Supporting Information

Impact of Heat on Coil Hydrodynamic Size Yields the Energetics of Denatured State Conformational Bias

Lance R. English,^{1,2} Sarah M. Voss,¹ Erin C. Tilton,¹ Elisia A. Paiz,¹ Stephen So,¹ George L. Parra,¹ Steven T. Whitten^{*1}

¹Department of Chemistry and Biochemistry, Texas State University, San Marcos, Texas 78666, United States ²Department of Biology, Texas State University, San Marcos, Texas 78666, United States

Supporting Tables

Table S1. IDP database.

Protein	mean R_h^a	$Q_{net}{}^b$	f_{PPII}^{c}	f_{PPII}^{d}	<i>f_{PPII}^e</i>	Primary Sequence				
abeta (1-40)	14.4	3	0.304	0.340	0.320	DAEFRHDSGY	EVHHQKLVFF	AEDVGSNKGA		
						IIGLMVGGVV				
α-synuclein	28.2	9	0.374	0.363	0.334	MDVFMKGLSK	AKEGVVAAAE	KTKQGVAEAA		
						GKTKEGVLYV	GSKTKEGVVH	GVATVAEKTK		
						EQVTNVGGAV	VTGVTAVAQK	TVEGAGSIAA		
						ATGFVKKDQL	GKNEEGAPQE	GILEDMPVDP		
						DNEAYEMPSE	EGYQDYEPEA			
Cad136	28.1	9	0.402	0.385	0.360	RLEQYTSAVV	GNKAAKPAKP	AASDLPVPAE		
						GVRNIKSMWE	KGNVFSSPGG	TGTPNKETAG		
						LKVGVSSRIN	EWLTKTPEGN	KSPAPKPSDL		
						RPGDVSGKRN	LWEKQSVEKP	AASSSKVTAT		
						GKKSETNGLR	QFEKEP			
CFTR-R-	32.0	5	0.364	0.369	0.343	GAMESAERRN	SILTETLHRF	SLEGDAPVSW		
region						TETKKQSFKQ	TGEFGEKRKN	SILNPINSIR		
-						KFSIVQKTPL	QMNGIEEDSD	EPLERRLSLV		
						PDSEQGEAIL	PRISVISTGP	TLQARRRQSV		
						LNLMTHSVNQ	GQNIHRKTTA	STRKVSLAPQ		
						ANLTELDIYS	RRLSQETGLE	ISEEINEEDL		
						KECLFDDME				
