

BMJ Open is committed to open peer review. As part of this commitment we make the peer review history of every article we publish publicly available.

When an article is published we post the peer reviewers' comments and the authors' responses online. We also post the versions of the paper that were used during peer review. These are the versions that the peer review comments apply to.

The versions of the paper that follow are the versions that were submitted during the peer review process. They are not the versions of record or the final published versions. They should not be cited or distributed as the published version of this manuscript.

BMJ Open is an open access journal and the full, final, typeset and author-corrected version of record of the manuscript is available on our site with no access controls, subscription charges or pay-per-view fees (<u>http://bmjopen.bmj.com</u>).

If you have any questions on BMJ Open's open peer review process please email <u>info.bmjopen@bmj.com</u>

BMJ Open

BMJ Open

Sociodemographic predictors of early postnatal growth: evidence from a Chilean infancy cohort.

Journal:	BMJ Open
Manuscript ID	bmjopen-2019-033695
Article Type:	Research
Date Submitted by the Author:	19-Aug-2019
Complete List of Authors:	Von Holle, Ann; University of North Carolina at Chapel Hill, Epidemiology North, Kari; University of North Carolina at Chapel Hill Gahagan, Sheila; University of California San Diego, Child Development and Community Health Burrows, Raquel; University of Chile, Institute of Nutrition and Food Tecnology Blanco, Estela; University of California San Diego, Child Development and Community Health Lozoff, Betsy; University of Michigan, Department of Pediatrics Howard, Annie Green; University of North Carolina System, Biostatistics Justice, Anne; Geisinger Health, Center for Biomedical and Translational Informatics Graff, Misa; University of North Carolina at Chapel Hill, Epidemiology Voruganti, V. Saroja; University of North Carolina at Chapel Hill, Department of Nutrition and UNC Nutrition Research Institute
Keywords:	EPIDEMIOLOGY, Community child health < PAEDIATRICS, PUBLIC HEALTH

SCHOLARONE[™] Manuscripts

I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd ("BMJ") its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our <u>licence</u>.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge ("APC") for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which <u>Creative Commons</u> licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author's Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.

reliez oni

Title: Sociodemographic predictors of early postnatal growth: evidence from a Chilean infancy cohort

Ann Von Holle

PO Box 12233 Mail Drop A3-03, 111 TW Alexander Drive, Research Triangle Park, NC 27709-2233. Email: <u>avonholle@gmail.com</u>; tel. 919-593-0299

(Corresponding author)

Kari E. North

Department of Epidemiology, University of North Carolina, Chapel Hill, NC, United States

Sheila Gahagan

Child Development and Community Health Division, University of California, San Diego, CA, United States

Raquel Burrows

Institute of Nutrition and Food Technology, University of Chile, Santiago, Chile

Estela Blanco

Child Development and Community Health Division; University of California, San Diego, CA, United States

Betsy Lozoff

Department of Pediatrics, University of Michigan, Ann Arbor, MI, United States

Annie Green Howard

BMJ Open

Department of Biostatistics, University of North Carolina, Chapel Hill, NC, United States

Anne Justice

Center for Biomedical and Translational Informatics, Geisinger Health, Danville, PA, United States

Misa Graff

Department of Epidemiology, University of North Carolina, Chapel Hill, NC, United States

Venkata Saroja Voruganti

Department of Nutrition and UNC Nutrition Research Institute, University of North Carolina, Chapel Hill, NC, United States Word Count: ~3,021

Number of references: 38

Abstract

Objectives

Infant anthropometric growth varies across socioeconomic factors, including maternal education and income, and may serve as an indicator of environmental influences in early life with long term health consequences. Previous research has identified sociodemographic gradients in growth with a focus on the first year and beyond, but estimates are sparse for growth before six months. Thus, our objective was to examine the relationship between early life environmental factors and infant growth patterns between birth and five months of age.

Design

Prospective cohort study

Settings

Low- to middle-income neighborhoods in Santiago, Chile (1991-1996).

Participants

1,412 participants from a randomized iron deficiency anemia preventive trial in healthy infants.

Main outcome measures

Longitudinal anthropometrics including monthly weight (kg), length (cm) and weight-forlength (WFL) values. For each measure, we estimated three individual-level growth parameters (size, timing, and velocity) from SuperImposition by Translation and Rotation (SITAR) models. Size and timing changes represent vertical and horizontal growth curve shifts, respectively, and velocity change represents growth rate shifts.

Results

We used lasso regression with post-selection inference methods to estimate the linear association between each of the growth parameter outcomes and environmental exposures including gestational age, maternal age, education, and socioeconomic position (SEP). Lower SEP was associated with a slower linear (length) growth as demonstrated through the velocity growth parameter (-0.22, 95% CI=-0.13,-0.31) – outcome units are percent change in velocity from the average growth curve. Lower SEP was also associated with later WFL growth timing as demonstrated through the tempo growth parameter for females (0.25, 95% CI=0.05,0.42) – outcome units are shifts in days from the average growth curve.

Conclusion

Previous research on growth in older infants and children shows associations between lower SEP with slower length velocity. We found evidence supporting this association in the first five months of life, which may inform age-specific prevention efforts aimed at infant growth.

Strengths and Limitations of this Study

- The sample includes monthly anthropometric measures in first five postnatal months not available in any study to date and allowing better fitting models of growth.
- We used a detailed measure of socioeconomic position specific to low- to middleincome groups, an understudied population.
- As the sample was low- to middle-income, these results may not generalize to groups with even lower or higher income or SEP.

Introduction

Interest in early life infant growth has grown as evidence accumulates that it is associated with the development of adult disease, sometimes decades later. Some chronic disease outcomes associated with infant growth characteristics include obesity, endothelial dysfunction, and metabolic syndrome (1–3). Explanations for these associations include early infancy as a critical window of time for susceptibility to environmental exposures for chronic disease risk factors (4). Socioeconomic position (SEP) is one such exposure. SEP is associated with child growth patterns, in particular, length (5–12) and weight (13–16). In these studies, lower SEP is generally associated with faster weight gain during childhood, while the inverse holds true for length. These socioeconomic gradients in growth appear to emerge in early life (7) and persist (5).

Gaps remain in our understanding regarding sociodemographic predictors of growth during infancy and childhood. One such gap relates to the earliest period of infant growth. Studies to date include only a few observations before six months, leading to linear specifications between weight or height and time. However, curvilinear models of growth offer better model fit for early infancy growth. Growth during the first six months in the human lifespan is characterized by accelerated growth at the outset and leveling off at around six months (17). Understanding the relationship between early infant growth and sociodemographic factors may yield new information that highlight the potential for earlier interventions to promote optimal health.

Identifying novel associations in this age range can better pinpoint the timing and influence of sociodemographic factors. Given the sparsity of information in the literature focusing on these points, our aim in this study is to examine sociodemographic predictors of infant weight, length and weight-for-length (WFL) growth from zero to five months in an infancy cohort of over 1,400 healthy Chilean children. Based on observations of infants older than six months, we expect that SEP will be inversely associated with weight gain and positively associated with length growth.

Methods

Study sample

The data in this study are drawn from the Santiago Longitudinal Study (SLS), a cohort study from low- to middle-income neighborhoods in Santiago, Chile. Between 1991 and 1996, infants were recruited for an infancy iron deficiency anemia preventive trial (18) or neuromaturation study (19). Inclusion criteria for the infancy studies included term infants with birthweight ≥ 3.0 kg, vaginal birth, no major health problems for the infant, and, for the preventive trial, no iron deficiency anemia present at five to six months. Those with iron deficiency anemia and the next nonanemic control were invited to participate in the neuromaturation study and are not considered here. Participant eligibility and follow-up information have previously been reported (18). The Santiago Longitudinal Study (SLS) had been approved by Institutional Review Boards from 1) the University of Michigan, Ann Arbor, 2) Institute of Nutrition and Food Technology (INTA), Chile and 3) University of California, San Diego.

