Supporting Information

Synthesis of Fluorescent Jasplakinolide Analogs for Live-Cell STED[#] Microscopy of Actin

Vladimir N. Belov^{a,c,*}, Stefan Stoldt,^a Franziska Rüttger,^b Michael John^b, Jan Seikowski,^c Jens Schimpfhauser,^c and Stefan W. Hell^a

^a Department of Nanobiophotonics, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany

^b Institut für Organische und Biomolekulare Chemie, Tammannstrasse 2, 37077 Göttingen, Germany

^c Facility for Synthetic Chemistry, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany

[#]STED: Stimulated Emission Depletion

Table of Contents

Cell culture and <i>in vitro</i> labeling	S 3
Live-cell STED microscopy	S 3
HPLC traces and ESI-MS data	S4
NMR spectra (tables with signal assignments and structures)	S9
Copies of NMR spectra (with structures)	S24

1. Cell culture and in vitro labelling of actin in living U-2 OS and COS-7 cells

The human Osteosarcoma cell line U-2 OS was obtained from the European Collection of Authenticated Cell Cultures (ECACC, Porton Down, Salisbury, UK; Cat no. 92022711, Lot. 17E015). U-2 OS cells were cultivated in McCoy's medium (Thermo Fisher Scientific, Waltham, MA, USA) supplemented with 10 % (v/v) fetal bovine serum (Thermo Fisher Scientific, Waltham, MA, USA), 1 % (v/v) sodium pyruvate (Sigma Aldrich, St. Louis, MO, USA) and Penicillin-Streptomycin (Sigma Aldrich, St. Louis, MO, USA).

The COS-7 cell line, which is a kidney cell line derived from the African green monkey, was obtained from the European Collection of Authenticated Cell Cultures (ECACC, Porton Down, Salisbury, UK; Cat no. 87021302, Lot. 05G008). COS-7 cells were cultivated in DMEM, high glucose, pyruvate Medium (Thermo Fisher Scientific, Waltham, MA, USA) supplemented with 10 % (v/v) fetal bovine serum (Thermo Fisher Scientific, Waltham, MA, USA) and Penicillin-Streptomycin (Sigma Aldrich, St. Louis, MO, USA).

In vitro labeling of Actin with jasplakilinolide probes was performed in DMEM, high glucose, HEPES, no phenol red Medium (Thermo Fisher Scientific, Waltham, MA, USA) supplemented with Penicillin-Streptomycin (Sigma Aldrich, St. Louis, MO, USA). U-2 OS and COS-7 cells were incubated with *580CP*-jasplakinolide (5 μ M for 30 min) or *610CP*-jasplakinolide (1 μ M for 60 min), respectively. For a subsequent washing step, the cells were incubated in medium without fluorescent probes for additional 30 min.

2. Live-cell STED microscopy

In vitro STED images were acquired using a quad scanning STED microscope (Abberior Instruments, Göttingen, Germany) equipped with a UPlanSApo 100x/1,40 Oil objective (Olympus, Tokyo, Japan). For all images a pixel size of 20 nm was utilized. 580CP was excited using a 561 nm laser beam, 610CP was excited using a 640 nm laser beam and STED was performed applying a laser beam with an emission wavelength of 775 nm. With the exception of contrast stretching no further image processing was applied.

3. HPLC Traces and ESI-MS data

Figure S1. LC-MS analysis of the reaction mixture $5-C(CH_3)_2C_6H_5-H \rightarrow 5-H-H$ (11.2 min) + $5-H-C(CH_3)_2C_6H_5$ (12.3 min); see Scheme 2 in the main text.

Max-Planck-Institut für biophysikalische Chemie - Göttingen Facility für synthetische Chemie

Figure S2a. HPLC trace of amine 9 formed from compound 7-H (R = Boc) and formic acid according Scheme 4 in the main text.

Jürgen Bienert Tel.: 0551 2011251 juergen.bienert@mpibpc.mpg.de

Figure S2b. ESI-MS (positive mode) of amine 9 ($C_{38}H_{51}N_5O_6$, M = 674.4) formed from

compound 7-H (R = Boc) and HCOOH; see Scheme 4 in the main text.

Scas No: 16, Time 0.170 mmmes 5 points averaged. Not bedratound connected. Connext: 0.170 mm Scans: 14-18 105 2550 ton: 273 us RIC: 2.185e+8 Pair Count 1259. MW: 0. Formula Nome CAS No: Name Acquired Range: 104.5 - 2020.5 m/z