Fos-AD	35.0	16	0.378	0.406	0.369	GSHMSVASLD	LTGGLPEVAT	PESEEAFTLP		
						LLNDPEPKPS	VEPVKSISSM	ELKTEPFDDF		
						LFPASSRPSG	SETARSVPDM	DLSGSFYAAD		
						WEPLHSGSLG	MGPMATELEP	LCTPVVTCTP		
						SCTATTSSEV	FTYPEADSFP	SCAAAHRKGS		
	21.7	20	0.005	0.050	0.004	SSNEPSSDSL	SSPTLLAL			
Hdm2-ABD	31.7	29	0.335	0.359	0.334	ERSSSSESTG	TPSNPDLDAG	VSERSGDWLD		
						QUSVSDQFSV	EFEVESLDSE	DISLSEEGVE		
						CI Y DAMK TODEDDEAIÔ	VIVIQAGESD	IDSLEEDLEI		
LUE1 402	44.2	20	0.402	0.411	0.202	DAACDUTTGI		DOOI FEVDI V		
HIF1-α-403	44.3	29	0.402	0.411	0.392	I AAGDIIIJI	VI ONTNI AMO	ΟΥΥΠΩΣΥΓΩΙ		
						TREGADDATN	UENT KIEDN	DESTETSETM		
						POTODOTPSP	SDGSTROSSP	EPNSPSEYCE		
						YVDSDMVNEF	RI'ET'AEKI'EV	EDTEAKNPES		
						TOTTLDIEM		FOLRSEDOLS		
						PLESSSASPE	SASPOSTVTV	FO		
$HIE1_{\alpha}530$	38.3	10	0 390	0 384	0.367	NEFKLELVEK	LFAEDTEAKN	PFSTODTDLD		
11111-0-550	50.5	10	0.570	0.504	0.307	T'EMT'A BALLEN	DDDFOLRSFD	OLSPLESSSA		
						SPESASPOST	VTVFOOTOIO	EPTANATTTT		
						ATTDELKTVT	KDRMEDIKIL	IASPSPTHIH		
						KETTSATSSP	YRDTOSRTAS	PNRAGKGVIE		
						QTEKSHPRSP	NVLSVALSQR			
LJIDP1	24.5	4	0.356	0.371	0.324	MARSFTNIKA	ISALVAEEFS	NSLARRGYAA		
201211	2.110	·	0.000	010 / 1	0.02	TAQSAGRVGA	SMSGKMGSTK	SGEEKAAARE		
						KVSWVPDPVT	GYYKPENIKE	IDVAELRSAV		
						LGKN				
Mlph	28.0	15	0.353	0.371	0.335	RLQGGGGSEP	SLEEGNGDSE	QTDEDGDLDT		
(147-240)	_0.0					EARDQPLNSK	KKKRLLSFRD	VDFEEDSDHL		
(11/210)						VQPCSQTLGL	SSVPESAHSL	QSLSGEPYSE		
						DTTSLEP				

