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Transparent Methods 

Parsimonious integration of scRNA-Seq datasets 
We refer to a scRNA-Seq dataset 𝐷 as a set of 𝑁 𝑀-dimensional points where 𝑀 is the number of 
genes. Consider a query dataset 𝐷$ and a reference dataset 𝐷% and assume for simplicity that both 
𝐷$ and 𝐷% consist of the same number of cells. This assumption is necessary only for the sake of 
formal problem formulation and will be omitted later on. We define the batch effect vector for a 
cell: 

Definition 1. Suppose that a cell 𝑐 is sequenced twice (i.e, the same cell sequenced in two different 
batches, D1  and D2) yielding two expression profiles 𝐸()

*  and 𝐸(+
* . The batch effect vector for cell 

𝑐 is defined as the vector 𝐵* 	= 	𝐸(+
* 	− 	𝐸()

* . 

We also introduce the notion of scRNA-Seq dataset alignment.  

Definition 2. Given two scRNA-Seq datasets 𝐷$ and 𝐷% of equal sizes, an alignment of 𝐷$ onto 𝐷% 
is a one-to-one correspondence between the cells of 𝐷$ and 𝐷%. 

One would be able to estimate batch effects between two datasets 𝐷$and 𝐷% if they shared a sample 
of cells. Indeed, according to the Definition 1, one would include RNA of a group of cells twice - 
once in 𝐷$ and once in 𝐷%- compute batch effect vectors in these cells, and then extrapolate batch 
effect vectors onto the whole dataset. In reality, sequencing the same cell twice is infeasible (since 
the cell is destroyed in the sequencing process) and, therefore, it is impossible to directly compute 
the batch effect vectors of these cells. However, we postulate that if 𝐷$ and 𝐷% originate from the 
same biological condition then for each cell 𝑐$ ∈ 𝐷$ there exists a cell 𝑐% ∈ 𝐷% such that the 
expression profile of 𝑐% ∈ 𝐷%, 𝐸(+

*+ , is closest to the expression profile of cell 𝑐$ ∈ 𝐷$, 𝐸()
*) , if 𝑐$ 

were to be sequenced twice (in 𝐷$ and 𝐷%). As we do not know which cell 𝑐% ∈ 𝐷% is closest to the 
unobserved expression profile 𝐸(+

*) , we search for such an alignment of 𝐷$ onto 𝐷% which 
minimizes the total Euclidean distance between the cells in the dataset 𝐷$ and their corresponding 
(unobserved) cells in 𝐷%. In order to correct for batch effects, we need to compute the batch effect 
vector for each cell. Thus, we have to solve the following: 

Parsimonious Batch Effect Correction (PBEC) problem. Given two equal-size scRNA-Seq 
datasets 𝐷$ and 𝐷%, find an alignment of the dataset 𝐷$ onto 𝐷% for which the total length of the 
batch effect vectors across all the cells in 𝐷$ is minimized. 



 
Figure S1: Possible anchor pairs.  Related to Figures 1,3,6, and 7. The two datasets (query - blue and reference - 
orange) consist of two cells. The weights on the edges are the Euclidean distances between the points. There are only 
two possible anchor pairs. A) The assignment is parsimonious since the total weight of the translation is equal to 2. 
The local structure of the query dataset is preserved. B) The assignment is not parsimonious (the total weight is 4) and 
it results in destroying the local structure of the query dataset. 
 

 
Figure S2: BATMAN anchor pairs vs mutual nearest neighbors anchor pairs.  Related to Figures 1,3, 6, and 7. 
The dotted lines are used to depict the Euclidean distances between the corresponding cells. A) The two datasets 
consist of two points each (blue and orange), the batch effects are non-orthogonal to the biological signal (𝛼 < 90°). 
BATMAN identifies the correct anchor pairs, while the MNN approaches fail. B) The two datasets consist of four 
points each and the batch effects are large. BATMAN identifies the correct anchor points, while the MNN approaches 
fail. 
 