Figure S3a. HPLC trace of 580CP-jasplakinolide conjugate (see Scheme 4 and TOC graph) Max-Planck-Institut für biophysikalische Chemie - Göttingen Facility für synthetische Chemie Probe : cf178-04 Fr 9-12 neu Lösungsmittel: MeCN/H2O Konzentration ?% 2 Aufgabeart : Handaufgabe Aufgabemenge 1 µl : Säule : Kinetex 2.6 µm C18 100 : 7.5 cm Innendurchmesser : Länge 4.6 mm 25,0 Fluß (ml / Min) : 1,0 Temperatur : Detektor Pumpe: HPG-3400SD : DAD-3000 Laufmittel : A = Acetonitril B = Wasser 0.05% TFA Gradient : A 20.0 % B 80.0 % T = 10 Min. A 100,0 % B 0,0 % cf178-04 Fr 9-12 neu Injektion: 04.Apr.2019 10:40 UV WVL:600 nm 180 mAU 150-100 50-0min 20] 2,5 7.5 10,0 12.5 15,1 5,0 0,0 #8 cf178-04 Fr 9-12 neu - Peak #1 at 5,36 min Peak #1 110-590,62 簽 100-B 80-60-40-284,60 20-0 nm 10-700 190 300 400 500 600 800

Figure S3b. HPLC trace of 610CP-jasplakinolide conjugate (see Scheme 4 and TOC graph)

292,77

300

400

500

600

25-

0

-20

190

S 8

nm

800

700

4. NMR Spectra

5-C(CH₃)₂C₆H₅-H

CDCl₃, 600 MHz ¹H

Position	δ(1H) / ppm	δ(¹³ C{ ¹ H})/	COSY	HMBC	NOESY
		ppm			
Trp α	5,62	56 <i>,</i> 58	Trp β	Trp β	Trp NMe
				Trp NMe	Trp β
				Trp 3	Trp 2
				Trp CO	Trp 4
				Lys CO	
Trp β	3,20 / 3,41	23,07	Trp 2	Trp α	Trp NMe
			Trp α	Trp 3	Trp α
					Trp 4
					Trp 2
Trp NH	9,52	-	Trp 2	-	Trp 2
					Trp 7
Trp 2	6,92	121,81	Trp NH	Trp 3	Trp α
					Trp NH
					Trp β
					Trp NMe
Trp 3	-	110,58	-	-	-
Trp 3a	-	127,31	-	-	-
Trp 4	7,56	118,47	Trp 5	Trp 3	Trp NMe
			Trp 6	Trp 6	Trp β
				Trp 3a	Trp α
				Trp 7a	Trp 5

Trp 5	7,06	119,04	Trp 4	Trp 7	Trp 4
-			Trp 6	Trp 3a	
Trp 6	7,12	121,69	Trp 5	Trp 4	Trp 7
			Trp 7	Trp 7a	
				Trp CO	
Trp 7	7,30	111,30	Trp 6	Trp 5	Trp 6
			•	Trp 3a	Boc Me
Trp 7a	-	136,39	-	_	-
Trp NMe	2,70	30,58	-	Trp α	Trp α
				Lys CO	Trp β
					Trp 2
					Trp 4
Trp CO	-	169,10	-	-	-
βTyr NH	7,12	-	βTyr β	-	βTyr β
βTyr α	2,75 / 2,90	41,47	βTyr β	βTyr β	βTyr β
				βTyr 1	βTyr 2/6
				βTyr CO	
βΤγr β	5,35	49,54	βTyr α	βTyr α	βTyr α
			βTyr 2/6	βTyr 2/6	βTyr 2/6
			βTyr NH	βTyr 1	
				βTyr CO	
βTyr CO	-	169,34	-	-	-
βTyr 1	-	133,18	-	-	-
βTyr 2/6	7,13	127,66	βTyr β	βTyr β	βTyr α
			βTyr 3/5	βTyr 6/2	βΤγr β
				βTyr 4	βTyr 3/5
βTyr 3/5	6,79	119,79	βTyr 2/6	βTyr 5/3	TIPS 7
				βTyr 1	TIPS 8
				βTyr 4	βTyr 2/6
βTyr 4	-	155,38	-	-	-
TIPS 7	1,22	12,65	TIPS 8	TIPS 8	TIPS 8
					βTyr 3/5
TIPS 8	1,06 / 1,08	12,65 / 17,92	TIPS 7	TIPS 7	TIPS 7
				TIPS 8	TIPS 8
1	-	176,10	-	-	-
2	2,35	38,73	3	7	7
			7	2	1
				5	6
				3	Lys NH
3	1,98 / 2,30	41,82	4	6	7
			6	4	1
				1	6
				7	
				2	
				5	
4	-	142,82	-	-	-
5	4,66 / 4,73	112,43	1	1	3

