removing
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each SNP category = 0.11) and quite robust to even large changes in the baselineLD model (mean h2med/h
2
g

when removing 50% of all SNP categories = 0.13) (Supplementary Figure 21). These results demonstrate that
our choice of stratifying genes by 5 expression cis-heritability bins and stratifying SNPs by the baselineLD
model can robustly correct for biases in h2med/h

2
g estimates.

Next, we sought to evaluate the effect of not stratifying genes and/or SNPs on h2med/h
2
g estimates.

When we did not stratify genes by expression cis-heritability bins, we obtained much lower estimates of
h2med/h

2
g (mean estimate 0.011 with S.E. 0.003) (Supplementary Figure 22). This result is consistent with

our simulation result in Figure 2d, which shows that not stratifying genes in the presence of a genome-
wide negative correlation between the magnitude of eQTL effect sizes and gene-trait effect sizes leads to
downwardly biased estimates of h2med/h

2
g. Moreover, when we did not stratify SNPs by the baselineLD

model, we obtained much higher estimates of h2med/h
2
g (mean estimate 0.45 with S.E 0.03). This result is

consistent with our simulation result in Figure 2e, which shows that not partitioning SNPs in the presence of
genome-wide positive correlation between the magnitude of eQTL effect sizes and non-mediated effect sizes
leads to upwardly biased estimates of h2med/h

2
g. Together, these results demonstrate that both gene-eQTL

independence and pleiotropy-eQTL independence are strongly violated in practice, justifying the necessity of
stratifying genes by expression cis-heritability bins and stratifying SNPs by the baselineLD model to obtain
unbiased estimates of h2med/h

2
g.

1.6.2 Role of tissue specificity in explaining low heritability genes

Because we define the h2cis of a gene by averaging individual-tissue h2cis estimates across all tissues, a gene
with low meta-tissue h2cis can reflect two different scenarios: the gene has low individual-tissue h2cis across
many tissues, or the gene has high individual-tissue h2cis in only one or a small number of tissues (i.e. the
gene has tissue-specific eQTLs). To investigate the potential role of tissue-specific eQTLs in explaining low
meta-tissue h2cis, we obtained three quantities for each gene: (1) the number of tissues in which the gene had
a significantly nonzero h2cis (p < 0.05), (2) the max h2cis of the gene across all tissues, and (3) the average
h2cis of the gene across the tissues for which h2cis was significantly nonzero. If the number of tissues in which
the gene has truly nonzero h2cis (an indicator of the tissue specificity of the gene) is the primary factor in
determining the magnitude of the meta-tissue h2cis, we would expect that (1) be proportional to the magnitude
of the meta-tissue h2cis, while (2) and (3) not be proportional to the magnitude of the meta-tissue h2cis. We
observed that (1) was indeed proportional to the magnitude of the meta-tissue h2cis (Supplementary Figure
23a); however, (2) and (3) were also proportional to the magnitude of the meta-tissue h2cis (Supplementary
Fig 23b,c), suggesting that statistical power due to the magnitude of h2cis, rather than tissue specificity, was
primarily responsible for the fact that (1) was proportional to the meta-tissue h2cis. In summary, these results
suggest that low h2cis genes are not primarily genes with highly tissue-specific eQTLs, though we cannot rule
out the possibility of tissue-specific eQTLs having some contribution to low h2cis genes.

We also investigated the relationship between h2cis and expression levels, but did not observe a strong
relationship between h2cis and average expression level across individuals, nor the number of tissues in which
the gene is expressed (Supplementary Figure 24).