We characterized the growth period prior to treatment randomization, which occurred at six months. Anthropometric measures prior to study enrollment were obtained from the medical chart. The total sample size included 1,657 infants who completed the preventive trial. The participants included in this analysis numbered 1,412 individuals from the preventive trial with anthropometric measures for at least two time points before six months.

Outcome and sociodemographic measures

Anthropometric measurements included weight (kg), length (cm), and weight-for-length (WFL) (g/cm). Weight was measured to the nearest 0.01 kg on an electronic scale at local public health clinics. Length was measured on a recumbent board to the nearest 0.1 cm. Gestational age (GA), obtained from the medical chart, was among the set of variables included in the models as a covariate.

Sociodemographic measures were self-reported by the mother, including maternal age (years), total years of education, and the modified Graffar index (20), an index of SEP used in lower-income countries (21). The modified Graffar index represents a sum of 10 measures regarding education, family composition, and housing characteristics, which are summed to create a scale with higher values indicating lower social class (Appendix Table A1). Mothers self-reported breastfeeding characteristics from birth, including date of first bottle and age at weaning if weaned. From this information, we created variables for breastfeeding as the sole source of milk and mixed breast and bottle feeding at five months.

Statistical analyses

Summary statistics included median and interquartile ranges for continuous variables and percent with counts for categorical variables. All summary statistics were stratified by child sex.

We used two steps to assess the association between infant growth and sociodemographic predictors: 1) SuperImposition by Translation and Rotation (SITAR) approach (22) to estimate infant weight, length and weight-for-length (WFL) growth characteristics from birth to five months followed by 2) linear regression to estimate the relationship between sociodemographic predictors and these growth characteristics. We used a nonlinear mixed effects model (23) to estimate the growth characteristics with the R nlme package (24). Each model produces up to three different SITAR growth parameters per individual, which have been named 'size', 'tempo' and 'velocity' (22) (Figure 1). 'Size' indicates a shift of the growth curve up and down for an individual relative to the average growth curve. 'Tempo' indicates a shift of the growth curve to the left or right on the age scale for an individual relative to the average growth curve. Lastly, 'velocity' indicates a transformation of the age scale in the nonlinear model, shrinking or enlarging the age scale for an individual relative to the average growth curve. These three parameters are noted as having biologically meaningful interpretations, which are difficult to obtain with other growth models (23). Unless otherwise noted, any references to 'size', 'tempo', and 'velocity' refer to these parameters from the SITAR construct applied to early infant growth. We assessed best model fit for each anthropometric measure via the lowest Bayesian Information Criterion (BIC) for growth independent of any covariates. After evaluating all possible combinations of SITAR models from one to three parameters for each of the three anthropometric measures, best fit (Appendix Table A2) models included: 1) all three growth parameters for weight (BIC=-22941), 2) sex-specific growth trajectories with tempo and velocity parameters for length (BIC=-38001), and 3) sex-specific growth trajectories with size and tempo parameters for WFL (BIC=-22809).

Figure 1 about here

The results from the second step analyses are reported. In addition to analyses combining and adjusting for sex of the child, sex-stratified analyses were used for all three anthropometric outcomes, as some estimated associations between the SITAR growth parameters and SEP indicators differed by sex of the child.

The adjusted models in the second step started with four covariates: gestational age, maternal age, maternal total years of education, and Graffar index (20). We removed covariates from the model based on the least absolute shrinkage and selection operator (lasso) approach (25). This approach has better performance than conventional model selection methods with a univariate approach (26) such as stepwise methods (27). The lasso approach assists in selecting predictors with the strongest coefficients (28) while balancing bias and variation in the model. We used the glmnet package in R (29) to estimate shrunken parameters and the selectiveInference package (30) to provide inference via statistical tests and confidence intervals. Each set of comparisons by outcome, i.e. weight, length or weight-for-length were considered separately, controlling multiple

19

20

21

22

23

24 25

26

27

28

29

30

31 32

33

34

35

36 37

38 39

40

41

42 43

44 45

46

47

48

49

50

51 52

53

54

55

56 57

58 59

comparisons with a Bonferroni correction at an alpha level of 0.05. A coefficient for the predictor of a weight size growth parameter outcome in the second step indicates a change in log(kg) for a one-unit change in the predictor; we multiply this coefficient by 100 to make a symmetric percentage difference on a modified percentage scale (31). Similarly, a one-unit change in the predictor corresponds to a symmetric percentage change in the velocity growth parameter. Time (days) is not log transformed and the coefficient for this outcome corresponds to a shift in the time scale in days.

For analyses, we used a complete case data set, i.e., all participants with non-missing covariates. The proportion of missing data was less than one percent for all variables except the Graffar index, which had less than three percent missing. The median number of non-missing outcome (anthropometric) values was six out of six monthly measures (birth to five months). The percent of missing outcome values at each time point ranged from 9% at months 1 and 2 to 0.2% at birth. In a post hoc data analysis we used logistic regression models to estimate associations between SEP (the Graffar Index) as a continuous variable, and binary breastfeeding status outcomes – any or exclusive – at five months.

Patient and public involvement

Participants were mothers and infants recruited for research. The mothers were not involved in setting the study design, research questions or outcome measures for this study.

Results

Participants (n=1,412) were 53% male and 47% female. Median gestational age (Q1, Q3) was 40 weeks (39, 40); preterm infants (< 37 weeks GA) were excluded by design. Mothers were 26 years of age (median (IQR) 26 (22,31) and had a median (IQR) of 10 (8,12) years of education at the time of their infant's birth (Table 1). For the six monthly anthropometric measurements, each infant had at least two observations, and 72% had measures at all six time points.

Put table 1 about here

The following sections show results of the growth trajectory analyses for the three anthropometric outcomes: weight (kg), length (cm) and weight-for-length (WFL) (g/cm). All p-values are adjusted for multiple comparisons.

Weight trajectories: size, tempo and velocity

All three SITAR parameters, i.e. 'size, 'tempo' and 'velocity', best satisfied model fit diagnostic tests for weight trajectories (Appendix Table A2). Maternal age was positively associated with the weight size parameter for female infants (0.21, 95% CI = 0.07, 0.34) in the unadjusted model (Table 2), with a 0.21 percentage difference from the average growth curve for each year increase in maternal age. Maternal age was inversely associated with weight velocity parameter in female infants (-0.41, 95% CI = -0.71, -0.12) in the unadjusted model, indicating that higher maternal age was associated with slower weight growth.

Gestational age in the pooled sample was significantly associated with the weight tempo parameter (-2.01, 95% CI = -2.98, -1.70) in the adjusted model, indicating a leftward shift of about two days for each additional week in gestational age. This indicates earlier timing of weight gain in infants who were born with higher gestational age (Table 2). There was no substantive difference in this association in the sex-stratified analyses.

put table 2 about here

Length trajectories: tempo and velocity

For length (linear) growth, the 'tempo' and 'velocity' SITAR growth parameters best satisfied model fit diagnostic tests (Appendix Table A2). In the pooled group, the coefficient of association between the Graffar index and the velocity parameter (-0.22, 95% CI = -0.13, -0.31) (Table 3) indicated that for each unit increase in the Graffar index, there was a -0.22 percent difference from the average length velocity. This reflects a positive relationship between the length velocity parameter and SEP. This positive association was not substantively different in the sex-stratified analyses, all of which indicated faster linear (length) growth with higher SEP. In contrast to the sex-stratified analyses, all covariates remained in the pooled adjusted model with less than 6% decline from the unadjusted SEP coefficient (-0.23, 95% CI = -0.31, -0.15).