Protein	mean R_h^a	$Q_{net}{}^b$	f_{PPII}^{c}	f_{PPII}^{d}	f_{PPII}^{e}	Primary Sequence				
Mlph	49.0	28	0.370	0.382	0.347	RLQGGGGSEP	SLEEGNGDSE	QTDEDGDLDT		
(147-403)						EARDQPLNSK	KKKRLLSFRD	VDFEEDSDHL		
						VQPCSQTLGL	SSVPESAHSL	QSLSGEPYSE		
						DTTSLEPEGL	EETGARALGC	RPSPEVQPCS		
						PLPSGEDAHA	ELDSPAASCK	SAFGTTAMPG		
						TDDVRGKHLP	SQYLADVDTS	DEDSIQGPRA		
						ASQHSKRRAR	TVPETQILEL	NKRMSAVEHL		
						LVHLENTVLP	PSAQEPTVET	HPSADTEEET		
						LRRRLEELTS	NISGSSTSSE			
p53 ALA-rich	32.5	15	0.495	0.488	0.454	GMEEPQSDPS	AEPPASQETA	SDAWKALPEN		
mutant						NALSPLPSQA	ADDAMASPDD	AEQAFTEDPG		
						PDEAPRMPEA	APPAAPAPAA	PTPAAPAPAP		
m52 CI V mich	20.7	15	0.456	0.445	0.421	CMEEDOGDDG	CEDDCSOFTC	SDCWKCLPFN		
p33 GL Y-rich	30.7	15	0.430	0.445	0.421	MGLSPLPSOA	GDDCMCSPDD	GEOGETEDPG		
mutant						PDEAPRMPEG	APPGAPAPGA	PTPGAPAPAP		
						SWPL	111 1 0111 111 011	1 11 0/11/11/11		
n53 IL E-rich	33.3	15	0 4 9 8	0 474	0 4 9 4	GMEEPOSDPS	IEPPISOETI	SDIWKILPEN		
mutant	55.5	15	0.170	0.171	0.171	NILSPLPSOA	IDDIMISPDD	IEQIFTEDPG		
mutant						PDEAPRMPEI	APPIAPAPIA	PTPIAPAPAP		
						SWPL				
p53 LEU-rich	33.1	15	0.474	0.486	0.466	GMEEPQSDPS	LEPPLSQETL	SDLWKLLPEN		
mutant	0011	10		01100	01100	NLLSPLPSQA	LDDLMLSPDD	LEQLFTEDPG		
matant						PDEAPRMPEL	APPLAPAPLA	PTPLAPAPAP		
						SWPL				
p53 MET-rich	32.0	15	0.493	0.472	0.444	GMEEPQSDPS	MEPPMSQETM	SDMWKMLPEN		
mutant						NMLSPLPSQA	MDDMMMSPDD	MEQMFTEDPG		
						PDEAPRMPEM	APPMAPAPMA	PTPMAPAPAP		
						SWPL				
p53 PRO-rich	33.7	15	0.595	0.541	0.551	GMEEPQSDPS	PEPPPSQETP	SDPWKPLPEN		
mutant						NPLSPLPSQA	PDDPMPSPDD	PEQPFTEDPG		
						PDEAPRMPEP	APPPAPAPPA	PTPPAPAPAP		
						SWPL				
p53 VAL-rich	33.4	15	0.498	0.466	0.484	GMEEPQSDPS	VEPPVSQETV	SDVWKVLPEN		
mutant						NVLSPLPSQA	VDDVMVSPDD	VEQVETEDPG		
						PDEAPRMPEV	APPVAPAPVA	PTPVAPAPAP		
52 (1.02)	22.4	1.5	0.402	0 477	0.464	SWPL		FOUNTIDE		
p53 (1-93)	32.4	15	0.482	0.477	0.464	GSMEEPQSDP	SVEPPLSQET	FSDLWKLLPE		
wildtype						CDDEY DDWDE				
						PSWPI.	AAFFVAFAFA	AFIFAAFAFA		
n53(103)	30.4	15	0.452	0.442	0.438	GSMEEPOSDP	SVEPPLSOET	FSDLWKLLPE		
p33 (1-93)	50.4	15	0.432	0.442	0.438	NNVLSPLPSO	GMDDIMISPD	DIEOWFTEDP		
ALA						GPDEGPRMPE	GGPPVGPGPG	GPTPGGPGPG		
						PSWPL				
p53 (1-93)	27.4	15	0.251	0.303	0.248	GSMEEGQSDG	SVEGGLSQET	FSDLWKLLGE		
ALA PRO	2,					NNVLSGLGSQ	GMDDLMLSGD	DIEQWFTEDG		
						GGDEGGRMGE	GGGGVGGGGG	GGTGGGGGGG		
						GSWGL				
p53 (1-93)	27.5	15	0.281	0.338	0.275	GSMEEGQSDG	SVEGGLSQET	FSDLWKLLGE		
PRO						NNVLSGLGSQ	AMDDLMLSGD	DIEQWFTEDG		
						GGDEAGRMGE	AAGGVAGAGA	AGTGAAGAGA		
						GSWGL				