 
The parsimony of batch effect vectors is strikingly intuitive. To illustrate the idea in a trivial case, 
suppose that we have two datasets and each dataset consists of two cells (Figure S1). There exist 
two different alignments between the datasets. If we align the cells as depicted in Figure S1A, the 
total length of batch effect vectors is equal to 2 (the sum of the green edges). In this case, the local 
structure of the query dataset is preserved. However, if we align the cells as depicted in Figure 
S1B, then the total length of batch effect vectors is 4 and the local structure of the query dataset is 
compromised. This case only helps us illustrate the principle of the parsimonious alignment, and 



in order to emphasize its attractiveness over the existing methods we have to consider more 
challenging scenarios. MNN-based methods (in particular, MNNcorrect (Haghverdi et al., 2018)) 
fail to properly correct for batch effects in cases when batch effects are not orthogonal to the 
biological signal or the magnitude of the batch effect vectors is large. Figures S2A and S2B show 
that parsimonious alignment provides a reasonable solution to the integration problem in these 
cases, while the mutual nearest neighbor-based approaches fail. 

The assumption that the sizes of the datasets 𝐷$ and 𝐷% are equal is not a realistic one. However, 
in case of unequal dataset sizes, one can, for example, subsample the larger dataset to the size of 
the smaller one. In the next section, we present an approach based on selecting an equal number 
of representative cells in both datasets. 

BATMAN: BATch integration via minimum weight MAtchiNg 
In this section, we present our approach for solving the PBEC problem called BATMAN (BATch 
integration via minimum weight MAtchiNg). Suppose that we have two datasets, a query dataset 
𝐷$ and a reference dataset 𝐷%. The datasets are assumed to be log-normalized (Luecken and Theis, 
2019). First, let us assume that |𝐷$| 	= 	 |𝐷%|. Then, solving the PBEC problem can be performed 
by computing the minimum weight matching in the weighted complete bipartite graph 𝐺	 = 	 (𝑉	 =
	𝑉() ∪ 𝑉(+, 𝐸, 𝑤) with 𝑤(𝑥, 𝑦) 	= 	𝑑(𝑥, 𝑦), 𝑥	 ∈ 𝑉$, 𝑦	 ∈ 𝑉%, where 𝑑(𝑥, 𝑦) is the Euclidean 
distance between gene expression profiles of the cell 𝑥 in the query dataset and the cell 𝑦 in the 
reference dataset. However, in practice, the equinumerosity of 𝐷$ and 𝐷% is almost never met. 
Therefore, directly solving PBEC problem on datasets with different number of cells is infeasible. 
To overcome this issue, we propose a novel algorithm, BATMAN. Instead of matching each cell 
in the query to a cell in the reference, BATMAN first identifies a set of representative cells in each 
dataset and then solves PBEC with respect to them. The solution of PBEC on the representative 
cells from 𝐷$ and 𝐷% consists of a set of anchor pairs. The anchor pairs are then used to compute 
batch effect vectors in the representative cells. To determine the batch effect vector in a cell 
belonging to 𝐷$(not an anchor cell), we compute a weighted average of the batch effect vectors 
corresponding to the top 𝑘 closest representative cells in 𝐷$. In more detail, BATMAN consists of 
the following steps: 

1. Identification of representative cells. Representative cells of an scRNA-Seq dataset are 
the cells which are located in the high-density regions of the joint gene expression 
distribution. We propose finding representative cells by using clustering. As clustering in 
high-dimensional spaces is prone to multiple issues such as the “curse of dimensionality” 
(Steinbach, Ertöz and Kumar, 2004), we first compute PCA embeddings for each dataset 
separately. After, we perform clustering (for example, 𝐾-means: for small datasets up to 
1000 cells, 𝐾 ≈ 50; for larger datasets, 𝐾	 ≳ 	300) on each of the two datasets and then 
identify the cluster centers 𝐶$ and 𝐶% to use in the original gene space. 

2. Building the anchor graph. We build the weighted complete bipartite graph 𝐺	 = 	 (𝐶$ ∪
𝐶%, 𝐸, 𝑤) - the anchor graph, where 𝐶$ and 𝐶% are the cluster centers identified in the 
previous step of 𝐷$ and 𝐷% respectively, and the weight of an edge (𝑥, 𝑦) 	∈ 𝐸, 𝑥 ∈ 𝑉$, 𝑦	 ∈
𝑉% is equal to the Euclidean distance between the gene expression vectors 𝑥 and 𝑦.   