Gestational (GA) age was inversely associated with the length tempo parameter in the pooled sample (-2.94, 95% CI = -3.51, -2.41), indicating a leftward shift of about three days of the trajectory on the time scale, and a faster start to length growth, for each one week increase in gestational age (Table 3). GA was also associated with the length velocity parameter for the pooled sample (0.61, 95% CI = 0.06, 1.15).

put Table 3 about here

Weight-for-length trajectories: size and tempo

For WFL growth, the 'size' and 'tempo' SITAR parameters best satisfied model fit diagnostic tests (Appendix Table A2). Lower SEP was positively associated with the WFL tempo parameter for females (0.25, 95% CI = 0.05, 0.42) in the adjusted model. This estimate approximates a rightward shift in time (days) relative to the average growth curve indicating later growth timing with lower SEP.

Similar to weight and length trajectories, GA was inversely associated with the WFL tempo parameter in the pooled sample (-1.99, 95% CI = -2.83, -1.49) (Table 4) indicating about a two-day shift to the left on the time scale from the average growth curve for every one week increase in gestational age. Similar values were found in the sex-stratified analyses, all indicating earlier timing of WFL growth with higher gestational age.

put Table 4 about here

The post hoc analysis examining the association between odds of exclusive or any breastfeeding at five months and the continuous SEP measure (the Graffar index) did not find a substantive or significant association (data not shown).

Discussion

In this research, we found that lower SEP, measured by the Graffar index, was inversely associated with length growth characteristics in the first six months. Lower SEP was associated with later timing of WFL growth as reflected by the positive association between the Graffar Index and the WFL tempo parameter. These higher tempo values translate to a rightward shift in growth relative to the average growth curve as well as a later age at peak velocity (32). This delay in growth can be considered an unfavorable outcome associated with lower SEP.

Of three previous studies investigating associations between sociodemographic predictors and infant growth before six months, two found a positive association between length (linear) growth and maternal education (8,10), used as a proxy for SEP. Only one study found an inverse association with length growth (12). Many studies including age ranges exceeding six months of age up to five years of age demonstrated a positive association between maternal education and length/height growth (7,8,10). The majority of these studies support the conclusion that lower SEP is associated with slower length/height (linear) growth in infancy and early childhood.

Several prior studies representing high-income European countries have noted that their findings of either an inverse (12) or no relationship (7) between SEP and length (linear) growth may not generalize to low- to middle-income countries. Deviations from the Western diet and lifestyle were one of the reasons given for this limitation. Chile, the country from which our data were collected, offers an interesting context in this respect. The recruitment period for this study, 1991 to 1996, occurred as Chile was transitioning from a low-income to an upper-middle income country. In 1990, 40% of the Chilean population was below the poverty line (33); by 2012 Chile was classified by WHO as an upper middle-income country (34). There were nutrition and epidemiologic transitions (35.36) beginning in the 1970s and continuing during the 1990s when study infants were enrolled. Specifically, consumption of high-calorie food, accompanied by a sedentary lifestyle, resulted in rising obesity prevalence across all socioeconomic levels. In the context of an emerging Western diet and lifestyle, we found that lower SEP was associated with poorer length (linear) growth in early infancy. Of course, contemporary generations in Chile experience deteriorated SEP in a new context of over-nutrition and higher levels of sedentary behavior. Thus current studies in Chile may find distinct relationships between SEP and early growth when compared with generations born 20 years ago.

Plausible biological mechanisms, linked to modifiable factors, have been proposed for the observed association between lower SEP and length growth in the first five postnatal months. Breastfeeding and maternal smoking are two commonly proposed mechanisms, although evidence is limited. In our sample, breastfeeding was close to universal (37,38) and not associated with infant weight change in the first year. For maternal smoking status, prior studies did not find that either prenatal or postnatal smoking substantially altered the association between SEP and growth (11,12,16).

Maternal age was the only sociodemographic predictor positively associated with the SITAR size growth parameter for weight. This was similarly reported in another cohort

from the same geographic area of Santiago, Chile, the Growth and Obesity Cohort Study (GOCS) (13), which started a decade later and studied ages between birth and 2 years. Our findings add to this previous work. Through our intense focus on the first five prenatal months, our results demonstrate that the association between SEP and weight growth appears earlier in the postnatal period than previously documented.

Other potential mechanisms operating through SEP could include gestational weight gain and maternal nutrient status. Size at birth, considered a proxy for these two factors and represented in these analyses by the size SITAR parameter, was not associated with any of the sociodemographic measures. Further research will be useful in clarifying the biological mechanisms behind the association between SEP and early infant growth.

Strengths of this study include the combination of an analytic approach to growth that better captures the nonlinear characteristic of growth in the first five months of life with a detailed measure of socioeconomic position appropriate to the context of a lower income setting. Another strength is the monthly anthropometric measures collected in the first five postnatal months. We also note several limitations. The sample size is smaller than other studies with sample sizes in the thousands or tens of thousands (5,13,14). Our study was therefore not powered to detect some effects reported in larger studies. Another limitation is that the Graffar index, developed to assess differences in low- to middle-income populations, limits the generalizability of our findings to higher income groups.

This investigation examined various growth characteristics from birth to five months and their association with sociodemographic factors in a Chilean infancy cohort. We found associations between lower SEP and slower length (linear) growth, which are similar in direction to previous findings for maternal education that span periods of time greater than the first six months and up to five years of age (7,8,10,12). The association between maternal age and weight size, in our study, was similar to findings in other studies of growth between birth and two years of age (13). In sum, our results extend findings from previous research by showing that sociodemographic factors affect infant growth even in the first five months of growth and in relatively homogenous low- to middle-income populations.

Acknowledgements

We thank the Santiago Longitudinal Study participants.

Contributors

AVH designed the study, conducted the data analysis, and wrote the first draft of the paper. KEN and SG supervised and contributed to the study design and interpretation of results. EB helped acquire the data. All authors both contributed to revisions of the draft for intellectual content and approved the final version of the manuscript.

Funding

AVH was supported by an American Heart Association Mid-Atlantic Affiliate predoctoral fellowship (award number 16PRE29200008). KEN was supported by AHA grant 15GRNT25880008. The data for this work was supported by grants from the National Institutes of Health R01-HL-088530 and R01-HD-033487

Competing interests

None declared.

Patient consent

Not required.

Ethics approval

The Santiago Longitudinal Study (SLS) had been approved by Institutional Review Boards from 1) University of Michigan Medical Center, Ann Arbor, 2) Institute of Nutrition and Food Technology (INTA), Chile and 3) University of California, San Diego. The Office of Human Research Ethics at the University of North Carolina, Chapel Hill exempted this current research using existing anonymous data from review under the 45 CFR 46.101(b) regulatory category.

Data sharing agreement

No additional data are available.

Disclaimer

AHA had no role in the study design, data collection, and analysis, decision to publish or preparation of the manuscript.

References

1. Gillman MW. The first months of life: A critical period for development of obesity. Am J Clin Nutr. 2008 Jun;87(6):1587–9.

2. Leunissen RWJ. Timing and tempo of first-year rapid growth in relation to cardiovascular and metabolic risk profile in early adulthood. JAMA. 2009 Jun 3;301(21):2234.

3. Touwslager RN, Houben AJ, Tan FE, Gielen M, Zeegers MP, Stehouwer CD, et al. Growth and endothelial function in the first 2 years of life. The Journal of Pediatrics. 2015 Mar;166(3):666–671.e1.

4. Plagemann A, Harder T, Schellong K, Schulz S, Stupin JH. Early postnatal life as a critical time window for determination of long-term metabolic health. Best Practice & Research Clinical Endocrinology & Metabolism. 2012 Oct;26(5):641–53.

5. McCrory C, O'Leary N, Fraga S, Ribeiro AI, Barros H, Kartiosuo N, et al. Socioeconomic differences in children's growth trajectories from infancy to early adulthood: Evidence from four european countries. Journal of Epidemiology and Community Health. 2017 Oct;71(10):981–9.

