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Calculation of the FRET efficiency 

 
The FRET efficiency (E) is given by, 

                                     𝐸 =
1

1+(𝑟
𝑅⁄ )

6.                         (S1) 

where, r is the distance between tbe dye molecules and R is the Förster radius, which can be 

calculated from the normalized fluorescence spectra of the donor and normalized molar 

extinction coefficient spectra of the acceptor using equation (S2)[1]: 

         𝑅 = (
9000(ln 10)𝜅2∅𝐷
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where, κ2 is the dipole orientation factor (κ2=2/3 for the random distribution of dipole 

moments), ∅𝐷  the quantum yield of the donor, N the Avogadro number, n the refractive 

index of the medium, FD the fluorescence intensity of the donor, and 𝜀𝐴  the extinction 

coefficient of the acceptor. 
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Table S1. DLS size measurements of the synthesized particles. 

 

 5 dyes 3 dyes 

2 dyes 

molecular ratio 

0.1:1 

Z-average 99 ± 0.7 75 ± 0.3 74 ± 1 

Number 

Mean 76 ± 1 56 ± 2 57 ± 3 

PDI 0.073 0.064 0.059 
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Figure S1. Fluorescence and absorbance spectra of Star dots with two encapsulated dyes of 

R6G and RB at different molar proportions. The individual components of the spectra 

corresponding to individual R6G and RB dyes are also shown (found using the linear 

decomposition algorithm described in the Method section). 

The fluorescence spectra (a) MR1:1 and (b) MR1:0.1. The particles are excited with 488 nm.  

The absorbance spectra of Star dots (c) MR1:1 and (d) MR1:0.1 particles. 
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Figure S2. Verification of multiplexing. (a) Fluorescence spectra collected with 100% of 

MR1:1 and MR1:0.1 and mix of 50+50, 75+25, 25+75% mix of MR1:1+MR1:0.1 particles 

respectively, excited at 488 nm. The time of collection of the fluorescence spectrum was 0.5 

sec. (b) Spectra of pure MR1:1 and MR1:0.1 particles collected for 0.5 sec. 

Table S2. Demultiplexing using different mixes of MR1:1 and MR1:0.1 particles excited at 488 nm 

and collected for 0.5sec.  

Actual mix % 

MR1:1 : 

MR1:0.1 

particles 

Calculated  

mix % of  

MR1:1 : 

MR1:0.1 

Error in 

demultiplexing 

MR1:1 / 

MR1:0.1 

Average error 

in 

demultiplexing 

100:0 100:0 0/0 0 

25:75 29:74 4/1 3 

50:50 47:55 3/5 4 

75:25 79:29 4/4 4 

0:100 0:100 0/0 0 

 

Table S3. Demultiplexing using different mixes of MR1:1 and MR1:0.1 particles excited at 488 nm 

and collected for 0.5sec with a weight function proportional to the fluorescent intensity.  

Actual mix % 

MR1:1 : 

MR1:0.1 

particles 

Calculated  

mix % of  

MR1:1 : 

MR1:0.1 

Error in 

demultiplexing 

MR1:1 / 

MR1:0.1 

Average error 

in 

demultiplexing 

100:0 100:0 0/0 0 

25:75 27:75 2/0.4 1 

50:50 47:55 3/5 4 

75:25 79:29 3/5 4 

0:100 0:100 0/0 0 
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Figure S3. Verification of multiplexing. (a) Fluorescence spectra collected with 100% of MR1:1 and 

MR1:0.1 and mix of 50+50, 75+25, 25+75% mix of MR1:1+MR1:0.1 particles respectively, excited at 488 

nm. The time of collection of the fluorescence spectrum was 0.1 sec. (b) Normalized Spectra of pure 

MR1:1 and MR1:0.1 particles collected for 0.5 sec.  

Table S4. Demultiplexing using different mixes of MR1:1 and MR1:0.1 particles excited at 488 nm 

and collected for 0.1sec.  

Actual mix % 

MR1:1 : 

MR1:0.1 

particles 

Calculated  

mix % of  

MR1:1 : 

MR1:0.1 

Error in 

demultiplexing 

MR1:1 / 

MR1:0.1 

Average error 

in 

demultiplexing 

100:0 97:7 3/7 5 

25:75 27:82 2/7 4 

50:50 48:61 2/11 6 

75:25 76:38 1/13 7 

0:100 -4:110 4/10 7 

 

Table S5. Demultiplexing using different mixes of MR1:1 and MR1:0.1 particles excited at 488 nm 

and collected for 0.1sec with a weight function proportional to the fluorescent intensity.  