3. Computing the minimum weight matching. Next, we find the maximum-cardinality 
minimum weight bipartite matching in the anchor graph 𝐺. The endpoints of the edges 
belonging to the minimum weight matching represent the anchor pairs. 



4. Computing the batch effect vectors in the representative cells. Based on the anchor pairs, 
we compute the batch effect vectors. Given an anchor pair (𝑥, 𝑦), 𝑥	 ∈ 𝑉$, 𝑦	 ∈ 𝑉%, the 
corresponding batch effect vector for the cell 𝑥 is the vector 𝑇I = 𝑦	 − 	𝑥. 

5. Extrapolation of batch effect vectors and correction. For each cell 𝑥 ∈ 𝐷$, we compute 
the batch effect vector 𝑇I as a weighted average across the top 𝑘 closest representative cells 
𝑥$J, 𝑥%J, . . . , 𝑥LJ 	∈ 𝐷$: 

𝑇I =
1
𝑘N 𝛼O	𝑥OJ

L

O	P	$

,N 𝛼O

L

O	P	$

= 1 

    For cell 𝑥, we choose 𝛼O to be proportional to 𝑑(𝑥, 𝑥OJ). After the batch effect vectors𝑇I	are 
determined in each cell 𝑥 of 𝐷$, we correct for them, i.e. 𝑥	 → 	𝑥	 +	𝑇I. 

Dimensionality reduction of the datasets in Step 1 of our algorithm is crucial since it allows us to 
overcome the “curse of dimensionality” and reduces the runtime of clustering. The number of 
principal components should be large enough to ensure that the cells are separable by cell types 
(usually 20-30 (Stuart et al., 2019)). Clustering ensures that the representative cells are distributed 
throughout the whole volume of the datasets (unlike for MNN-based methods; see Figure S4). 
Steps 2 and 3 represent the parsimonious alignment of the most representative cells between the 
two datasets which results in the set of anchor pairs. Finally, in Steps 4 and 5 we compute and 
correct for batch effects in each cell of the query dataset 𝐷$. 

Integrating datasets with multiple cell populations 
In the case when the two scRNA-Seq datasets consist of multiple cell types (cell populations), we 
forbid anchor pairs with different cell type labels. That is, we propose filtering out edges of the 
anchor graph that are unlikely to be present in the matching solution. To accomplish this, we rely 
on transcriptional signatures of cell types, capturing the set of genes upregulated in each cell type. 
Assuming transcriptional signatures are characteristic to each cell type regardless of the 
technology, batch effects, or any other differences and systematic biases, we expect the correlation 
between two transcriptional profiles belonging to the same cell type to be high and the correlation 
of two transcriptional profiles belonging to different cell types to be lower. We use this expectation 
to filter out unlikely edges in the anchor graph. Namely, if the correlation between gene expression 
vectors 𝑥 ∈ 𝑉()  and  𝑦	 ∈ 𝑉(+	is below a threshold (for example, 0.7), then such an edge is removed 
from the graph. Filtering not only improves matching of the same cell types between the two 
datasets, but also significantly reduces the runtime of Step 4 of the BATMAN algorithm as the 
anchor graph becomes sparser. 

 

Non-concordant clustering between the datasets 

Step 1 of BATMAN uses clustering to find the set of representative cells in each batch. A potential 
pitfall of such an approach is that in the case when the two datasets have different densities of their 
joint gene expressions as the naive minimum weight matching can fail due to the different sizes of 
the clusters being matched (Figure S3). In this case, the minimum weight matching can establish 
correspondences between clusters of significantly different sizes, and batch effects can not be fully 



corrected. To overcome this issue, we propose to replicate each representative cell according to 
the size of the cluster it belongs to. Namely, for larger clusters, we introduce additional 
representative cells (copies of the existing ones, Figure S3A). We make sure that the number of 
representative cells in the two datasets is the same. This helps to avoid biases caused by matching 
of representative cells whose clusters have significantly different sizes (Figure S3B). 