6. Murasko JE. Associations between household income, height and BMI in contemporary US children: Infancy through early childhood. Annals of Human Biology. 2014 Nov;41(6):488–96.

7. Howe LD, Tilling K, Galobardes B, Smith GD, Gunnell D, Lawlor DA. Socioeconomic differences in childhood growth trajectories: At what age do height inequalities emerge? Journal of Epidemiology and Community Health. 2012 Feb;66(2):143–8.

8. Patel R, Tilling K, Lawlor DA, Howe LD, Bogdanovich N, Matush L, et al. Socioeconomic differences in childhood length/height trajectories in a middle-income country: A cohort study. BMC public health. 2014;14(1):932.

9. Queiroz VA de O, Assis AMO, Pinheiro SMC, Junior H da CR. Predictors of linear growth in the first year of life of a prospective cohort of full term children with normal birth weight. Jornal de Pediatria. 2012 Feb 15;88(1):79–86.

10. Matijasevich A, Howe LD, Tilling K, Santos IS, Barros AJD, Lawlor DA. Maternal education inequalities in height growth rates in early childhood: 2004 pelotas birth cohort study: Inequalities in childhood height. Paediatric and Perinatal Epidemiology. 2012 May;26(3):236–49.

11. Herngreen W, Buuren S van, Wieringen J van, Reerink J, Verloove-Vanhorick S, Ruys J. Growth in length and weight from birth to 2 years of a representative sample of netherlands children (born in 1988–89) related to socioeconomic status and other background characteristics. Annals of Human Biology. 1994 Jan;21(5):449–63.

12. Silva LM, Rossem L van, Jansen PW, Hokken-Koelega ACS, Moll HA, Hofman A, et al. Children of low socioeconomic status show accelerated linear growth in early childhood; results from the generation r study. Wang G, editor. PLoS ONE. 2012 May 23;7(5):e37356.

13. Pizzi C, Cole TJ, Richiardi L, dos-Santos-Silva I, Corvalan C, De Stavola B. Prenatal influences on size, velocity and tempo of infant growth: Findings from three contemporary cohorts. Wang G, editor. PLoS ONE. 2014 Feb 27;9(2):e90291.

14. Hui L, Leung GM, Cowling BJ, Lam T, Schooling CM. Determinants of infant growth: Evidence from hong kong's "children of 1997" birth cohort. Annals of Epidemiology. 2010 Nov;20(11):827–35. 15. Fuemmeler BF, Wang L, Iversen ES, Maguire R, Murphy SK, Hoyo C. Association between prepregnancy body mass index and gestational weight gain with size, tempo, and velocity of infant growth: Analysis of the newborn epigenetic study cohort. Childhood Obesity. 2016 Jun;12(3):210–8.

16. Wijlaars LPMM, Johnson L, Jaarsveld CHM van, Wardle J. Socioeconomic status and weight gain in early infancy. International Journal of Obesity. 2011 Jul;35(7):963–70.

17. Lejarraga H. Growth in infancy and childhood. In: Human growth and development. Elsevier; 2012. pp. 23–56.

18. Lozoff B, De Andraca I, Castillo M, Smith JB, Walter T, Pino P. Behavioral and developmental effects of preventing iron-deficiency anemia in healthy full-term infants. Pediatrics. 2003 Oct;112(4):846–54.

19. Lozoff B, Kaciroti N, Walter T. Iron deficiency in infancy: Applying a physiologic framework for prediction. The American journal of clinical nutrition. 2006;84(6):1412–21.

20. Graffar M. Une methode de classification sociales d'echantillons de population. Courrier. 1956;6:445–59.

21. Alvarez ML, Muzzo S, Ivanović D. Scale for measurement of socioeconomic level, in the health area. Rev Med Chil. 1985 Mar;113(3):243–9.

22. Cole TJ, Donaldson MDC, Ben-Shlomo Y. SITAR – a useful instrument for growth curve analysis. International Journal of Epidemiology. 2010 Jul 20;39(6):1558–66.

23. Beath KJ. Infant growth modelling using a shape invariant model with random effects. Statistics in Medicine. 2007 May 30;26(12):2547–64.

24. Pinheiro J, Bates D, DebRoy S, Sarkar D, R Core Team. Nlme: Linear and nonlinear mixed effects models [Internet]. 2017.

25. Tibshirani R. Regression shrinkage and selection via the lasso: A retrospective. Journal of the Royal Statistical Society: Series B (Statistical Methodology). 2011 Jun 1;73(3):273–82.

26. Greenland S. Invited commentary: Variable selection versus shrinkage in the control of multiple confounders. American Journal of Epidemiology. 2007 Dec 12;167(5):523–9.

27. Harrell FE. Regression modeling strategies: With applications to linear models, logistic and ordinal regression, and survival analysis [Internet]. 2015.

28. Hastie T, Tibshirani R, Friedman JH. The elements of statistical learning: Data mining, inference, and prediction. Second edition, corrected at 12th printing 2017. New York: Springer; 2017. 745 pp. (Springer series in statistics).

29. Friedman J, Hastie T, Tibshirani R. Regularization paths for generalized linear models via coordinate descent. Journal of Statistical Software. 2010;33(1):1–22.

30. Tibshirani R, Tibshirani R, Taylor J, Loftus J, Reid S. selectiveInference: Tools for postselection inference [Internet]. 2017.

31. Cole TJ, Altman DG. Statistics notes: Percentage differences, symmetry, and natural logarithms. BMJ. 2017 Aug 16;j3683.

32. Cole T, Kuh D, Johnson W, Ward K, Howe L, Adams J, et al. Using super-imposition by translation and rotation (SITAR) to relate pubertal growth to bone health in later life: The medical research council (MRC) national survey of health and development. International Journal of Epidemiology. 2016 Jul 27;dyw134.

33. Jimenez J, Romero MI. Reducing infant mortality in chile: Success in two phases. Health Affairs. 2007 Mar 1;26(2):458–65.

34. Gitlin LN, Fuentes P. The republic of chile: An upper middle-income country at the crossroads of economic development and aging. The Gerontologist. 2012 Jun 1;52(3):297–305.

35. Albala C, Vio F, Kain J, Uauy R. Nutrition transition in latin america: The case of chile. Nutr Rev. 2001 Jun;59(6):170–6.

36. Albala C, Vio F, Kain J, Uauy R. Nutrition transition in chile: Determinants and consequences. Public Health Nutrition. 2002 Feb;5(1).

37. Kang Sim DE, Cappiello M, Castillo M, Lozoff B, Martinez S, Blanco E, et al. Postnatal growth patterns in a chilean cohort: The role of SES and family environment. International Journal of Pediatrics. 2012;2012:1–8.

38. Khuc K, Blanco E, Burrows R, Reyes M, Castillo M, Lozoff B, et al. Adolescent metabolic syndrome risk is increased with higher infancy weight gain and decreased with longer breast feeding. International Journal of Pediatrics. 2012;2012:1–6.