1.6.3 Impact of adding window around gene set when estimating h2med enrichment

When estimating the h2med enrichment of a given gene set, we stratify SNPs by the baselineLD model v2.0 in
order to account for correlations between eQTL effects and non-mediated effects, and we stratify genes within
the gene set into three bins to account for correlations between eQTL effects and gene effects. In addition
to the 72 baselineLD model SNP annotations, we might consider adding an additional annotation that
corresponds to all SNPs within a certain genomic distance (e.g. 100 Kb) of genes in the gene category. By
including this annotation, we impose a stricter standard for identifying h2med enrichment of the gene category.
To illustrate this, consider a scenario in which GWAS signal tends to physically localize around genes in a
given gene set, but that none of the GWAS signal is actually mediated by the expression levels of those genes.
Because cis-eQTLs also (by definition) physically localize around those genes, by chance we will observe that
eQTLs for those genes will have larger GWAS effect sizes compared to the genomic background, in which
case we will likely spuriously identify the gene set as having significant h2med enrichment. By including a 100
Kb window around each gene, we require that eQTL effect size magnitude is correlated with GWAS effect
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size magnitude within the 100 Kb windows to detect significant h2med enrichment, which will not occur if the
GWAS signal is not mediated by the expression levels of the genes. In summary, including a SNP annotation
corresponding to a window around each gene can eliminate false positive h2med enrichment estimates that
arise due to localization of GWAS signal around genes that is not mediated by gene expression.

In practice, we chose to include a 100 Kb window around genes, given precedence in the literature15,18,41,42.
These studies report large heritability enrichment of a window of this size around many functional gene sets.
When including this annotation for each gene set, we observed that the h2med enrichment estimate for the
gene set was very similar for most gene sets (Supplementary Figure 25), demonstrating that the h2med enrich-
ment of these gene sets was not due to coincidental overlap between non-mediated effects and eQTL effects
near these genes. Given this result, we did not include the window around genes in any of our subsequent
analyses, nor in any of the results we report in the manuscript.

1.6.4 Comparing MESC to other gene set enrichment methods

MESC can be used to prioritize disease-relevant gene sets using the h2med enrichment of a gene set, defined
as (proportion of h2med in gene set) / (proportion of genes in gene set). Larger h2med enrichment of the
gene set suggests that the expression of genes in the gene set have larger causal effects on disease. Many
other methods exist that also aim to prioritize causal gene sets using GWAS data43–49. MESC primarily
differs from these other methods in that (1) it utilizes eQTL data, and (2) it specifically estimates causal
effects of gene expression on disease, under a generative model for disease that connects SNP effects on gene
expression to gene effects on disease. On the other hand, other popular methods for gene set enrichment
analysis (e.g. MAGMA, DEPICT) are not based on eQTL data and do not model gene effects on disease.
Instead, these methods prioritize gene sets under the assumption that causal genes should have more GWAS
signal in close genomic proximity to them, which may not be true in some cases50,51. Thus, the two qualities
above can make MESC desirable as a discovery tool, especially since eQTLs have been useful in elucidating
the mechanistic basis of disease in many other settings5,19,23,52–62.

However, there are also scenarios in which MESC will miss gene sets that play a causal role in disease.
In particular, MESC focuses only on genes whose expression levels mediate the effects of GWAS hits, to
the extent that can be detected in existing eQTL studies such as GTEx. SNP effects on disease might be
mediated by mechanisms other than gene expression levels (e.g. protein-coding changes), or they may be
mediated by gene expression levels in specific cell types or contexts that are not captured by existing eQTL
studies. Moreover, a key drawback of MESC is that it produces large standard errors for small gene sets and
thus can only be applied to large gene sets with more than 200 genes, whereas other methods can analyze
gene sets of any size. Thus, we propose MESC as a complementary approach rather than replacement for
other pathway enrichment methods.