 

Speeding up BATMAN 

The steps of BATMAN are not computationally intensive except for Step 4, which involves the 
computation of the minimum weight matching in the anchor graph for a large enough number of 
anchors. Despite the fact that polynomial-time algorithms exist for its solving, it still represents a 
bottleneck for large graphs; for example, the well-known blossom algorithm has complexity 
𝑂(𝑁T)(Edmonds, 1965; Galil, 1986). An optional speed-up which allows the application of 
BATMAN to large datasets uses approximation algorithms for the minimum weight matching. The 
standard greedy algorithm takes only 𝑂(𝑁	𝑙𝑜𝑔	𝑁) time (Vazirani, 2003) and, therefore, can be 
used to identify anchor pairs in very large graphs. However, it can yield a suboptimal solution 
which is at most twice as bad with respect to the total matching weight of the optimal solution.   

 
Figure S3: Non-concordant clustering.  Related to Figures 1, 3, 6, and 7. A) Introducing additional representative 
points; B) Final correspondence between clusters.  
 

 
 
 
 
 
 
 
 
 
 



Supplemental Figures and Tables 

 

 
Figure S4: Choosing anchor cells. Related to Figures 1, 3, 6, and 7. (A, B) BATMAN considers anchor cells across 
all the volume of both datasets, while MNNcorrect (and other MNN-based methods) consider only anchors at the 
frontier between the datasets.  (C) BATMAN successfully integrates two datasets, while MNN-based methods fail. 

 

 



 
Figure S5: Simulated datasets with large dropout (LB-DR scenario) - PCA plots. Related to Figure 1. Each dataset 
consists of 1000 cells and 1000 genes. The top 2 PCs are plotted. 

 
 

Metric No correction BATMAN Seurat V3.0 MNNcorrect Scanorama 

Mean iLISI 1.52 1.70 1.00 1.01 1.01 

CI iLISI (1.42, 1.65) (1.25, 1.89) (1.00, 1.00) (1.00, 1.01) (1.00, 1.02) 

Mean 50-RNN 1.00 0.89 0.59 0.53 0.23 

CI 50-RNN (1.00, 1.00) (0.87, 0.90) (0.57, 0.60) (0.53, 0.54) (0.22, 0.25) 

 

Table S1: Integration results in LB-DR scenario (large dropout): iLISI and 50-RNNscores.  Related to Figure 1. 
The best results are emphasized in bold. CI means confidence interval. 

 
 
 



 
 

Figure S6: Simulated datasets with unequal batch sizes (LB-UB scenario) - PCA plots. Related to Figure 1. Each 
dataset consists of 1000 cells and 1000 genes. The top 2 PCs are plotted. 

 
 
 

Metric No correction BATMAN Seurat V3.0 MNNcorrect Scanorama 

Mean iLISI 1.31 1.37 1.05 1.10 1.00 

CI iLISI (1.06, 1.82) (1.16, 1.77) (1.00, 1.22) (1.09, 1.11) (1.00, 1.00) 

Mean 50-RNN 1.00 0.74 0.70 0.51 0.25 

CI 50-RNN (1.00, 1.00) (0.70, 0.78) (0.66, 0.73) (0.51, 0.51) (0.22, 0.28) 

 

Table S2: Integration results in LB-UB scenario (large batch effects, unequal batch sizes): iLISI and 50-
RNNscores.  Related to Figure 1. The best results are emphasized in bold. CI means confidence interval. 

 
 

 
 
 



 
 

Figure S7: Simulated datasets with small batch sizes (SB scenario) - PCA plots. Related to Figure 1. Each dataset 
consists of 1000 cells and 1000 genes. The top 2 PCs are plotted. 

 
 

 

Metric Original BATMAN Seurat V3.0 MNNcorrect Scanorama 

Mean iLISI 1.88 1.87 1.00 1.00 1.00 

CI iLISI (1.70, 1.94) (1.66, 1.93) (1.00, 1.01) (1.00, 1.00) (1.00, 1.01) 

Mean 50-RNN 1.00 0.93 0.58 0.51 0.13 

CI 50-RNN (1.00, 1.00) (0.91, 0.95) (0.56, 0.60) (0.51, 0.52) (0.11, 0.16) 

 

Table S3: Integration results in SB scenario (small batch effects, unequal batch sizes): iLISI and 50-RNNscores.  
Related to Figure 1. The best results are emphasized in bold. CI means confidence interval. 