BMJ Open

Table1. Descriptive statistics of sociodemographic characteristics, median [IQR]

Characteristic	Male	Female	Total
n	747	665	1412
Gestational age (weeks)	40.0 [39.0, 40.0]	40.0 [39.0, 40.0]	40.0 [39.0, 40.0]
Graffar Index	27.0 [23.0, 33.0]	27.0 [23.0, 33.0]	27.0 [23.0, 33.0]
Maternal age (years)	26.0 [21.8, 30.9]	25.5 [21.7, 30.3]	25.8 [21.8, 30.8]
Maternal Education (years)	10.0 [8.0, 12.0]	10.0 [8.0, 12.0]	10.0 [8.0, 12.0]
		15	
For	peer review only - http://	/bmjopen.bmj.com/site/	/about/guidelines.xhtml

BMJ Open

Table 2. Sociodemographic predictors and association with weight SITAR growth parameters^{a,b}, stratified by sex of Longitudinal Study, 1991-1996

			Ma	ales					Fem	nales				
		Unadjust	ed		Adjuste	dc		Unadjust	ed		Adjuste	d ^c		Unadjust
Characteristic	Size	Tempo	Velocity	Size	Tempo	Velocity	Size	Tempo	Velocity	Size	Tempo	Velocity	Size	Tempo
Gest age	0.59 (- 0.12, 1.31)	-2.28 (- 3.15, - 1.41)	-0.81 (- 2.28, 0.66)	NA	-1.96 (- 3.15, - 1.40)	NA	0.76 (- 0.02, 1.54)	-2.38 (- 3.32, - 1.45)	-2.14 (- 3.87, - 0.42)	0.45 (- 0.32, 9.88)	-2.23 (- 3.35, - 1.47)	-1.58 (- 3.85, 0.08)	0.64 (0.10, 1.18)	-2.35 (- 2.98, - 1.71)
Maternal age	0.11 (- 0.00, 0.23)	-0.06 (- 0.20, 0.09)	-0.07 (- 0.31, 0.17)	0.07 (- 0.11, 0.21)	-0.06 (- 0.21, 0.26)	-0.06 (- 0.33, 0.82)	0.21 (0.07, 0.34)	-0.02 (- 0.18, 0.15)	-0.41 (- 0.71, - 0.12)	0.19 (- 6.13, 0.22)	0.01 (- 2.29, 0.13)	-0.36 (- 0.67, - 0.04)	0.16 (0.07, 0.25)	-0.03 (- 0.14, 0.07)
Maternal education	- 0.03 (- 0.32, 0.26)	0.14 (- 0.21, 0.49)	-0.04 (- 0.62, 0.55)	NA	NA	NA	-0.01 (- 0.31, 0.29)	0.06 (- 0.30, 0.43)	-0.03 (- 0.69, 0.64)	0.00 (- Inf, - 0.41)	0.12 (- 0.95, 0.52)	NA	-0.03 (- 0.24, 0.19)	0.10 (- 0.15, 0.36)
Graffar Index ^d	- 0.12 (- 0.23, - 0.01)	-0.13 (- 0.27, 0.01)	-0.15 (- 0.39, 0.08)	- 0.08 (- 0.22, 0.07)	-0.13 (- 0.28, 0.03)	-0.13 (- 0.41, 0.28)	-0.07 (- 0.19, 0.06)	0.12 (- 0.03, 0.28)	0.28 (0.00, 0.57)	- 0.03 (- 5.15, 0.23)	0.13 (- 0.24, 0.29)	0.23 (- 0.16, 0.52)	-0.09 (- 0.18, -0.00)	-0.01 (- 0.11, 0.09)

^a Size units are percentage change in log(weight) from average, tempo units are time (days), velocity units in percent change from average.

^b Bold values indicate significance with Bonferroni correction at alpha level of 0.05

^c Adjusted linear regression models only include non-zero coefficients from lasso regression models that include all covariates in full model.

^d Higher Graffar index values indicate lower socioeconomic status.

Table 3. Sociodemographic predictors and association with length SITAR growth parameters^{a,b} stratified by sex of child in the Santiago Longitudinal Study, 1991-1996

	Males						Females				Both			
	Unac	djusted	Adju	usted	Una	djusted	Adj	usted	Unad	djusted	Adju	u sted °		
Characterist	Temp	Velocit												
ic	0	У	0	У	0	У	0	У	0	У	0	У		
Gest age	-3.33	0.99	-3.05	NA	-2.57	0.25 (-	-2.53	NA	-2.97	0.64	-2.94	0.61		
	(-4.09,	(0.29,	(-4.10,		(-3.36,	0.52,	(-3.33,		(-3.52,	(0.12,	(-3.51,	(0.06,		
	-2.56)	1.68)	-2.55)		-1.79)	1.02)	-1.77)		-2.42)	1.15)	-2.41)	1.15)		
Maternal age	-0.04	0.09 (-	-0.01	NA	-0.17	0.01 (-	-0.15	NA	-0.10	0.05 (-	-0.07	0.02 (-		
	(-0.18,	0.03,	(-0.10,		(-0.30,	0.13,	(-0.29,		(-0.19,	0.04,	(-0.17,	0.35,		
	0.09)	0.20)	1.64)		-0.03)	0.14)	0.01)		-0.00)	0.14)	0.06)	0.10)		
Maternal	0.06 (-	0.12 (-	NA	NA	-0.18	0.28 (-	-0.14	0.16 (-	-0.05	0.20 (-	-0.06	0.13 (-		
education	0.26,	0.16,			(-0.49,	0.01,	(-0.45,	0.35,	(-0.28,	0.00,	(-0.27,	0.21,		
	0.38)	0.40)			0.13)	0.58)	0.52)	0.52)	0.17)	0.40)	0.73)	0.34)		
Graffar	0.06 (-	-0.26 (-	0.05 (-	-0.21 (-	0.16	-0.19 (-	0.13 (-	-0.17 (-	0.11	-0.23 (-	0.09 (-	-0.22 (
Index ^d	0.06,	0.37, -	0.25,	0.37, -	(0.03,	0.32, -	0.03,	0.31, -	(0.02,	0.31, -	0.02,	0.31, -		
	0.19)	0.15)	0.36)	0.14)	0.29)	0.07)	0.26)	0.05)	0.20)	0.15)	0.18)	0.13)		

^a Size units are percentage change in log(length) from average, tempo units are time (days), velocity units in percent change from average.

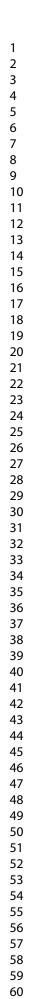
^b Bold values indicate significance with Bonferroni correction at alpha level of 0.05

.... unat include all covari. ^c Adjusted linear regression models only include non-zero coefficients from lasso regression models that include all covariates in full model.

^d Higher Graffar index values indicate lower socioeconomic status.

BMJ Open

Table 4. Sociodemographic predictors and association with weight-for-length (WFL) SITAR growth parameters^{a,b} stratified by sex of child in the Santiago Longitudinal Study, 1991-1996


		Μ	ales			Fer	nales			В	oth	
	Una	djusted	Ad	justed ^c	Una	djusted	Ad	ljusted ^c	Una	djusted	Ad	justed
Characteristic	Size	Tempo	Size	Tempo	Size	Tempo	Size	Tempo	Size	Tempo	Size	Tempo
Gest age	0.09 (- 0.55, 0.73)	-2.03 (- 2.91, - 1.15)	NA	-1.58 (- 2.90, - 1.11)	0.05 (- 0.58, 0.69)	-2.34 (- 3.35, - 1.32)	NA	-2.32 (- 3.35, - 1.33)	0.07 (- 0.38, 0.52)	-2.17 (- 2.84, - 1.51)	NA	-1.99 (- 2.83, - 1.49)
Maternal age	0.07 (- 0.03, 0.18)	-0.09 (- 0.23, 0.06)	0.04 (- 0.23, 0.16)	-0.08 (- 0.24, 0.17)	0.02 (- 0.09, 0.13)	-0.18 (- 0.36, - 0.00)	NA	-0.13 (- 0.36, 0.14)	0.05 (- 0.03, 0.12)	-0.13 (- 0.24, - 0.02)	0.03 (- 0.16, 0.12)	-0.11 (- 0.22, 0.03)
Maternal education	-0.09 (- 0.35, 0.16)	0.08 (- 0.27, 0.44)	NA	NA	-0.10 (- 0.35, 0.14)	0.00 (- 0.40, 0.40)	NA	0.07 (- 2.11, 0.42)	-0.10 (- 0.28, 0.08)	0.04 (- 0.22, 0.31)	NA	NA
Graffar Index ^d	-0.08 (- 0.18, 0.02)	-0.07 (- 0.21, 0.07)	-0.05 (- 0.17, 0.15)	-0.08 (- 0.24, 0.17)	0.08 (- 0.02, 0.19)	0.26 (0.10, 0.43)	0.04 (- 0.21, 0.18)	0.25 (0.05, 0.42)	-0.01 (- 0.08, 0.07)	0.08 (- 0.03, 0.19)	NA	0.06 (- 0.14, 0.17)

^a Size units are percentage change in log(WFL) from average, tempo units are time (days), velocity units in percent change from average.