To compare MESC to other pathway enrichment methods, we applied MAGMA46 and DEPICT45 to
the same GWAS summary statistics for 26 traits with nominally significant h2med. We analyzed a total of
501 gene sets, which represent the intersection of gene sets we analyzed using MESC in our study and gene
sets built into the DEPICT software. We ran MAGMA with default parameters. DEPICT requires that
we specify a p-value threshold for defining significant GWAS loci; however, the recommended thresholds of
1 × 10−5 and 5 × 10−8 caused DEPICT to exceed its maximum number of loci for many traits. Thus, for
each trait, we set the p-value threshold to the maximum of the following values that did not cause DEPICT
to exceed its maximum number of loci: 1 × 10−5, 5 × 10−8, 5 × 10−15, 5 × 10−20, 5 × 10−25, 5 × 10−30,
5× 10−35, 5× 10−40, 5× 10−45, 5× 10−50. We then compared gene sets identified as significantly enriched
by MAGMA and DEPICT to gene sets with significant h2med enrichment (see Supplementary Table 9 for all
estimates). Out of 13,206 total trait-gene set pairs, MESC identified 106 with significant h2med enrichment
(FDR < 0.05 while correcting for 13,206 × 3 = 39,078 hypotheses), compared to 85 for MAGMA and 957 for
DEPICT (Extended Data 8a). We observed correlated enrichment p-values across the three methods (MESC
vs. MAGMA R2 = 0.14, MESC vs. DEPICT R2 = 0.20, MAGMA vs. DEPICT R2 = 0.10) (Extended Data
8b). Of the 106 significant trait-gene sets pairs identified by MESC, 32 were not detected as significant by
either MAGMA or DEPICT (Extended Data 8c), including biologically plausible trait-gene sets pairs such
as “phospholipid metabolic process” for high-density lipoprotein level and “synapse part” for schizophrenia.
These results demonstrate that MESC produces broadly concordant gene set enrichment estimates as the
other methods, while also capturing unique signal that is present in only eQTL data.
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1.7 Simulation parameters

Figure 2a

For this simulation, we varied h2med/h
2
g from 0 to 1. For each gene, we selected 5 SNPs to act as cis-eQTLs with

locations randomly selected within a random 1 Mb window. The average cis-heritability across all genes was
set at h2cis = 0.05. One eQTL for each gene was randomly selected to explain 80% of the total cis-heritability

of the gene and had an effect size drawn from N (0, 0.8h2cis). The remaining eQTLs had effect sizes drawn

from N (0, 0.2h2cis/4). Expression phenotypes were simulated for each gene with environmental noise drawn

from N (0, 1 − h2cis). Non-mediated effect sizes were simulated for each SNP from N (0, (h2g − h2med)/M).

Gene-trait effect sizes simulated for each gene from N (0, h2med/(Gh
2
cis)). Complex trait phenotypes were

simulated with environmental noise drawn from N (0, 1− h2g).

Figure 2b

We set h2cis = 0.05. For the simulation involving 1 eQTL per gene, we drew its effect size from N (0, h2cis).
For the simulation involving 10% of genes being causal, we simulated gene-trait effect sizes from a point-
normal distribution, with nonzero effects drawn from N (0, h2med/(0.1Gh

2
cis)). For the simulation involving

10% of SNPs being causal, we simulation non-mediated SNP effect sizes from a point-normal distribution,
with nonzero effects drawn from N (0, (h2g − h2med)/0.1M). The remainder of simulation parameters were
the same as in Figure 2a.

Figure 2c

We set h2cis = 0.05. We simulated one eQTL per gene, with its effect size in the assayed tissue and causal
tissue drawn from a multivariate normal distribution with mean 0 and 2 × 2 covariance matrix Σ with

diagonal values Σii = h2cis and off-diagonal values Σij = h2cis

√
1
2 (r2g(T )(3− p)− (1− p)), where p represents

the proportion of SNPs with non-zero eQTL effect sizes on any gene (i.e. G
M ). Simulating eQTL effect sizes

in this fashion results in an average squared genetic correlation of r2g(T ) across all genes. We simulated
non-mediated effect sizes, expression phenotypes for the assayed tissues, and complex trait phenotypes in
the same manner as in Figure 2a. eQTL effect sizes used to generate complex trait phenotypes were taken
in the causal tissue. Expression scores were estimated from only the assayed expression phenotypes.