			3	3	4
					1
6	1,05	17,27	4	4	3
				3	4
				5	
7	1,64	22,25	6	6	6
				2	3
					4
8	-	81,96	-	-	-
9/10	1,65 / 1,63	28,78 / 28,10	-	10/9	7,24
				8	
				11	
11	-	145,51	-	-	-
12/16	7,22	124,41	13/15	8	9/10
			14	16/12	
				14	
13/15	7,26	128,19	12/16	11	-
			14	15/13	
				12/16	
14	7,19	126,83	13/15	12/16	-
			12/16		
Lys NH	6,17	-	Lys α	5	7
					4
		170.00			Lys α
Lys CO	-	173,20	-	-	-
Lys a	4,45	49,63	Lys NH	Lys γ	Lys γ
				Lys B	Lys B
				Lys CO	
	1.05 / 1.25	21.01			
Lysp	1,05 / 1,55	51,01	Lys u	Lys u	Lys v
					Lys q
	0.74 (both)	21 / 2	Lvs B	Lvs B	Lysa
Ly3 y	0,74 (50(11)	21,42	Lys p Lys S	Lysρ	Lys B
			Lyso	Lyse	Lysp
				Lyse	Lysa
Ινςδ	1 19 (both)	30.01	l vs v	Lvs v	Lys a
2750	1,15 (5001)	30,01	LVS E	LVSE	Lys B
			_,	_,	Lvs v
Lvs ε	2,85 / 2.89	40.29	Lvs δ	Lvs δ	Lvs v
,	,,	- /	,	,	Lys δ
Lys ε/NH	4,62	-	Lys ε	-	, Lys ε
Boc CO	-	156.47	-	-	-
Boc C	-	79.75	-	-	-
Boc Me	1,49	28.48	-	Boc C	-
				Boc Me	

CDCl₃, 600 MHz ¹H

Position	δ(¹ H) / ppm	δ(¹³ C{ ¹ H})/	COSY	HMBC	NOESY
		ppm			
Trp α	5,70	56,38	Trp β	Trp CO	Trp β
				Lys CO	Trp 2
				Trp β	βTyr NH
				Trp NMe	Trp 4
Trp β	3,31 / 3,35	22,56	Trp α	Trp 3	Trp NMe
			Trp 2	Trp 3a	Trp α
				Trp 2	Trp 2
				Trp α	Trp 4
Trp 2	6,95	121,78	Trp β	Trp 3	Lys γ
			Trp NH	Trp 3a	Lys β
				Trp 7a	Trp NMe
					Trp β
					Trp α
					Trp NH
Trp 3	-	110,12	-	Trp β	-
				Trp 2	
				Trp 4	
Trp 3a	-	127,25	-	Trp 2	-
				Trp 4	
				Trp 5	
				Trp 7	
Trp 4	7,60	118,50	Trp 5	Trp 3	Trp β
			Trp 7	Trp 6	Trp α
				Trp 3a	Trp 5
				Trp 7a	Trp 6
Trp 5	7,10	119,22	Trp 4	Trp 7	Trp 6
			Trp 6	Trp 3a	Trp 4
			Trp 7		

Trp 6	7,16	121,94	Trp 4	Trp 7a	Trp 5
			Trp 5	Trp 4	Trp 7
			Trp 7		
Trp 7	7.36	111.64	Trp 4	Trp 3a	Trp 6
1-	,	, -	Trp 5	Trp 5	Trp NH
			Trp 6	1	Boc Me
Trp 7a	-	136.68	-	Trp 2	-
				Trp 4	
				Trp 6	
Trp NH	9.90	-	Trp 2	-	Boc Me
	-,				Lvs ε/NH
					Trp 2
					Trp 7
Trp CO	-	169.58	-	Τrp α	-
Trp NMe	2.91	30.43	-	Τrp α	Lvs B
	, -	, -		Lvs CO	Trpβ
				,	Lvs α
					, Trp 2
βTyr NH	7,44	-	βΤγr β	-	βTyr β
	,		. , .		Trpα
					βTyr 2/6
βΤγr β	5,20	49,37	βTyr NH	βTyr 2/6	βTyrα
			βTyr α	βTyr 1	βTyr 2/6
				Trp CO	βTyr NH
				βTyr CO	
				βTyr α	
βTyr α	2,76 / 2,57	39,77	βTyr β	βTyr β	βTyr α
				βTyr 1	βTyr β
				βTyr CO	βTyr 2/6
βTyr 1	-	132,71	-	βTyr β	-
				βTyr α	
βTyr 2/6	7,13	127,54	βTyr 3/5	βTyr 4	11
				βTyr β	βΤγr α
				βTyr 5/3	βTyr β
					βTyr 3/5
					βTyr NH
βTyr 3/5	6,77	115,71	βTyr 2/6	βTyr 6/2	11
				βTyr 1	Tyr 2/6
				βTyr 4	
βTyr 4	-	155,40	-	βTyr 2/6	-
				βTyr 3/5	
βTyr CO	-	170,80	-	βTyr β	-
				βTyr α	
1	-	175,54	-	2	-
				3	
2	2,47	39,84	10	1	10
			3		11