^b Bold values indicate significance with Bonferroni correction at alpha level of 0.05

^c Adjusted linear regression models only include non-zero coefficients from lasso regression models that include all covariates in full model.

^d Higher Graffar index values indicate lower socioeconomic status.

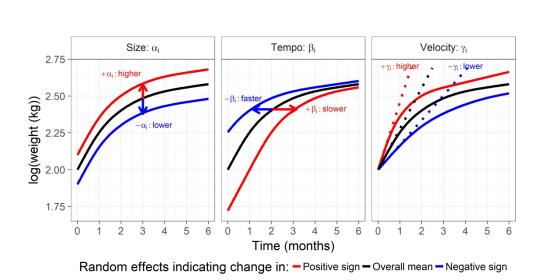


Figure 1. Type of change in random effects relative to the sample mean trajectory in weight growth curve trajectories following a shape invariant model (SIM).

2	
2	
4	
4	
5	
6	
/	
8	
9 10	
11	
12	
13	
14	
15	
16	
12 13 14 15 16 17	
18	
19	
20	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	

47

Appendix Table 1. Description of items used for Graffar index

Graffar item	Scale	n(%)
n		1412
lo. people in hh 'eating from 1 pot' (%) ather's presence in household (%) lead of household's highest educational level (%)	1: 1-3	230 (16.3)
	2: 4-6	865 (61.3)
	3: 7-9	254 (18.0)
	4: 10-12	55 (3.9)
	5: 13-15	6 (0.4)
	6: over 16	2 (0.1)
Father's presence in household (%)	1: father is present; not left hh	1197 (84.8)
	3: left hh but sends money	66 (4.7)
	4: partially left hh	38 (2.7)
	6: completely gone	111 (7.9)
Head of household's highest educational level (%)	1: university completed	12 (0.9)
	2: university not completed	9 (0.6)
	3: h.s. or technical studies completed	325 (23.0)
	4: completed 8th grade	664 (47.1)
	5: did not reach 8th grade	382 (27.1)
	6: no schooling	19 (1.3)
Property ownership (%)	1: owned	269 (19.1)
	2: home mortgage	83 (5.9)
	3: rent	243 (17.2)
	4: given to you as a gift	117 (8.3)
	5: squatters w tents or construction	7 (0.5)
	6: lving in back of main house	693 (49.1)
Type of house construction (%)	1: very large house	15 (1.1)
	2: smaller house	181 (12.8)
	3: tiny concrete house	330 (23.4)

Appendix Table 1. Description of items used for Graffar index

Graffar item	Scale	n(%)
	4: self-constructed home	398 (28.2)
	5: wooden house	94 (6.7)
	6: wooden house w/ less than three rooms	394 (27.9)
Characteristics of the kitchen (%)	1: independent kitchen in one room	931 (65.9)
	6: kitchen in a room with multiple uses	481 (34.1)
Sewage, plumbing (%)	1: inside plumbing	1402 (99.3)
	5: out house	9 (0.6)
	6: just go in woods	1 (0.1)
Water (%)	1: water from inside home faucet	949 (67.2)
	6: water from outside faucet	463 (32.8)
<pre>wage,plumbing (%) tter (%) times garbage collected per week (%) tal count of previous six goods,possessions (tv, washing</pre>	1: more than 4x/week	6 (0.4)
	2: 3 times/week	1288 (91.2)
	3: 2 times/week	117 (8.3)
	6: never	1 (0.1)
Total count of previous six goods, possessions (tv, washing machine, stereo, refrig., car) (%)	1: 13-15 (own all six goods)	77 (5.5)
	2: 10-12	311 (22.3)
	3: 7-9	302 (21.6)
	4: 4-6	277 (19.9)
	5: 1-3	374 (26.8)
	6: 0	54 (3.9)

BMJ Open

Appendix Table 2. Nonlinear mixed effects model fit evaluation: BIC for all evaluated models

6 7	Trajectory type	Model ID	Model description	
8				BIC ^a
9 10		no random effects	no random effects	NA
11 12		m2	random size (alpha0)	-19546.4
13 14		m3	random tempo (beta0)	-17232
15		m4	random velocity (beta1)	-18323
16 17	Weight	m5	random tempo and velocity (beta0 and beta1)	-21901.5
18 19	weight	m5.strat	m5 + sex-spec effects	-22123.4
20 21		m5.strat2	m5.strat + sex-spec corr structure	-22107.5
22		m6	random size and tempo (alpha0 and beta0)	-21740.4
23 24		m7	random size and velocity (alpha0 and beta1)	-21629.8
25 26		m8	random size, tempo and velocity (alpha0, beta0, and beta1)	
27 28		no random effects	no random effects	NA
29		m2	random size (alpha0)	-37399.5
30 31		m3	random tempo (beta0)	-36684.1
32 33		m4	random velocity (beta1)	-34985.7
34 35	Height	m5	random tempo and velocity (beta0 and beta1)	-37820
36		m5.strat	m5 + sex-spec effects	
37 38		m5.strat2	m5.strat + sex-spec corr structure	-37978.2
39 40		m6	random size and tempo (alpha0 and beta0)	-37381.5
41		m7	random size and velocity (alpha0 and beta1)	-37819.9
42 43		no random effects	no random effects	NA
44 45		m2	random size (alpha0)	-21147.2
46 47		m3	random tempo (beta0)	-18852.1
48	WFL	m4	random velocity (beta1)	-20549.9
49 50		m5	random tempo and velocity (beta0 and beta1)	-22598
51 52		m5.strat	m5 + sex-spec effects	-22761.2
53 54		m5.strat2	m5.strat + sex-spec corr structure	-22751.3
54 55 56		m6	random size and tempo (alpha0 and beta0)	

Appendix Table 2. Nonlinear mixed effects model fit evaluation: BIC for all evaluated models

Trajectory type	Model ID	Model description	BIC ^a
^a Bold values indicate lowest value within a trajectory evaluation.	m7	random size and velocity (alpha0 and beta1)	-22484.6
	4		
For peer review only - ht	ttp://bmjopen.	bmj.com/site/about/guidelines.xhtml	

BMJ Open

1 2 3 4 5	Reporting	Reporting checklist for cohort study.										
6 7 8 9	Based on the STROBE cohort guidelines.											
10 11 12	Instructions to authors											
13 14	Complete this checklist by entering the page numbers from your manuscript where readers will find											
15 16 17 18	each of the items listed below.											
19 20	Your article may not currently address all the items on the checklist. Please modify your text to											
20 21 22	include the missing information. If you are certain that an item does not apply, please write "n/a" and											
23 24 25	provide a short explanation.											
26 27 28	Upload your completed checklist as an extra file when you submit to a journal.											
29 30 31	In your methods section, say that you used the STROBE cohortreporting guidelines, and cite them											
32 33	as:											
34 35 36	von Elm E, Altman DG, Egger M, Pocock SJ, Gotzsche PC, Vandenbroucke JP. The Strengthening											
37 38	the Reporting of Observational Studies in Epidemiology (STROBE) Statement: guidelines for											
39 40 41	reporting observati	onal stu	dies.									
42 43				Page								
44 45 46			Reporting Item	Number								
47 48 49 50	Title and abstract											
50 51 52	Title	<u>#1a</u>	Indicate the study's design with a commonly used term in the	1								
53 54 55 56 57 58			title or the abstract									
59 60		For pee	er review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml									