Protein	mean R_h^a	$Q_{net}{}^b$	f _{PPII} c	f_{PPII}^{d}	f _{PPII} e	Primary Sequence				
p53-TAD	23.8	14	0.450	0.446	0.437	MEEPQSDPSV	EPPLSQETFS	DLWKLLPENN		
*						VLSPLPSQAM	DDLMLSPDDI	EQWFTEDPGP		
						DEAPRMPEAA	PRV			
p57-ID	24.0	6	0.364	0.380	0.355	VRTSACRSLF	GPVDHEELSR	ELQARLAELN		
						AEDQNRWDYD	FQQDMPLRGP	GRLQWTEVDS		
						DSVPAFYRET	VQV			
PDE-γ	24.8	4	0.412	0.394	0.383	MNLEPPKAEI	RSATRVMGGP	VTPRKGPPKF		
						KQRQTRQFKS	KPPKKGVQGF	GDDIPGMEGL		
						GTDITVICPW	EAFNHLELHE	LAQYGII		
PGR	37.7	7	0.535	0.477	0.451	AEPGKPAEPG	KPAEPGKPAE	PGTPAEPGKP		
						AEPGTPAEPG	KPAEPGKPAE	PGKPAEPGKP		
						AEPGTPAEPG	TPAEPGKPAE	PGTPAEPGKP		
						AEPGTPAEPG	KPAESGKPVE DNKNO	PGTPAQSGAP		
	22.6	12	0.262	0.254	0.217	EQPNRSMHSI		KENGENENC		
prothymosin-α	33.6	43	0.363	0.354	0.317	MSDAAVDTSS	EITTKDLKEK	KEVVEEAENG		
						RDAPANGNAN	CEEEDCDEDE	EVDEEEEEGG		
							GEEEDGDEDE	LALSAIGNNA		
Detus unalesso	24.0	0	0.270	0.270	0.242	COCSDANDES	IKUŐKIDEDD	VEGKDI NVEN		
Retro-nuclease	54.0	8	0.379	0.370	0.342	UNDRAMARA GÕG2DUNDF2	WINDURGUNAS	MAMKCDAVIA		
						ALGRGYKDTR	UCKDEENEIR	KANEVMKKTE		
						ASAEPGYKEV	GKKPHKTEPT	DVIJJRFTMP		
						OGKYMLKVTD	GDTAKTLTAP	EKHLKKTSAT		
Securin	30.7	1	0.413	0.410	0 30/	MATLITYVDKE	NGEPGTRVVA	KDGLKLGSGP		
Securin	39.1	1	0.415	0.410	0.394	SIKALDGRSO	VSTPRFGKTF	DAPPALPKAT		
						RKALGTVNRA	TEKSVKTKGP	LKOKOPSFSA		
						KKMTEKTVKA	KSSVPASDDA	YPEIEKFFPF		
						NPLDFESFDL	PEEHQIAHLP	LSGVPLMILD		
						EERELEKLFQ	LGPPSPVKMP	SPPWESNLLQ		
						SPSSILSTLD	VELPPVCCDI	DI		
ShB-C	32.9	4	0.376	0.363	0.329	MTLGQHMKKS	SLSESSSDMM	DLDDGVESTP		
						GLTETHPGRS	AVAPFLGAQQ	QQQQPVASSL		
						SMSIDKQLQH	PLQQLTQTQL	YQQQQQQQQQ		
						QQNGFKQQQQ	QTQQQLQQQQ	SHTINASAAA		
						ATSGSGSSGL	TMRHNNALAV	SIETDV		
sml1	23.4	5	0.363	0.375	0.330	MQNSQDYFYA	QNRCQQQQAP	STLRTVTMAE		
						FRRVPLPPMA	EVPMLSTQNS	MGSSASASAS		
						SLEMWEKDLE	ERLNSIDHDM	NNNKFGSGEL		
						KSMFNQGKVE	EMDF			
SNAP25	39.7	14	0.351	0.360	0.325	MAEDADMRNE	LEEMQRRADQ	LADESLESTR		
						RMLQLVEESK	DAGIRTLVML	DEQGEQLERI		
						EEGMDQINKD	MKEAEKNLTD	LGKFCGLCVC		
						PCNKLKSSDA	YKKAWGNNQD	GVVASQPARV		
						VDEREQMAIS	GGF1RRVTND	ARENEMDENL		
						EQVSGIIGNL	RHMALDMGNE	IDTQNRQIDR		
TD 17.45	45.0	10	0.000	0.276	0.000	IMERADSNKT	KIDEANQKA'I	KMLGSG		
Tau-K45	45.0	19	0.399	0.376	0.368	MSSPGSPGTP	GSKSKTPSLP	TPPTKEPKKV		
						AVVKTPPKSP	SSAKSKLUTA	EVEMEDLKNV		
						VOCRCCORDA	TKHMBCCCGM	UTAAAAAAA NCTATAVNITT		
						AMAGKUUGIU A APVCGSVDN	TIVIIAEGGG9A	AEAKGEKI DE Atatueados		
						KUBAUGKICG IIIIIIIIII		CNKKIEMAKI		
						TITI A COLLAR CAR	DHCAETVY			