					Lys NH
3	1,88 / 2,43	43,34	2	11	5
				2	3
				5	10
				4	11
				1	
4	-	133,72	-	3	-
5	4,99	125,08	6	11	7
			11	6	6
				7	3
				3	8
6	1,79 (both)	23,29	5	5	5
			7	7	9
				8	11
				4	7
					8
7	1,35 / 1,54	35,59	6	9	5
			8	6	9
				8	7
				5	6
					8
8	4,80	69,81	7	βTyr CO	9
			9	7	7
				6	6
				5	5
9	1,10	20,64	8	7	7
				8	6
					8
10	1,14	20,36	2	2	3
				3	2
				1	
11	1,42	16,12	5	3	6
			3	4	3
			6	5	2
Lys NH	6,77	-	Lys α	Lys CO	2
				1	Lys α
Lys α	4,88	49,98	Lys NH	Lys γ	Lys γ
			Lys β	Lys β	Lys β
				Lys CO	Trp NMe
				1	Lys NH
Lys CO	-	173,94	-	Lys NH	-
				Lys α	
Lys β	1,03 / 1,53	30,99	Lys α	Lys a	Lys β
			Lys γ		Lys α
					Lys γ
Lys γ	0,64 /	21,12	Lys β	Lys α	Lys β
	0,98		Lys δ	Lys δ	Lys a

Lys δ	1,21 / 1,26	30,24	Lys γ	-	Lys γ
			Lys ε		Lys β
					Lys ε
Lys ε	2,82 / 3,04	40,85	Lys δ	-	Lys δ
Lys ε/NH	4,75	-	-	-	-
Boc CO	-	156,80	-	-	-
Boc C	-	80,05	-	Boc Me	-
Boc Me	1,52	28,65	-	Boc C	-

CDCl ₃ .	500	MHz	^{1}H
<u> </u>			

Position	δ(¹ H) / ppm	δ(¹³ C{ ¹ H})/	COSY	НМВС	NOESY
		ppm			
Trp α	5,55	56,28	Trp β	Trp β	Trp β
				Trp NMe	Trp 2
				Trp CO	Trp 5
				Lys CO	Trp 4
Trp β	3,18 / 3,40	22,53	Trp β	Trp 3	Trp NMe
			Trp α	Trp 2	Trp α
			Trp 2	Trp 3a	Trp 2
					Trp 4
Trp 2	6,92	121,67	Trp β	Trp 3	Lys γ
			Trp NH	Trp 3a	11
				Trp 7a	Trp NMe

					Trp α
					Trp NH
Trp 3	-	109,82	-	Trp 4	-
				Trp 2	
				Trp β	
Trp 3a	-	127,08	-	Trp β	-
				Trp 2	
				Trp 5	
				Trp 7	
				Trp 4	
Trp 4	7,58	118,34	Trp 5	Trp 3a	Trp NMe
			Trp 6	Trp 3	Trp β
			Trp 7	Trp 7a	Trp α
				Trp 6	Trp 5
Trp 5	7,08	119,09	Trp 7	Trp 3a	βTyr α
			Trp 4	Trp 7	βTyr β
			Trp 6	Trp 4	Trp α
					Trp 4
Trp 6	7,13	121,80	Trp 5	Trp 4	βTyr α
			Trp 7	Trp 7a	Trp 7
			Irp 4		
Irp 7	7,32	111,50	Irp 4	Irp 5	Lys B
			Trp 5	Trp 3a	Boc
			Irp 6		Trp 6
T.v. 7.		126 52		True C	трин
irp /a	-	136,52	-	Ттрб	-
				Trp 4	
Tro NUL	0.97		Tro 2	11p 2	Tro 7
прин	9,87	-	iip z	-	Trp 7
					Trp 2
					Lyse
Trp CO		160 50		Trp.q	BUC
npco	-	109,50	-	BTyr B	-
Trn NMe	2 92	30.44		Trn a	Trn 4
inpittite	2,52	50,44		Lvs CO	Trn 2
				Lyseo	Trp B
βTvr NH	7.08	-	ßTvr ß	-	
BTvr B	5,33	48 75	BTyr NH	βTvr α	βTyr α
P'9' P	3,33	10,75	βTyrα	BTyr 1	BTyr 2/6
			pryr a	BTvr 2/6	p: y: 2/0
				βTyr CO	
βΤνη α	2.59 / 2.76	39,89	ßTvr ß	BTvr B	ßTvr ß
p.,. «	_,, _,		P'7'P	βTvr 1	βTvr 2/6
				βTyr CO	
βTvr 1	-	132.75	-	βTvr β	-
. ,		,		βTyr α	