1 2	Abstract	<u>#1b</u>	Provide in the abstract an informative and balanced summary	3
3 4 5			of what was done and what was found	
6 7 8	Introduction			
9 10 11	Background /	<u>#2</u>	Explain the scientific background and rationale for the	4
12 13 14	rationale		investigation being reported	
15 16	Objectives	<u>#3</u>	State specific objectives, including any prespecified	4
17 18			hypotheses	
19 20 21 22	Methods			
23 24 25	Study design	<u>#4</u>	Present key elements of study design early in the paper	5
26 27 28	Setting	<u>#5</u>	Describe the setting, locations, and relevant dates, including	5
28 29 30			periods of recruitment, exposure, follow-up, and data	
31 32 33			collection	
34 35	Eligibility criteria	<u>#6a</u>	Give the eligibility criteria, and the sources and methods of	5
36 37 38			selection of participants. Describe methods of follow-up.	
39 40	Eligibility criteria	<u>#6b</u>	For matched studies, give matching criteria and number of	na
41 42 43 44			exposed and unexposed	
44 45 46	Variables	<u>#7</u>	Clearly define all outcomes, exposures, predictors, potential	5
47 48			confounders, and effect modifiers. Give diagnostic criteria, if	
49 50 51			applicable	
52 53 54	Data sources /	<u>#8</u>	For each variable of interest give sources of data and details	5
55 56	measurement		of methods of assessment (measurement). Describe	
57 58			comparability of assessment methods if there is more than	
59 60		For pee	er review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml	

Page 27 of 28			BMJ Open	
1			one group. Give information separately for for exposed and	
2 3 4			unexposed groups if applicable.	
5 6 7	Bias	<u>#9</u>	Describe any efforts to address potential sources of bias	6
8 9 10	Study size	<u>#10</u>	Explain how the study size was arrived at	5
11 12 13	Quantitative	<u>#11</u>	Explain how quantitative variables were handled in the	6
14 15	variables		analyses. If applicable, describe which groupings were	
16 17 18			chosen, and why	
19 20 21	Statistical	<u>#12a</u>	Describe all statistical methods, including those used to	6
21 22 23 24	methods		control for confounding	
24 25 26	Statistical	<u>#12b</u>	Describe any methods used to examine subgroups and	na
27 28 29	methods		interactions	
30 31	Statistical	<u>#12c</u>	Explain how missing data were addressed	7
32 33 34	methods			
35 36 37	Statistical	<u>#12d</u>	If applicable, explain how loss to follow-up was addressed	na
38 39 40	methods		Describe any sensitivity analyses	
41 42	Statistical	<u>#12e</u>	Describe any sensitivity analyses	na
43 44 45	methods			
46 47 48	Results			
49 50 51	Participants	<u>#13a</u>	Report numbers of individuals at each stage of study—eg	7
52 53			numbers potentially eligible, examined for eligibility,	
54 55 56 57 58			confirmed eligible, included in the study, completing follow-	
59 60		For pee	er review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml	

RM I	Open
DIVIJ	Open

1			up, and analysed. Give information separately for for	
2 3 4			exposed and unexposed groups if applicable.	
5 6 7	Participants	<u>#13b</u>	Give reasons for non-participation at each stage	7
8 9 10 11	Participants	<u>#13c</u>	Consider use of a flow diagram	na
12 13	Descriptive data	<u>#14a</u>	Give characteristics of study participants (eg demographic,	7
14 15			clinical, social) and information on exposures and potential	
16 17			confounders. Give information separately for exposed and	
18 19 20			unexposed groups if applicable.	
21 22 23	Descriptive data	<u>#14b</u>	Indicate number of participants with missing data for each	7
24 25 26			variable of interest	
27 28 29	Descriptive data	<u>#14c</u>	Summarise follow-up time (eg, average and total amount)	na
30 31	Outcome data	<u>#15</u>	Report numbers of outcome events or summary measures	na
32 33			over time. Give information separately for exposed and	
34 35 36			unexposed groups if applicable.	
37 38 39	Main results	<u>#16a</u>	Give unadjusted estimates and, if applicable, confounder-	7-8
40 41			adjusted estimates and their precision (eg, 95% confidence	
42 43			interval). Make clear which confounders were adjusted for	
44 45 46			and why they were included	
47 48 49	Main results	<u>#16b</u>	Report category boundaries when continuous variables were	na
50 51 52			categorized	
53 54	Main results	<u>#16c</u>	If relevant, consider translating estimates of relative risk into	na
55 56 57			absolute risk for a meaningful time period	
58 59 60		For pee	r review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml	

BMJ Open

1 2	Other analyses	<u>#17</u>	Report other analyses done—e.g., analyses of subgroups	na
3 4 5			and interactions, and sensitivity analyses	
6 7 8	Discussion			
9 10 11	Key results	<u>#18</u>	Summarise key results with reference to study objectives	8-9
12 13 14	Limitations	<u>#19</u>	Discuss limitations of the study, taking into account sources	10
15 16			of potential bias or imprecision. Discuss both direction and	
17 18 19			magnitude of any potential bias.	
20 21	Interpretation	<u>#20</u>	Give a cautious overall interpretation considering objectives,	10
22 23 24			limitations, multiplicity of analyses, results from similar	
25 26 27			studies, and other relevant evidence.	
28 29	Generalisability	<u>#21</u>	Discuss the generalisability (external validity) of the study	10
30 31			results	
32 33 34 35	Other Information			
36 37	Funding	<u>#22</u>	Give the source of funding and the role of the funders for the	10
38 39 40			present study and, if applicable, for the original study on	
40 41 42 43			which the present article is based	
43 44 45	The STROBE chec	klist is d	distributed under the terms of the Creative Commons Attribution Licens	se
46 47	CC-BY. This check	list was	completed on 16. August 2019 using https://www.goodreports.org/, a	tool
48 49 50	made by the <u>EQUA</u>	TOR N	etwork in collaboration with Penelope.ai	
51 52 53				
54 55 56				
57 58				
59 60		For pee	er review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml	

BMJ Open

BMJ Open

Sociodemographic predictors of early postnatal growth: evidence from a Chilean infancy cohort.

Journal:	BMJ Open
Manuscript ID	bmjopen-2019-033695.R1
Article Type:	Original research
Date Submitted by the Author:	22-Jan-2020
Complete List of Authors:	Von Holle, Ann; University of North Carolina at Chapel Hill, Epidemiology North, Kari; University of North Carolina at Chapel Hill Gahagan, Sheila; University of California San Diego, Child Development and Community Health Burrows, Raquel; University of Chile, Institute of Nutrition and Food Tecnology Blanco, Estela; University of California San Diego, Child Development and Community Health Lozoff, Betsy; University of Michigan, Department of Pediatrics Howard, Annie Green; University of North Carolina System, Biostatistics Justice, Anne; Geisinger Health, Center for Biomedical and Translational Informatics Graff, Misa; University of North Carolina at Chapel Hill, Epidemiology Voruganti, V. Saroja; University of North Carolina at Chapel Hill, Department of Nutrition and UNC Nutrition Research Institute
Primary Subject Heading :	Epidemiology
Secondary Subject Heading:	Paediatrics
Keywords:	EPIDEMIOLOGY, PUBLIC HEALTH, Community child health < PAEDIATRICS
	·

I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd ("BMJ") its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our <u>licence</u>.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge ("APC") for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which <u>Creative Commons</u> licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author's Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.