Actual mix % 

MR1:1 : 

MR1:0.1 

particles 

Calculated  

mix % of  

MR1:1 : 

MR1:0.1 

Error in 

demultiplexing 

MR1:1 / 

MR1:0.1 

Average error 

in 

demultiplexing 

100:0 100:4 0.4/4 2 

25:75 28:81 3/6 5 

50:50 52:59 2/9 5 

75:25 79:36 4/11 7 

0:100 -1:107 1/7 4 
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Figure S4. Verification of multiplexing. (a) Fluorescence spectra collected with 100% of MR1:1 and 

MR1:0.1 and mix of 50+50, 75+25, 25+75% mix of MR1:1+MR1:0.1 particles respectively, excited at 488 

nm. The time of collection of the fluorescence spectrum was 0.005 sec. (b) Normalized Spectra of pure 

MR1:1 and MR1:0.1 particles collected for 0.5 sec. 

Table S6. Demultiplexing using different mixes of MR1:1 and MR1:0.1 particles excited at 488 nm 

and collected for 0.005sec.  

Actual mix % 

MR1:1 : 

MR1:0.1 

particles 

Calculated  

mix % of  

MR1:1 : 

MR1:0.1 

Error in 

demultiplexing 

MR1:1 / 

MR1:0.1 

Average error 

in 

demultiplexing 

100:0 72:7 28/7 18 

25:75 9:74 16/0.7 9 

50:50 30:50 20/0.3 10 

75:25 57:33 18/8 13 

0:100 -15:96 15/4 10 

 

Table S7. Demultiplexing using different mixes of MR1:1 and MR1:0.1 particles excited at 488 nm 

and collected for 0.005sec with a weight function proportional to the fluorescent intensity.  

Actual mix % 

MR1:1 : 

MR1:0.1 

particles 

Calculated  

mix % of  

MR1:1 : 

MR1:0.1 

Error in 

demultiplexing 

MR1:1 / 

MR1:0.1 

Average error 

in 

demultiplexing 

100:0 81:2 19/2 10 

25:75 17:71 8/4 6 

50:50 41:44 9/6 8 

75:25 68:27 7/2 4 

0:100 -7:94 7/6 6 

 

 

 

 

 
(a) 

 
        (b) 



Nanomaterials 2020, 10, x FOR PEER REVIEW 6 of 7 

 

Figure S5. Verification of multiplexing. (a) Fluorescence spectra collected with 100% of MR1:1 and 

MR1:0.1 and mix of 50+50, 75+25, 25+75% mix of MR1:1+MR1:0.1 particles respectively, excited at 488 

nm. The time of collection of the fluorescence spectrum was 0.001 sec. (b) Normalized Spectra of pure 

MR1:1 and MR1:0.1 particles collected for 0.5 sec. 

Table S8. Demultiplexing using different mixes of MR1:1 and MR1:0.1 particles excited at 488 nm 

and collected for 0.001sec.  

Actual mix % 

MR1:1 : 

MR1:0.1 

particles 

Calculated  

mix % of  

MR1:1 : 

MR1:0.1 

Error in 

demultiplexing 

MR1:1 / 

MR1:0.1 

Average error 

in 

demultiplexing 

100:0 43:2 58/2 30 

25:75 7:39 18/36 27 

50:50 10:37 40/13 26 

75:25 31:17 45/8 26 

0:100 -8:54 8/46 27 

 

Table S9. Demultiplexing using different mixes of MR1:1 and MR1:0.1 particles excited at 488 nm 

and collected for 0.001sec with a weight function proportional to the fluorescent intensity.  

Actual mix % 

MR1:1 : 

MR1:0.1 

particles 

Calculated  

mix % of  

MR1:1 : 

MR1:0.1 

Error in 

demultiplexing 

MR1:1 / 

MR1:0.1 

Average error 

in 

demultiplexing 

100:0 57:-2 43/2 23 

25:75 18:36 7/39 23 

50:50 19:42 31/8 19 

75:25 46:16 29/9 19 

0:100 13:47 13/53 33 
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Table S10: Values of quantum yield of the dyes used in the paper: 

 

Dye 
Other 

name  
QY 

C504 C314 0.68[2] 

R560 R110 0.91[3] 

R6G  0.95[4] 

RB  0.31[4] 

R640 R101 0.913[5] 

NB  0.27[6] 
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