Figure 2d

We simulated 1 eQTL for each gene with effect size drawn from a normal distribution with mean 0 and
variance 100 · 2k/200/(

∑
k 2k/200), where k randomly indexes the genes from 1 to 1000. Simulating eQTL

effect sizes in this fashion results in a realistic continuous distribution of eQTL effect sizes, where the quintiles
for expression cis-heritability across genes are 0.016, 0.032, 0.064, 0.13, and 0.26. Next, we simulated gene-
trait effect sizes from a normal distribution with mean 0 and variance h2med/(10000 · 2k/200/(

∑
k 2k/200)).

This causes the magnitude of gene-trait effects to be strongly inversely correlated with the magnitude of
eQTL effect sizes across genes, but the per-gene h2med remains constant. We simulated non-mediated effect
sizes, expression phenotypes, and complex trait phenotypes in the same manner as in Figure 2a.

Figure 2e

We set h2cis = 0.05. We simulated 1 eQTL per gene with effect size drawn from N (0, h2cis). All eQTLs
were selected to fall in coding regions. Next, for all SNPs in coding regions, we simulated non-mediated
SNP effect sizes from N (0, (h2g−h2med)/Mcoding), where Mcoding is the number of SNPs that fall into coding
regions. We simulated gene-trait effect sizes, expression phenotypes, and complex trait phenotypes in the
same manner as in Fig 2a.
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Figure 2f

We set h2cis = 0.05. We simulated 1 eQTL per gene with effect size drawn from N (0, h2cis). To simulate 10x
enrichment of eQTLs in coding, TSS, and conserved regions, we selected eQTL locations so that 10x more
eQTLs per SNP were located in the three SNP categories than the remainder of the genome. We simulated
non-mediated effect sizes so that the heritability enrichment of the three SNP categories was 2.5x, 5x, or
10x. We simulated expression phenotypes and complex trait phenotypes in the same manner as Figure 2a.
For stratified LD-score regression, we defined the eQTL category as the set of all true eQTLs. For MESC,
we stratified SNPs by the baselineLD model with the three SNP categories and windows around the SNP
categories removed from the model.

Supplementary Figure 3

For all simulations, we set h2cis = 0.05, h2med = 0.1, and h2 = 0.5. For each of 1000 genes, we randomly selected
5 SNPs within a random 1 Mb window to act as cis-eQTLs with effect sizes drawn fromN (0, [pi(1−pi)]αeQTL),
where pi is the MAF of the given SNP i. To avoid extreme effect sizes for singletons or doubletons, effect
sizes for SNPs with MAF < 0.01 were drawn from N (0, [0.01(1−0.01)]αeQTL). αeQTL was set to either -0.33,
-0.60, -0.99, or -1.33. Finally, we scaled the effect sizes of the cis-eQTLs so that the sum of their squared
effects equalled h2cis. Expression phenotypes were simulated for each gene with environmental noise drawn

from N (0, 1− h2cis).
Similarly, we simulated non-mediated effect sizes for each SNP from N (0, [pi(1 − pi)]αGWAS ), or from

N (0, [0.01(1 − 0.01)]αGWAS ) for SNPs with MAF < 0.01. αGWAS was set to any of the same four values
αeQTL could take on (without necessarily being equal to αeQTL). We then scaled these effect sizes so
that the sum of the squared effects equalled h2 − h2med. We simulated gene-trait effect sizes for each gene

from N (0, (h2med/(Gh
2
cis)). Complex trait phenotypes were simulated with environmental noise drawn from

N (0, 1− h2g).
Expression scores were estimated by computing eQTL summary statistics from the simulated expres-

sion panel. In-sample LD scores were computed for all 1,539,668 SNPs from the 100,000 GWAS samples.
Regression was performed using only Hapmap3 SNPs.