βTyr 2/6	7,14	127,48	βTyr 3/5	βΤγr β	βTyr α
				βTyr 2/6	βTyr β
07.02/5	6.70	445 50	07.02/6	BTyr 4	βTyr 3/5
βTyr 3/5	6,78	115,58	BTyr 2/6	βTyr 3/5	BTyr 2/6
				BTyr 1	
0		455.22		pTyr 4	
BTyr 4	-	155,23	-	pTyr 2/6	-
07		170.02		pTyr 3/5	
plyrCO	-	170,82	-	piyr p Ottur ei	-
1		175.24		ριγια	
1	-	175,24	-	10	-
				3	
2	2.45	40.01	10		10
Z	2,45	40,01	10	10	10
			5	L L	2
					5
3	1 88 / 2 /1	13.16	2	2	10
5	1,00 / 2,41	43,40	2	1	10
				1	11
				5	
4	_	133 94	_	11	-
-		133,34		3	
5	5,06	124,36	11	11	9
			6	6	6
					7
					3
					8
6	1,73 / 1,90	31,16	5	8	9
			7	4	5
			11	5	
7	1,65	33,04	9	9	9
			8	6	6
				8	8
8	3.70 / 3.97	67.05	7	9	9
	-,, -,			6	7
				7	5
				βTyr CO	Lys α
9	0,84	17,47	7	6	6
				7	7
				8	8
10	1,11	20,01	3	2	3
			2	3	2
				1	

11	1,49	15,82	-	3	Lys β
				5	3
				4	2
Lys NH	6,65	-	Lys α	Lys CO	10
				1	Lys β
					11
					3
					Lys α
Lys α	4,74	49,80	Lys NH	Lys γ	Lys γ
			Lys β	Lys β	Lys β
				Lys CO	11
					Trp NMe
					8
					Lys NH
Lys CO	-	173,54	-	Lys a	-
				Trp NMe	
				Trp α	
				Lys NH	
Lys β	0,94 / 1,50	30,74	Lys α	Lys α	Lys γ
			Lys γ		11
					Trp NMe
					Lys α
					Lys NH
Lys γ	0,59 /	20,91	Lys β	Lys a	Lys δ
	0,93		Lys δ		Trp 2
Lys δ	1,16 / 1,22	30,06	Lys γ	-	Lys ε
			Lys ε		Lys γ
Lys ε	2,78 / 3,01	40,68	Lys δ	-	Lys δ
Lys ε/NH	4,73	-	-	-	-
Boc CO	-	156,69	-	-	-
Boc C	-	79,91	-	-	-
Boc Me	1,50	28,50	-	-	-

CDCl₃, 600 MHz ¹H

Position	δ(¹ H) / ppm	δ(¹³ C{ ¹ H})/	COSY	HMBC	NOESY
		ppm			
Trp α	5,56	57,31	Trp β	Trp β	
				Trp NMe	
Trp β	3,24 / 3,47	23,09	Trp α	Trp α	Trp α
				Trp 2	Trp 4
				Trp 3	Trp NMe
				Trp 3a	
Trp 2	7,27	123,80	-	Trp β	9/10
				Trp 3	
				Trp 3a	
				Trp 7a	
				8	
Trp 3	-	109,53	-	-	-
Trp 3a	-	129,55	-	-	-
Trp 4	7,54	118,75	Trp 5	Trp 3	Trp 5
			Trp 6	Trp 6	
				Trp 3a	
				Trp 7a	
Trp 5	6,97	118,94	Trp 4	Trp 7	Trp 4
			Trp 6	Trp 3a	Trp 6
			Trp 7		
Trp 6	6,84	121,02	Trp 4	Trp 4	Trp 5
			Trp 5	Trp 7a	Trp 7
			Trp 7		

Trp 7	6,56	113,77	Trp 5	Trp 5	9/10
			Trp 6	Trp 3a	Trp 6
					12/16
Trp 7a	-	135,48	-	-	-
Trp NMe	3,00	31,13	-	Lys CO	Lys α
				Trp α	Lys NH
Trp CO	-	169,22	-	-	-
βTyr NH	7,10	-	βTyr β		
βTyr α	2,83 / 2,78	40,92	βTyr β	βTyr β	βTyr 2/6
				βTyr 1	
				βTyr CO	
βTyr β	5,37	49,63	βTyr α	βTyr α	βTyr 2/6
			βTyr NH	βTyr 2/6	
				βTyr 1	
				βTyr CO	
βTyr CO	-	172,6	-	-	-
βTyr 1	-	133,42	-	-	-
βTyr 2/6	7,13	127,40	βTyr 3/5	βTyr β	βTyr β
				βTyr 2/6	βTyr 3/5
				βTyr 4	βTyr α
βTyr 3/5	6,77	119,96	βTyr 2/6	βTyr 3/5	βTyr α
				βTyr 1	βTyr β
				βTyr 4	βTyr 2/6
					TIPS 7
					TIPS 8
βTyr 4	-	155,43	-	-	-
TIPS 7	1,21	12,80	TIPS 8	TIPS 8	TIPS 8
					βTyr 3/5
TIPS 8	1,07	18,07	TIPS 7	TIPS 7	TIPS 7
				TIPS 8	
1	-	178,17	-		-
2	2,55	38,97	3	5	3
			7	3	1
				7	7
					6
			-		5
3	2,05 / 2,40	41,81	4	4	3
			6	6	7
				2	
				5	
		142.04		1	
4	-	142,84	-	4	-
5	4,/1/4,/6	112,69		1	6
			3	3	1
					3
-	4.12	47.40	-		4
6	1,12	17,49	4	4	3