Protein	mean R_h^a	$Q_{net}{}^b$	f_{PPII}^{c}	$f_{PPII}{}^d$	f_{PPII}^{e}	Primary Sequence			
Vmw65	28.0	19	0.328	0.379	0.347	GSAGHTRRLS	TAPPTDVSLG	DELHLDGEDV	
						AMAHADALDD	FDLDMLGDGD	SPGPGFTPHD	
						SAPYGALDMA	DFEFEQMFTD	ALGIDEYGG	

^{*a*} experimental mean R_h (in Å) from literature reports^{1,2} except for the p53(1-93) substitution mutants that were measured in the current study. For these mutants, the SEC and DLS average is given.

 b Q_{net} calculated from the primary sequence as the absolute value of number of LYS and ARG residues minus the number of GLU and ASP

^{*c*} f_{PPII} calculated from the primary sequence by $\sum P_{PPII,i}/N$, where $P_{PPII,i}$ is the PPII propensity for amino acid type *i* using the peptide scale³

^{*d*} f_{PPII} calculated from the primary sequence by $\sum P_{PPII,I}/N$, where $P_{PPII,i}$ is the PPII propensity for amino acid type *i* using the coil library scale⁴

^{*e*} f_{PPII} calculated from the primary sequence by $\sum P_{PPII,I} / N$, where $P_{PPII,i}$ is the PPII propensity for amino acid type *i* using the IDP scale, which was determined in the current study (see Table S2)

Amino Acid	IDP scale ^{<i>a</i>}	coil library scale ^b	peptide scale ^c	peptide scale ^d	peptide scale ^e
ALA (A)	0.32 ± 0.05	0.48 ± 0.02	0.37 ± 0.03	0.818	0.61 ± 0.02
CYS (C)	0.22 ± 0.04	0.38 ± 0.04	0.25 ± 0.02	0.557	0.55 ± 0.02
ASP (D)	0.44 ± 0.07	0.34 ± 0.02	0.30 ± 0.02	0.552	0.63 ± 0.02
GLU (E)	0.27 ± 0.04	0.38 ± 0.02	0.42 ± 0.03	0.684	0.61 ± 0.02
PHE (F)	0.31 ± 0.07	0.36 ± 0.03	0.17 ± 0.01	0.639	0.58 ± 0.02
GLY (G)	0.11 ± 0.01	0.21 ± 0.01	0.13 ± 0.01	-	0.58 ± 0.02
HIS (H)	0.23 ± 0.04	0.28 ± 0.03	0.20 ± 0.01	0.428	0.55 ± 0.02
ILE (I)	0.57 ± 0.07	0.39 ± 0.02	0.39 ± 0.03	0.519	0.50 ± 0.01
LYS (K)	0.33 ± 0.06	0.35 ± 0.02	0.56 ± 0.04	0.581	0.59 ± 0.02
LEU (L)	0.39 ± 0.06	0.47 ± 0.02	0.24 ± 0.02	0.574	0.58 ± 0.02
MET (M)	0.25 ± 0.05	0.38 ± 0.04	0.36 ± 0.02	0.498	0.55 ± 0.02
ASN (N)	0.29 ± 0.09	0.31 ± 0.02	0.27 ± 0.02	0.667	0.55 ± 0.02
PRO (P)	0.93 ± 0.01	0.81 ± 0.01	1.00	-	0.67 ± 0.02
GLN (Q)	0.35 ± 0.08	0.35 ± 0.02	0.53 ± 0.04	0.654	0.66 ± 0.02
ARG (R)	0.26 ± 0.04	0.32 ± 0.02	0.38 ± 0.03	0.638	0.61 ± 0.02
SER (S)	0.21 ± 0.03	0.31 ± 0.02	0.24 ± 0.02	0.774	0.58 ± 0.02
THR (T)	0.28 ± 0.07	0.24 ± 0.02	0.32 ± 0.02	0.553	0.53 ± 0.01
VAL (V)	0.50 ± 0.07	0.34 ± 0.02	0.39 ± 0.03	0.743	0.49 ± 0.01
TRP (W)	0.42 ± 0.12	0.35 ± 0.04	0.25 ± 0.01	0.764	-
TYR (Y)	0.27 ± 0.05	0.37 ± 0.03	0.25 ± 0.01	0.630	-

Table S2. Amino acid specific propensities for the PPII conformation (± standard deviation, where available) in the denatured state.