Supplementary Figure 9

We selected a 20 Mb region on chromosome 1 (base pair coordinates 60,000,000 to 80,000,000), which
contained 8,604 SNPs. 100 genes were simulated within this region, with the average cis-heritability across
all genes set at h2cis = 0.05 or 0.01. For each gene, we simulated 1, 5, or 10 cis-eQTLs with locations
randomly selected within a random 1 Mb or 10 Kb window within the overall 20 Mb region. For simulations
with one eQTL per gene, the effect size for the eQTL was drawn from N (0, h2cis). For simulations with
more than one eQTL per gene, one eQTL was randomly selected to explain 80% of the total heritability
of the gene and had an effect size drawn from N (0, 0.8h2cis). The remaining eQTLs had effect sizes drawn

from N (0, 0.2h2cis/(NeQTL − 1)), where NeQTL is the total number of eQTLs per gene. Expression values
were simulated for each gene using an additive generative model with previously simulated effect sizes and
environmental noise drawn from N (0, 1 − h2cis). LASSO and BLUP prediction of eQTL effect sizes was
performed using all SNPs within 1Mb of each simulated gene. To simulate REML prediction error in
expression heritability estimates, we added noise drawn from N (0, 0.012) to the true heritability values,
which is consistent with the average standard error of GCTA estimates of expression cis-heritability across
all GTEx samples (Supplementary Figure 11).

Supplementary Figure 10

All effect sizes and complex trait phenotypes were simulated in the same manner as Figure 2a. We simulated
expression phenotypes for 1, 5, or 10 tissues with 200 samples per tissue using the same eQTL effect sizes
used to generate complex trait phenotypes. We estimated expression scores in each individual tissue. We
meta-analyzed expression scores across tissues by averaging the causal squared LASSO-predicted eQTL effect
sizes across all tissues for each gene (after scaling the effect sizes to the estimated expression cis-heritability).
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We then used these averaged causal eQTL effect sizes to compute expression scores by multiplying them
by the element-wise squared LD matrix. This meta-analysis procedure is the same as the one described in
“Meta-analysis of expression scores” in Methods.

Supplementary Figure 15

We set h2cis = 0.05. We simulated 1 eQTL per gene with effect size drawn from N (0, h2cis). To simulate 10x
enrichment of eQTLs in coding, TSS, and conserved regions, we selected eQTL locations so that 10x more
eQTLs per SNP were located in the three SNP categories than the remainder of the genome. We simulated
non-mediated effect sizes so that the heritability enrichment of the three SNP categories was 10x. Gene-trait
effect sizes, expression phenotypes, and complex trait phenotypes were simulated in the same manner as in
Figure 2a.

Supplementary Figure 17

We set the overall h2med/h
2
g = 0.4. We simulated a gene category containing 200 random genes from the

1000 total genes. For the null scenario, we drew gene-trait effect sizes for all genes, including genes in the
gene category, from N (0, h2med/(Gh

2
cis)). For the enriched scenario, we simulated gene-trait effect sizes so

that h2med within the gene category was 2x the h2med of genes outside of the category. eQTL effect sizes,
non-mediated SNP effect sizes, expression phenotypes, and complex trait phenotypes were simulated in the
same manner as in Figure 2a.

1.8 Choice of 10 traits for display in Figure 3

Starting with the full set of 26 traits with h2med/h
2
g greater than 0 with nominal significance (p < 0.05), we

pruned genetically correlated traits as follows. First, we selected the pair of traits with the greatest genetic
correlation (estimated using cross-trait LD score regression63). Between the pair of selected traits, we then
retained the trait with the larger h2g z-score (estimated using stratified LD score regression2). We repeated
this procedure until 10 traits were left.
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2 Supplementary Figures

Supplementary Figure 1. Simulations assessing impact of different methods of estimating
expression scores on estimates of h2med/h

2
g. See “Simulations comparing different methods of estimating

expression scores” (Supplementary Note) for description of methods. For this simulation, h2med/h
2
g = 0.4. All

other simulation parameters were the same as in Figure 2a. We exclude results for expression scores estimated
using BLUP, since h2med/h

2
g estimates obtained from these expression scores were severely upwardly biased

(i.e. greater than 1 at all sample sizes). Error bars represent mean standard errors across 100 simulations.