				3	4
				5	Lys NH
7	1,69	22,42	6	3	3
				6	4
				2	
8	-	60,43	-	Trp 2	-
9/10	1,87 / 1,88	30,41 / 30,33	-	10/9	Trp 2
				8	Trp 7
				11	12/16
11	-	146,86	-	-	-
12/16	7,10	125,24	13/15	8	9/10
			14	16/12	Trp 7
				14	
13/15	7,25	128,75	12/16	15/13	12/16
			14	11	14
				12/16	
14	7,22	127,08	12/16	12/16	13/15
			13/15		14
Lys NH	6,71	-	Lys α	-	Trp NMe
					7
Lys CO	-	173,28	-	-	-
Lys α	4,65	49,93	Lys β	-	Trp NMe
			Lys NH		
Lys β	1,33 / 1,29	31,12	Lys α	-	-
			Lys γ		
Lys γ	1,17	22,49	Lys β	-	-
Lys δ	1,30 / 1,17	29,68	Lys ε	Lys ε	Lys ε
Lys ε	2,99 / 2,91	39,61	Lys δ	-	-
			Lys ε/NH		
Lys ε/NH	4,51	-	Lys ε	-	-
Boc CO	-	156,48	-	-	-
Boc C	-	79,48	-	-	-
Boc Me	1,43	28,57	-	Boc Me	-
				Boc C	

5-H-H = 1-H-TIPS

CDCl₃, 600 MHz ¹H

Position	δ(¹ H) / ppm	δ(¹³ C{ ¹ H}) / ppm	COSY	НМВС	NOESY
Τrp α	5,59	56,26	Trp β	-	Trp β Trp NMe βTyr NH
Τrp β	3,25 22,54 Trp α 3,32		Trp 3 Trp 2 Trp 3a	Trp α	
Trp NH	9,41	-	Trp 2	-	Trp 2
Trp 2	6,90	121,63	Trp NH	Trp 3 Trp 3a Trp 7a	Trp NH
Trp 3	-	110,22	-	-	-
Trp 3a	-	126,98	-	-	-
Trp 4	7,53	118,19	Trp 5	Trp 3 Trp 6 Trp 3a Trp 7a	Trp 5
Trp 5	7,02	118,77	Trp 4 Trp 6	Trp 7 Trp 3a	Trp 4 Trp 6
Trp 6	7,08	121,41	Trp 5 Trp 7	Trp 4 Trp 7a	Trp 7 Trp 5
Trp 7	7,27	110,98	Trp 6	Trp 5 Trp 3a	Trp 6

Trp 7a	-	136,06	-	-	-
Trp NMe	2,85	30,25	-	Trp α	Trp α
				Lys CO	Lys a
					βTyr NH
Trp CO	-	168,89	-	-	-
βTyr NH	7,42	-	βTyr β	-	βTyr β
					Trp α
					βΤγr α
					Trp NMe
βΤγr α	2,71	40,78	βTyr β	βTyr β	βTyr β
				βTyr 1	βTyr 2/6
				βTyr CO	βTyr NH
βTyr β	5,29	49,10	βTyr NH	βΤγr α	βTyr 2/6
			βΤγr α	βTyr 2/6	βTyr NH
				βTyr 1	βTyr α
				Trp CO	
				βTyr CO	
βTyr CO	-	173,35	-	-	-
βTyr 1	-	133,16	-	-	-
βTyr 2/6	7,10	127,02	βTyr 3/5	βTyr 4	βTyr α
				βTyr β	βTyr β
				βTyr 6/2	βTyr 3/5
βTyr 3/5	6,73	119,38	βTyr 2/6	βTyr 4	βTyr 2/6
				βTyr 5/3	TIPS 8
				βTyr 1	TIPS 7
βTyr 4	-	154,86	-	-	-
TIPS 7	1,17	12,32	TIPS 8	TIPS 8	βTyr 3/5
TIPS 8	1,02	17,60	TIPS 7	TIPS 8	βTyr 3/5
				TIPS 7	
1	-	176,79	-	-	-
2	2,38	38 <i>,</i> 56	3	7	3
			7	5	1
					6
					7
3	1,95	41,35	4	1	4
	2,27		6	4	6
				6	1
				2	
				5	
				7	
4	-	142,41	-	-	-
5	4,62	112,16	1	1	1
	4,67		3	3	3
					4
6	1,01	17,04	4	4	4
				3	Lys NH
				5	