 
 
 

 



 
Figure S8: Simulated datasets with large batch effects and two cell types (LB-CT scenario) - PCA plots. Related 
to Figure 1. Each dataset consists of 1000 cells and 1000 genes. Cell type frequencies are 80% and 20%. The top 2 
PCs are plotted. 

 
 

 

Metric Original BATMAN Seurat V3.0 MNNcorrect Scanorama 

Mean iLISI 1.00 1.79 1.00 1.85 1.61 

CI iLISI (1.00, 1.00) (1.60, 1.87) (1.00, 1.00) (1.85, 1.85) (1.61, 1.61) 

Mean cLISI 1.01 1.04 1.03 1.00 1.00 

CI cLISI (1.01, 1.01) (1.00, 1.22) (1.03, 1.03) (1.00, 1.00) (1.00, 1.00) 

Mean 50-RNN 1.00 0.95 0.64 0.99 0.96 

CI 50-RNN (1.00, 1.00) (0.89, 0.98) (0.64, 0.64) (0.99, 0.99) (0.96, 0.96) 

 

Table S4: Integration results in LB-CT scenario (large batch effects, two cell types): iLISI and 50-RNN scores.  
Related to Figure 1. The best results are emphasized in bold. CI means confidence interval. 



 
 

Figure S9: Evaluation of integration with large batch effects and large dropout (LB-DR scenario). Related to 
Figure 2. A) iLISI score as a function of the number of top principal components. B) 𝑘-RNN score for different values 
of 𝑘. 

 
 

 
 

 
 
Figure S10: Evaluation of integration with large batch effects and unequal batch sizes (LB-UB scenario). 
Related to Figure 2. A) iLISI score as a function of the number of top principal components. B) 𝑘-RNN score for 
different values of 𝑘. 

 

 
 



 

 
Figure S11: Evaluation of integration with small batch effects (SB scenario). Related to Figure 2. A) iLISI score 
as a function of the number of top principal components. B) 𝑘-RNN score for different values of 𝑘. 

 
 

 
 

Figure S12: Evaluation of integration with large batch effects and two cell types (LB-CT scenario). Related to 
Figure 2. A) iLISI score as a function of the number of top principal components. B) 𝑘-RNN score for different values 
of 𝑘. 

 
 



 

Figure S13: UMAP plots of two pancreatic datasets - CEL-Seq2 and Smart-Seq2. Related to Figure 3. A) Datasets 
are colored by batch label; B) Datasets are colored by cell types.  

 

 

 

 

 

Dataset aci
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CEL-Seq2 12 4 37 19.
5 

9 11 1 0.2 4.8 0.7 0.3 0.5 0.2 

Smart-Seq2 8 2.3 42 13 5.3 18.5 0.9 0.3 9 0.3 0.3 0.3 0.1 

 

Table S5: Cell-type composition of the two pancreas datasets (in %). Related to Figure 3.  

 

 



 
Figure S14: UMAP plots of two pancreatic datasets - CelSeq2 and SmartSeq2: integration results in “all cell 
types” experiment. Related to Figure 3. Datasets are colored by cell types. A) BATMAN; B) Seurat V3.0; C) 
MNNcorrect; D) Scanorama. 

 
 
 
 
 
 
 
 
 



 
 
 

 

 
Figure S15: UMAP plots of two pancreatic datasets - CelSeq2 and SmartSeq2: integration results in “1-held 
out” experiment. Related to Figure 3. Datasets are colored by batches. A) BATMAN; B) Seurat V3.0; C) 
MNNcorrect; D) Scanorama. 

 
 
 



 

 
Figure S16: UMAP plots of two pancreatic datasets - CelSeq2 and SmartSeq2: integration results in “1-held-
out” experiment. Related to Figure 3. Datasets are colored by cell types. A) BATMAN; B) Seurat V3.0; C) 
MNNcorrect; D) Scanorama. 

 
 
 
 
 
 
 



 
Figure S17: UMAP plots of two pancreatic datasets - CelSeq2 and SmartSeq2: integration results. Related to 
Figure 4. Datasets are colored by cell types. A) BATMAN; B) Seurat V3.0; C) MNNcorrect; D) Scanorama. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 