Supplementary Figure 2. Simulations assessing h2med/h
2
g estimates when varying h2g. Simulation

was performed in the same manner as in Figure 2a (with expression panel size fixed at 1000). h2med/h
2
g was

fixed at 0.2 for all simulations. Error bars represent mean standard errors across 100 simulations.
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Supplementary Figure 3. Simulations assessing h2med/h
2
g estimates under frequency-dependent

genetic architectures. Error bars represent mean standard errors across 100 simulations. With h2med(common)/h
2
common

fixed at 0.2 and h2 fixed at 0.5, we simulated eQTL effect sizes with variance of per-allele effect sizes pro-
portional to [pi(1− pi)]αeQTL and non-mediated effect sizes with variance proportional to [pi(1− pi)]αGWAS .
We selected values of αeQTL and αGWAS to have the following property: α = −0.33: 5% of total heritabil-
ity explained by rare variants with MAF < 0.01; α = −0.60: 10% heritability explained by rare variants;
α = −0.99: 25% heritability explained by rare variants; α = −1.33: 50% heritability explained by rare vari-
ants. (a) h2med(common)/h

2
common estimates with αeQTL = αGWAS , in which case the proportion of rare h2med

and rare h2 is the same (x-axis). (b) h2med(common)/h
2
common estimates with αeQTL 6= αGWAS . Left: propor-

tion of rare h2med is fixed at 0.1, while proportion of rare h2 is varied from 0.05 to 0.25. Right: proportion of
rare h2 is fixed at 0.1, while proportion of rare h2med is varied from 0.05 to 0.25. See “Additional details on
simulations under frequency-dependent architectures” in Supplementary Note for remaining details on this
simulation.

26



Supplementary Figure 4. Relationship between gene set size and log10 h2med enrichment stan-
dard error. Each point represent a gene set-complex trait pair. Points highlighted in red indicate gene
set-complex trait pairs with FDR < 0.05 (after accounting for 21,502 hypotheses tested). Blue line indicates
the LOESS best fit line.

27



Supplementary Figure 5. Per-bin h2med/h
2
g estimates for simulation in Fig 2d. In the legend, the

number in parentheses indicates the average expression cis-heritability of genes in a given gene bin. Error
bars represent mean standard errors across 300 simulations.

Supplementary Figure 6. Same simulation parameters as Figure 2e, but all non-mediated effects and
eQTL effects localized in conserved regions and transcription start sites (TSS) respectively. Error bars
represent mean standard errors across 300 simulations.
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Supplementary Figure 7. Same as Figure 5c, but including h2med enrichment estimates for all 26 traits
and with individual GTEx tissues labelled.
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Supplementary Figure 8. Modes of expression causality. See “Modes of expression causality”
(Supplementary Note) for a description of each scenario and its contribution to estimates of h2med.
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Supplementary Figure 9. Simulations assessing accuracy and bias of different methods of
estimating expression scores in various cis-genetic architectures. See “Comparing different methods
of estimating expression scores” (Supplementary Note) for details on these simulations. Left: R2 between
predicted and true expression scores at different expression panel sample sizes. Right: Bias of predicted
expression scores (slope from regressing predicted expression scores on true expression scores). Default
settings: 5 cis-eQTLs per gene, cis-eQTLs randomly selected within 1 Mb window, mean expression cis-
heritability = 0.05. (a-c) 5, 10, and 1 simulated cis-eQTL per gene respectively. (d) eQTLs randomly
selected within 10 Kb window. (e) Mean expression cis-heritability = 0.01. (f) LASSO with REML correction
results for various levels of REML noise. Error bars for all plots represent mean standard errors across 100
simulations.
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Supplementary Figure 10. Simulations assessing h2med/h
2
g estimates from expression scores

meta-analyzed across tissues. We simulated expression phenotypes in multiple tissues, then estimated
expression scores in individual tissues and meta-analyzed expression scores across tissues. Error bars repre-
sent mean standard errors across 100 simulations. See “Simulations parameters” in Supplementary Note for
specific details on this simulation.