^{*a*} determined from the sequence dependence to IDP mean R_h analyzed in the current study; these values were calculated from the average of the "best" random scales (with error cut-off of 0.165) that maintained the P>V~I>L>A>M>G rank order.

^b determined from PPII frequencies in the protein coil library⁴ ^c determined from host-guest analysis of the binding energetics of the Sos peptide³

^d determined from 3-bond coupling constants measured for a glycine-based host peptide⁵

^e determined from CD spectra measured for a proline-based host peptide⁶

Supporting Figures

	0 10	20	30	40	50	60	70	80	90	93
WT	GS MEEPQSDPSV	EPPLSQETFS	DLWKLLPENN	VLSPLPSQAM	DDLMLSPDDI	EQWFTEDPGP	DEAPRMPEAA	PPVAPAPAAP	TPAAPAPAPS	WPL
ALA	G MEEPQSDPSA	EPPASQETAS	DAWKALPENN	ALSPLPSQAA	DDAMASPDDA	EQAFTEDPGP	DEAPRMPEAA	PPAAPAPAAP	TPAAPAPAPS	WPL
GLY	G MEEPQSDPSG	EPPGSQEIGS	DGWKGLPENN	GLSPLPSQAG	DDGMGSPDDG	EQ <mark>G</mark> FTEDPGP	DEAPRMPECA	PPGAPAPGAP	TPGAPAPAPS	WPL
ILE	G MEEPQSDPSI	EPPISQETIS	DIWKILPENN	ILSPLPSQAI	DDIMISPDDI	EQIFTEDPGP	DEAPRMPEIA	PPIAPAPIAP	TPIAPAPAPS	WPL
LEU	G MEEPQSDPSL	EPPLSQETLS	DLWKLLPENN	LLSPLPSQAL	DDLMLSPDDL	EQLFTEDPGP	DEAPRMPELA	PPLAPAPLAP	TPLAPAPAPS	WPL
МЕТ	G MEEPQSDPSM	EPPMSQETMS	DMWKMLPENN	MLSPLPSQAM	DDMMMSPDDM	EQMFTEDPGP	DEAPRMPEMA	PPMAPAPMAP	TPMAPAPAPS	WPL
PRO	G MEEPQSDPSP	EPPPSQETPS	DPWKPLPENN	PLSPLPSQAP	DDPMPSPDDP	EQPFTEDPGP	DEAPRMPEPA	PPPAPAPPAP	TPPAPAPAPS	WPL
VAL	G MEEPQSDPS <mark>V</mark>	EPP <mark>V</mark> SQETVS	DVWKVLPENN	VLSPLPSQAV	DDVMVSPDDV	eq <mark>v</mark> ftedpgp	DEAPRMPE <mark>V</mark> A	PPVAPAPVAP	TP <mark>V</mark> APAPAPS	WPL
Sites	*	* *	× *	* *	* * *	*	*	* *	*	

Figure S1. Primary sequences of the p53(1-93) substitution mutants used in the current study. Mutant identity is given in the left-most column by the 3-letter amino acid code representing the substitution. WT is the wild type variant of the p53(1-93) fragment. Substitution sites are marked by an asterisk and highlighted blue.

Figure S2. Temperature dependence to the CD spectrum of the p53(1-93) substitution mutants. Inset figures show the difference spectrum relative to the 85°C spectrum. Mutant identity is given in the upper left of each plot by the 1-letter amino acid code representing the substitution. WT is the wild type variant of the p53(1-93) fragment.

Figure S3. DLS-measured size distributions of the p53(1-93) substitution mutants. Shown are representative size distributions that were measured at 25°C for each mutant. Mutant identity is given in the upper left of each plot by the 1-letter amino acid code representing the substitution. WT is the wild type variant of the p53(1-93) fragment.