7	1,60	21,92	6	3	3
				6	4
				2	6
Lys NH	6,55	-	Lys α	5	7
					3
					Lys α
Lys CO	-	172,66	-	-	-
Lys α	4,56	49,31	Lys β	Lys γ	Lys β
			Lys NH	Lys β	Trp NMe
				Lys CO	Lys NH
				5	
Lys β	1,07	30,61	Lys α	-	-
	1,24		Lys γ		
Lys γ	0,82	21,43	Lys β	-	-
			Lys δ		
Lys δ	1,18	29,60	Lys γ	-	-
			Lys ε		
Lys ε	2,84	39,86	Lys δ	Boc CO	-
	2,91		Lys ξ		
Lys ξ	4,61	-	Lys ε	-	-
Boc CO	-	156,20	-	-	-
Boc C	-	79,43	-	-	-
Boc Me	1,44	28,16	-	Boc Me	-
				Boc C	

Figures S4a-e. NMR spectra of compound 1-H-TIPS (5-H-H) in CDCl₃: ¹H (600 MHz),

 $^{13}C{^{1}H}$ (151 MHz), APT (CH/CH₃ +, C_q/CH₂ –), $^{1}H^{-1}H$, and $^{1}H^{-13}C$ (HSQC) COSY.

vb17096a_6a.1.fid VB17096A cdcl3 Belov / MPI10200	145 171 188 189 171 199 171 199 199 199 199 199 199 19	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	-142,73	-13637 -1368 -12733 -12733	1113	111250 111250 111250 111250 111250	- 79.74	8: SE	A9.62 49.42 45.04 141.67 41.67 41.69	23.88 23.99 23.44 23.44 23.44	-22.22 -22.24 -22.24 -22.63 -22.63 -8.44
					1			1			
#20-000/09/11/20/07/09/04/04		hay had a second second a		1	Transfer					1	ne internetionen inte

Figures S5a-c. NMR spectra of compound **2** in $[D_6]DMSO$: ¹H (400 MHz), ¹³C{¹H} (101 MHz) and APT (CH/CH₃+, C_q/CH₂ –).

¹H NMR (400 MHz, DMSO- d_8) § 7.84 (dt, J = 7.7, 0.9 Hz, 2H), 7.75 (d, J = 8.8 Hz, 1H), 7.65 (d, J = 7.5 Hz, 2H), 7.38 (dtd, J = 7.5, 4.3, 3.8, 1.7 Hz, 2H), 7.32 – 7.13 (m, 9H), 6.86 – 6.75 (m, 2H), 4.92 (q, J = 8.1 Hz, 1H), 4.33 (dt, J = 6.4, 3.3 Hz, 2H), 4.19 (t, J = 6.8 Hz, 1H), 2.73 (qd, J = 15.1, 7.8 Hz, 2H), 1.59 (s, 6H), 1.31 – 1.15 (m, 3H), 1.06 (d, J = 7.4 Hz, 18H).

[D₆]DMSO (40.5 ppm); ¹³C-NMR and APT (101 MHz)

Figures S6a-e. NMR spectra of compound **3** in [D₃]MeCN: 1 H (400 MHz), 13 C{ 1 H} (101 MHz), APT (CH/CH₃ +, C_q/CH₂ -), 1 H- 1 H-,

and ¹H-¹³C-(HSQC) COSY.

¹H NMR (400 MHz, Acetonitrile- d_3) δ 9.05 (d, J = 10.6 Hz, 1H), 7.79 (dd, J = 24.1, 7.9 Hz, 2H), 7.61 – 7.57 (m, 1H), 7.54 – 6.76 (m, 18H), 5.30 – 5.16 (m, 1H), 5.02 – 4.85 (m, 1H), 4.36 (s, 1H), 4.17 (d, J = 8.2 Hz, 1H), 3.93 (d, J = 12.1 Hz, 0H), 3.78 (s, 1H), 3.34 (d, J = 11.8 Hz, 1H), 3.09 – 2.94 (m, 1H), 2.84 – 2.76 (m, 1H), 2.74 (s, 3H), 1.65 – 1.50 (m, 6H), 1.31 – 1.15 (m, 3H), 1.09 (d, J = 7.3 Hz, 16H).

Figures S7a-e. NMR spectra of compound **4** in CDCl₃: 1 H (400 MHz), 13 C{ 1 H} (101 MHz), APT (CH/CH₃ +, C_q/CH₂ -), 1 H- 1 H-, and 1 H-

¹³C- (HSQC) COSY.