Supplementary Figure 11. Standard errors of expression cis-heritability estimates across GTEx
tissues. Expression cis-heritability estimates are obtained for each gene in each of 48 GTEx tissues using
GCTA. Standard error represents the mean standard error of expression cis-heritability estimates for each
gene across all 48 tissues. Red line denotes the best quadratic fit.
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Supplementary Figure 12. Comparison between Mendelian randomization with multiple ge-
netic variants and MESC.

Supplementary Figure 13. Illustration of impact of violations to gene-eQTL effect size in-
dependence on estimates of E[α2]. In the figure, we depict a scenario where the magnitude of α is
negatively correlated with the magnitude of β. (a) If we perform the regression using all genes, the slope
from the regression will be downwardly biased relative to the true E[α2]. (b) If we stratify the regression
across genes by the magnitude of their expression cis-heritability, we can obtain approximately unbiased
estimates of E[α2

D] for each gene category D.
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Supplementary Figure 14. Illustration of impact of violations to pleiotropy-eQTL effect size
independence on estimates of E[α2]. In the figure, we depict a scenario where the magnitude of γ is
positively correlated with the magnitude of β. (a) If we perform the regression using all SNPs, the slope
from the regression will be upwardly biased relative to the true E[α2]. (b) If we stratify the regression across
SNPs by the magnitude of their eQTL effect sizes, we can obtain an approximately unbiased estimate of
E[α2].

Supplementary Figure 15. Simulations assessing h2med/h
2
g estimates involving realistic violation

to pleiotropy-eQTL independence. h2med/h
2
g was varied from 0 to 0.6. Because the union of the three

SNP categories with eQTL effect size enrichment (coding regions, conserved regions, and transcription start
sites) comprises around 6% of the genome, the maximum value that h2med/h

2
g can be is 0.6 if we have the

condition that h2g enrichment of the three SNP categories is 10x. Error bars represent mean standard errors
across 100 simulations. See Supplementary Note for more details on this simulation.
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Supplementary Figure 16. Simulations assessing null calibration and power of MESC and
stratified LD-score regression given pleiotropy-eQTL effect size independence. For various levels
of h2med/h

2
g, this figure reports the proportion of simulations which the null hypothesis that h2med/h

2
g = 0

is rejected by MESC, and the proportion of simulations in which the null hypothesis of no h2g enrichment
for the set of all eQTLs is rejected by stratified LD-score regression (S-LDSC). All effect sizes, expression
phenotypes, and complex trait phenotypes were simulated in the same manner as Figure 2a. For stratified
LD-score regression, we defined the eQTL category as the set of all true eQTLs. 300 simulations were
performed.

35



Supplementary Figure 17. Simulations assessing calibration of jackknife standard errors for
h2med enrichment. We simulated a gene category without h2med enrichment (null) and a gene category
with 2x h2med enrichment (causal). Jackknife standard errors for h2med enrichment are compared to empirical
standard errors of h2med enrichment estimates across 1000 simulations. See Supplementary Note for more
details on this simulation.
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Supplementary Figure 18. Simulations assessing GCTA estimates of heritability under sparse
cis-eQTL genetic architectures. We simulated cis-eQTLs for a gene by selecting x random SNPs within
a random 1 Mb window on chromosome 1 (restricting to Hapmap3 SNPs). One cis-eQTL was randomly
selected to be the lead eQTL with effect size drawn from N (0, 0.8h2cis). The remaining x − 1 cis-eQTLs
had effect sizes drawn from N (0, 0.2h2cis/(x − 1)). Expression phenotypes for the gene were simulated for
1000 individuals (genotypes randomly selected from UK Biobank) with environmental noise drawn from
N (0, 1− h2cis). GCTA was used to predict h2cis from the expression phenotypes and genotypes within the 1
Mb window. Error bars represent mean standard errors across 100 simulations.
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Supplementary Figure 19. Simulations assessing h2med/h
2
g estimates with varying SE(h2cis) as a

function of h2cis. Simulation was performed in the same manner as in Figure 2a (with expression panel
size fixed at 1000). Standard error for h2cis was simulated from either N (0, 0.012) (consistent the mean
of empirical SE(h2cis) estimates across all GTEx samples) or from N (0, (0.0079 + 0.22h2cis − 0.03(h2cis)