Figure S4. SEC-measured size chromatograms of the p53(1-93) substitution mutants. Shown are representative chromatograms that were measured at room temperature, $\sim 23^{\circ}$ C. Mutant identity is given in the upper right of each plot by the 1-letter amino acid code representing the substitution. WT is the wild type variant of the p53(1-93) fragment.

Figure S5. Amino acid average scale propensity calculated from randomly generated PPII scales. Calculated from A) all random scales, B) the "best" scales, and C) the "best" scales that maintain the $P>V\sim I>L>A>M>G$ rank order. In panels A-C, error bars are the standard deviations associated with the averages. In panels B and C, the "best" scales that were used had an error threshold of 0.2. D) Linear correlation of the peptide and IDP scales (top), and the coil library and IDP scales (bottom), using the panel C values for the IDP scale.

Figure S6. Temperature dependence to mean R_h for the p53(1-93) substitution mutants. Representative data are provided for the wild type (WT) and three substitution mutants. WT DLS results are from.⁷ DLS readings for the p53(1-93) proteins generally gave low count rates, causing long read times, which compromised the measurements at the temperature extremes; by condensation on the cuvette at cold temperatures and sample evaporation at high temperatures. Note the large uncertainties in the measurements. In the figure and each inset, lines were calculated using each protein's primary sequence. Blue lines used 10 kcal mol⁻¹ for ΔH_{PPII} , while red used 13 kcal mol⁻¹. Solid lines used the peptide scale to calculate f_{PPII} , stippled lines the coil library scale, and dashed lines the IDP scale. Open circles are mean R_h measured by DLS. Error bars are the standard deviations in the measurements. Inset shows change in mean R_h (ΔR_h) relative to the 25°C value.

Figure S7. Simulation of the R_h dependence on the α and PPII bias. Ensembles of random polyalanine conformers were generated by computer algorithm using the HSC model^{7–9}, whereby dihedral angles (φ , ψ) for each residue were assigned randomly. The goal was to compute the mean size for an ensemble and then establish how the mean size changes when an artificial bias to the α or PPII regions, or to both regions, is applied.^{1,7,9} Figure 5 in the main text shows the results from defining the α and PPII regions as (-64°±10°, -41°±10°) and (-75°±10°, +145°±10°), respectively. Results shown here were obtained by increasing the α and PPII regions to (-64°±25°, -41°±25°) and (-75°±25°, +145°±25°), respectively. Each open or closed circle represents a simulated 25-residue polyalanine ensemble. Lines are fits; linear in panel A and 2nd order polynomials in panels B and C. A) Across many ensembles, f_{α} and f_{PPII} defined by the smaller, 20°x20° regions correlated with f_{α} and f_{PPII} calculated using larger, 50°x50° regions. Consequently, the trends in α and PPII effects on R_h should remain mostly unchanged when the extent of the α and PPII regions is increased. Consistent with that idea, when defining α and PPII by the larger 50°x50° regions, ensemble simulations again showed that **B**) increased PPII bias causes increased sensitivity to changes in f_{α} , and **C**) increasing the α bias suppresses the PPII effect on R_h and, when α is the dominant state, reverses the PPII effect.