¹H NMR (400 MHz, Chloroform-*d*) δ 9.62 (s, 1H), 7.74 (d, *J* = 7.5 Hz, 2H), 7.58 (d, *J* = 7.7 Hz, 1H), 7.51 (dd, *J* = 7.5, 5.2 Hz, 2H), 7.36 (ddd, *J* = 19.7, 9.8, 5.3 Hz, 3H), 7.30 – 7.02 (m, 12H), 6.94 (s, 1H) 6.83 – 6.70 (m, 2H), 5.65 (dd, *J* = 12.2, 4.6 Hz, 1H), 5.53 (d, *J* = 6.6 Hz, 1H), 5.37 (q, *J* = 7.4 Hz, 1H), 4.64 (s, 1H), 4.35 (dd, *J* = 11.0, 7.1 Hz, 2H), 4.23 (dd, *J* = 10.5, 6.9 Hz, 1H), 4.19 – 4.09 (m, 1H), 3.2 (dd, *J* = 16.2, 4.6 Hz, 1H), 3.24 (dd, *J* = 16.1, 12.3 Hz, 1H), 3.00 – 2.85 (m, 1H), 2.81 (dd, *J* = 21.6, 6.8 Hz, 1H), 2.71 (s, 3H), 1.81 (s, 1H), 1.64 (s, 3H), 1.62 (s, 4H), 1.52 (s, 9H), 1.47 – 1.32 (m, 1H), 1.34 (m, 5H), 1.07 (d, *J* = 7.3 Hz, 19H), 0.95 – 0.70 (m, 2H).

Figures S8a-e. NMR spectra of compound **5-**C(CH₃)₂C₆H₅-H in CDCl₃: 1 H (600 MHz), 13 C{ 1 H} (126 MHz),

APT (CH/CH₃+, C_q/CH_2 –), ¹H-¹H-, and ¹H-¹³C- (HSQC) COSY.

Figures S9a-e. NMR spectra of compound **5**-H-C(CH₃)₂C₆H₅ in CDCl₃: ¹H (600 MHz), ¹³C{¹H} (126 MHz), APT CH/CH₃+, C_q/CH₂ –),

 1 H- 1 H-, and 1 H- 13 C- (HSQC) COSY.

명희.1.fid 영 1997 cdcl3 : : 에/ MPI10200 / mw	/ 146.69 / 142.68 / 142.68 / 135.31	/ 129.38 / 128.59 / 127.23	123.66		-112.52		15. <mark>07</mark> —		49.78 49.45 45.45 41.64 41.64	239.48 38.80 30.93 30.24 30.24 29.68	29.53 28.40 22.92 22.33 22.33	-17.32	
		2		1									
ค ะหว่างแหม่มีหน่ายคายการการการการการการการการการการการการการก	on and the second second	e.wiyocooguafequarine		().	เมารถสมุณารถเกิดการเหตุกา	ant for the second s	ranasanagananya kanya kanya kan	เขาสาราชาวาราราราราชาวาราชาวาราชาวาราชาวาราชาวาราชาวาราชาวาร	www.	and a passe at reasonant of	dyohanemusephase		wine men
				-									

Figures S10a-d. NMR spectra of compound **6** in CD₂Cl₂: ¹H (500 MHz), ¹³C{¹H} (126 MHz), ¹H-¹H, and ¹H-¹³C COSY.

Figures S11a-e. NMR spectra of compound **7**-TIPS in CDCl₃: ¹H (400 MHz), ¹³C{¹H} (101 MHz), DEPT, ¹H-¹H, and ¹H-¹³C (HSQC)

COSY.

Figures S12a,b. ¹H (600 MHz) and ¹³C $\{^{1}H\}$ NMR (125 MHz) spectra of compound 7-H in CDCl₃.

Figures S13a-d. ¹H (400 MHz), ¹³C{¹H} NMR (101 MHz), APT (101 MHz), ¹H-¹H (600 MHz) and ¹H-¹³C- (HSQC, 400 MHz) spectra

of compound **8**-H in CDCl₃.

¹H NMR (400 MHz, Chloroform-*d*) δ 7.58 (d, *J* = 7.8 Hz, 1H), 7.33 (d, *J* = 8.0 Hz, 2H), 7.22 - 6.99 (m, 6H), 6.93 (s, 1H), 6.79 (d, *J* = 8.4 Hz, 3H), 6.60 (d, *J* = 6.7 Hz, 1H), 5.55 (dd, *J* = 12.2, 4.4 Hz, 1H), 5.38 - 5.31 (m, 1H), 5.06 (d, *J* = 9.5 Hz, 1H), 4.73 (s, 3H), 3.99 (dd, *J* = 10.6, 3.5 Hz, 1H), 3.70 (dd, *J* = 10.6, 4.2 Hz, 1H), 3.39 (d, *J* = 13.6 Hz, 1H), 3.18 (dd, *J* = 16.4, 4.5 Hz, 1H), 3.01 (s, 1H), 2.92 (s, 3H), 2.88 (s, 1H), 2.82 - 2.71 (m, 3H), 2.59 (dd, *J* = 16.3, 9.5 Hz, 1H), 2.49 - 2.39 (m, 3H), 1.88 (d, *J* = 10.0 Hz, 9H), 1.50 (d, *J* = 5.1 Hz, 16H), 1.42 (s, 2H), 1.24 (d, *J* = 2.2 Hz, 3H), 1.13 - 1.07 (m, 5H), 0.94 (s, 3H), 0.84 (d, *J* = 6.7 Hz, 3H), 0.76 (d, *J* = 6.2 Hz, 1H).

S 78