2)2)
(consistent with the best quadratic fit line relating empirical h2cis to SE(h2cis) estimates across all GTEx
samples, see Supplementary Figure 11). Error bars represent mean standard errors across 100 simulations.
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Supplementary Figure 20. h2med/h
2
g estimates when varying number of expression cis-heritability

bins. All estimates were obtained using all-tissue meta-analyzed expression scores. (a) We estimated
h2med/h

2
g for 42 traits while stratifying genes by either 5 or 10 expression cis-heritability bins. Error bars

represent jackknife standard errors. (b) Estimates from a meta-analyzed across all 42 traits. Error bars
represent standard errors from random-effect meta analysis.
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Supplementary Figure 21. h2med/h
2
g estimates when removing subsets of the baselineLD model.

In total, the baselineLD model v2.0 we used in our main analyses contains 72 SNP annotations. We grouped
together related baselineLD annotations (typically consisting of a main annotation and the same annotation
with 100-500 bp flanking windows), producing the following 29 categories: Coding, Conserved, CTCF, DGF,
DHS, Enhancer, Fetal DHS, H3K27ac, H3K4me1, H3K4me3, H3K9ac, Intron, Promoter, Repressed, Super
Enhancer, TFBS, Transcribed, TSS, 3’ UTR, 5’ UTR, Weak Enhancer, GERP, Allele Age, LLD, Recombina-
tion Rate, Nucleotide Diversity, Background Selection Statistic, CpG Content, and ASMC. When removing
annotations, we remove all related annotations that fall into one of the 29 categories. Each data point
represents an h2med/h

2
g estimate meta-analyzed over 42 traits and estimated from GTEx all-tissue expression

scores. For the boxplot labelled “1 annotation removed,” we show h2med/h
2
g estimates when removing each

of the 29 individual categories. For the boxplots labelled “25%/50%/75% annotations removed,” we show
h2med/h

2
g estimates from 100 random subsets of the categories corresponding to the percentage of annotations

removed. Dotted line indicates the h2med/h
2
g estimate when using the full baselineLD model.
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Supplementary Figure 22. h2med/h
2
g estimates without stratifying genes/SNPs. All estimates were

obtained using all-tissue meta-analyzed expression scores. (a) We estimated h2med/h
2
g for 42 traits without

stratifying genes by 5 expression cis-heritability and/or without stratifying SNPs by the baselineLD model.
Error bars represent jackknife standard errors. (b) Estimates from a meta-analyzed across all 42 traits.
Error bars represent standard error from random-effect meta-analysis.
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Supplementary Figure 23. Relationship between expression cis-heritability and metrics of
tissue specificity. Meta-tissue h2cis (x-axis) is computed for each gene by averaging h2cis across all tissues.
x-axis labels indicate the average meta-tissue h2cis of genes within each decile. h2cis (y-axis) refers to estimates
within individual tissues. (a) Relationship between meta-tissue h2cis deciles and the number of tissues with
significantly nonzero h2cis (p < 0.05) for each gene. (b) Relationship between meta-tissue h2cis deciles and
the max h2cis across tissues for each gene. (c) Relationship between meta-tissue h2cis deciles and the average
h2cis across tissues with significantly nonzero h2cis (p < 0.05) for each gene.
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Supplementary Figure 24. Relationship between expression cis-heritability and expression
levels. (a) Expression levels represent the median log(RPKM) expression across individuals, which are then
averaged across tissues. (b) A gene is expressed in a tissue if RPKM > 0.3 in that tissue.
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Supplementary Figure 25. h2med enrichment estimates with 100 Kb window around genes. (Left)
h2med enrichment estimates for all 21,502 trait-gene sets pairs analyzed in the main text when including a
SNP annotation corresponding to 100 Kb windows around each gene in each gene set. (Right) Same as left,
but showing h2med enrichment p-values.
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