Figure S8. Simulation of the R_h dependence on the α and PPII bias compared to experimental results. Simulated curves (reproduced from Figure 5) are compared to experimental mean R_h from the IDPs in Table S1. Open circles in panel A) used the coil library scale to calculate f_{PPII} . Fractional ΔR_h for each IDP was determined by (experimental mean $R_h - (2.16 \text{Å} \cdot N^{0.518} + 0.25 \cdot |Q_{net}| - 0.27 \cdot N^{0.5})) / (2.16 \text{Å} \cdot N^{0.518} + 0.25 \cdot |Q_{net}| - 0.27 \cdot N^{0.5})) / (2.16 \text{Å} \cdot N^{0.518} + 0.25 \cdot |Q_{net}| - 0.27 \cdot N^{0.5}))$, where $2.16 \text{Å} \cdot N^{0.518}$ is the simulated ensemble size without an artificially applied PPII or α bias and $0.25 \cdot |Q_{net}| - 0.27 \cdot N^{0.5}$ accounts for net charge effects. Open circles in panel B) used the IDP scale to calculate f_{PPII} . Fractional ΔR_h for each IDP was determined by (experimental mean $R_h - (2.16 \text{Å} \cdot N^{0.518} + 0.25 \cdot |Q_{net}| - 0.21 \cdot N^{0.5})) / (2.16 \text{Å} \cdot N^{0.518} + 0.25 \cdot |Q_{net}| - 0.21 \cdot N^{0.5})) / (2.16 \text{Å} \cdot N^{0.518} + 0.25 \cdot |Q_{net}| - 0.21 \cdot N^{0.5}))$, where $2.16 \text{Å} \cdot N^{0.518}$ is the simulated ensemble size without an artificially applied ensemble size without an artificially applied PPII or α bias and $0.25 \cdot |Q_{net}| - 0.21 \cdot N^{0.5}$ is the simulated ensemble size without an artificially applied PPII or α bias and $0.25 \cdot |Q_{net}| - 0.21 \cdot N^{0.518}$ is the simulated ensemble size without an artificially applied PPII or α bias and $0.25 \cdot |Q_{net}| - 0.21 \cdot N^{0.5}$ accounts for net charge effects.

Supporting References

- (1) English, L. R.; Tilton, E. C.; Ricard, B. J.; Whitten, S. T. Intrinsic α Helix Propensities Compact Hydrodynamic Radii in Intrinsically Disordered Proteins. *Proteins* **2017**, *85* (2), 296–311.
- (2) Marsh, J. A.; Forman-Kay, J. D. Sequence Determinants of Compaction in Intrinsically Disordered Proteins. *Biophys. J.* **2010**, *98* (10), 2383–2390.
- (3) Elam, W. A.; Schrank, T. P.; Campagnolo, A. J.; Hilser, V. J. Evolutionary Conservation of the Polyproline II Conformation Surrounding Intrinsically Disordered Phosphorylation Sites. *Protein Sci.* **2013**, *22* (4), 405–417.
- (4) Jha, A. K.; Colubri, A.; Zaman, M. H.; Koide, S.; Sosnick, T. R.; Freed, K. F. Helix, Sheet, and Polyproline II Frequencies and Strong Nearest Neighbor Effects in a Restricted Coil Library. *Biochemistry* 2005, 44 (28), 9691–9702.
- (5) Shi, Z.; Chen, K.; Liu, Z.; Ng, A.; Bracken, W. C.; Kallenbach, N. R. Polyproline II Propensities from GGXGG Peptides Reveal an Anticorrelation with Beta-Sheet Scales. *Proc. Natl. Acad. Sci.* U. S. A. 2005, 102 (50), 17964–17968.
- (6) Creamer, T. P. Left-Handed Polyproline II Helix Formation Is (Very) Locally Driven. *Proteins* **1998**, *33* (2), 218–226.
- (7) Langridge, T. D.; Tarver, M. J.; Whitten, S. T. Temperature Effects on the Hydrodynamic Radius of the Intrinsically Disordered N-Terminal Region of the P53 Protein. *Proteins* 2014, 82 (4), 668– 678.
- (8) Whitten, S. T.; Yang, H.-W.; Fox, R. O.; Hilser, V. J. Exploring the Impact of Polyproline II (PII) Conformational Bias on the Binding of Peptides to the SEM-5 SH3 Domain. *Protein Sci. Publ. Protein Soc.* 2008, 17 (7), 1200–1211.
- (9) Tomasso, M. E.; Tarver, M. J.; Devarajan, D.; Whitten, S. T. Hydrodynamic Radii of Intrinsically Disordered Proteins Determined from Experimental Polyproline II Propensities. *PLoS Comput. Biol.* 2016, *12* (1), e1004686.