reliez oni

Title: Sociodemographic predictors of early postnatal growth: evidence from a Chilean infancy cohort

Ann Von Holle

PO Box 12233 Mail Drop A3-03, 111 TW Alexander Drive, Research Triangle Park, NC 27709-2233. Email: avonholle@gmail.com; tel. 919-593-0299

(Corresponding author)

Kari E. North

Department of Epidemiology, University of North Carolina, Chapel Hill, NC, United States

Sheila Gahagan

Academic General Pediatrics, Child Development and Community Health Division, University of California, San Diego, CA, United States

Raquel Burrows

Institute of Nutrition and Food Technology, University of Chile, Santiago, Chile

Estela Blanco

Child Development and Community Health Division; University of California, San Diego, CA, United States

Betsy Lozoff

Department of Pediatrics, University of Michigan, Ann Arbor, MI, United States

Annie Green Howard

Department of Biostatistics, University of North Carolina, Chapel Hill, NC, United States

Anne Justice

Center for Biomedical and Translational Informatics, Geisinger Health, Danville, PA, United States

Misa Graff

Department of Epidemiology, University of North Carolina, Chapel Hill, NC, United States

Venkata Saroja Voruganti

Department of Nutrition and UNC Nutrition Research Institute, University of North Carolina, Chapel Hill, NC, United States

Word Count: ~3,105

Number of references: 38

to beet even only

Abstract

Objectives

Infant anthropometric growth varies across socioeconomic factors, including maternal education and income, and may serve as an indicator of environmental influences in early life with long term health consequences. Previous research has identified sociodemographic gradients in growth with a focus on the first year and beyond, but estimates are sparse for growth before six months. Thus, our objective was to examine the relationship between sociodemographic factors and infant growth patterns between birth and five months of age.

Design

Prospective cohort study

Settings

Low- to middle-income neighborhoods in Santiago, Chile (1991-1996).

Participants

1,412 participants from a randomized iron deficiency anemia preventive trial in healthy infants.

Main outcome measures

Longitudinal anthropometrics including monthly weight (kg), length (cm) and weight-forlength (WFL) values. For each measure, we estimated three individual-level growth parameters (size, timing, and velocity) from SuperImposition by Translation and Rotation (SITAR) models. Size and timing changes represent vertical and horizontal growth curve shifts, respectively, and velocity change represents growth rate shifts. We estimated the linear association between growth parameters and gestational age, maternal age, education, and socioeconomic position (SEP).

Results

Lower SEP was associated with a slower linear (length) velocity growth parameter (-0.22, 95% CI=-0.31,-0.13) – outcome units are percent change in velocity from the average growth curve. Lower SEP was associated with later WFL growth timing as demonstrated through the tempo growth parameter for females (0.25, 95% CI=0.05,0.42) – outcome units are shifts in days from the average growth curve. We found no evidence of associations between SEP and the weight size, timing, or velocity growth rate parameters.

Conclusion

Previous research on growth in older infants and children shows associations between lower SEP with slower length velocity. We found evidence supporting this association in

the first five months of life, which may inform age-specific prevention efforts aimed at infant growth.

Strengths and Limitations of this Study

- The sample includes monthly anthropometric measures in the first five postnatal months not available in any study to date and allowing better fitting growth models.
- We used the Graffar Index, a detailed measure of socioeconomic position (SEP) specific to low- to middle-income groups, an understudied population, which may reduce misclassification of SEP.
- As the sample was low- to middle-income, these results may not generalize to groups with even lower or higher income or SEP.

Introduction

Interest in early life infant growth has grown as evidence accumulates that it is associated with the development of adult disease, sometimes decades later. Some chronic disease outcomes associated with infant growth characteristics include obesity, endothelial dysfunction, and metabolic syndrome (1–3). Explanations for these associations include early infancy as a critical window of time for susceptibility to environmental exposures for chronic disease risk factors (4). Socioeconomic position (SEP) is one such exposure. SEP is associated with child growth patterns, in particular, length (5–12) and weight (13–16). In these studies, lower SEP is generally associated with faster weight gain during childhood, while the inverse holds true for length. These socioeconomic gradients in growth appear to emerge in early life (7) and persist (5).

Gaps remain in our understanding regarding sociodemographic predictors of growth during infancy and childhood. One such gap relates to the earliest period of infant growth. Studies to date include only a few observations before six months, leading to linear specifications between weight or height and time. However, curvilinear models of growth offer better model fit for early infancy growth. Growth during the first six months in the human lifespan is characterized by accelerated growth at the outset and leveling off at around six months (17). Given these unique features, early infant growth may yield unique associations with predictors not influential during later periods of growth. Understanding the relationship between early infant growth and sociodemographic factors may yield new information that highlight the potential for earlier interventions to promote optimal health.

Identifying novel associations in this age range can better pinpoint the timing and influence of sociodemographic factors. Given the sparsity of information in the literature focusing on these points, our aim in this study is to examine sociodemographic predictors of infant weight, length and weight-for-length (WFL) growth from zero to five months in an infancy cohort of over 1,400 healthy Chilean children. Based on prior research in middle- to highincome countries applied to a wider range of ages in childhood that is described above, we expected that SEP will be inversely associated with weight gain and positively associated with length growth.

Methods

Study sample

The data in this study are drawn from the Santiago Longitudinal Study (SLS), a cohort study from low- to middle-income neighborhoods in Santiago, Chile. Between 1991 and 1996, infants were recruited for an infancy iron deficiency anemia preventive trial (18) or neuromaturation study (19). Inclusion criteria for the infancy studies included full term infants [greater than or equal to 37 weeks gestational age (GA)] with birthweight ≥ 3.0 kg, vaginal birth, no major health problems for the infant, and, for the preventive trial, no iron deficiency anemia present at five to six months. Those with iron deficiency anemia and the next nonanemic control were invited to participate in the neuromaturation study and are not considered here. Participant eligibility and follow-up information have previously been reported (18). The Santiago Longitudinal Study (SLS) had been approved by Institutional Review Boards from 1) the University of Michigan, Ann Arbor, 2) Institute of Nutrition and Food Technology (INTA), Chile and 3) University of California, San Diego.

We characterized the growth period prior to treatment randomization, which occurred at six months. Anthropometric measures prior to study enrollment were obtained from the medical chart. The total sample size included 1,657 infants who completed the preventive trial.

Outcome and sociodemographic measures

Anthropometric measurements included weight (kg), length (cm), and weight-for-length (WFL) (g/cm). Weight was measured to the nearest 0.01 kg on an electronic scale at local public health clinics. Length was measured on a recumbent board to the nearest 0.1 cm. Gestational age (GA), obtained from the medical chart, was among the set of variables included in the models as a covariate.

Sociodemographic measures were self-reported by the mother, including maternal age (years), total years of education, and the modified Graffar index (20), an index of SEP used in lower-income countries (21). The modified Graffar index represents a sum of 10 measures regarding education, family composition, and housing characteristics, which are summed to create a scale with higher values indicating lower social class (Appendix Table A1). Mothers self-reported breastfeeding characteristics from birth, including date of first bottle and age at weaning if weaned. From this information, we created variables for breastfeeding as the sole source of milk and mixed breast and bottle feeding at five months.

Statistical analyses

Summary statistics included median and interquartile ranges for continuous variables and percent with counts for categorical variables. All summary statistics were stratified by child sex.

We used two steps to assess the association between infant growth and sociodemographic predictors: 1) SuperImposition by Translation and Rotation (SITAR) approach (22) to

estimate infant weight, length and weight-for-length (WFL) growth characteristics from birth to five months followed by 2) linear regression to estimate the relationship between sociodemographic predictors and these growth characteristics. We used a nonlinear mixed effects model (23) to estimate the growth characteristics with the R nlme package (24). Each model produces up to three different SITAR growth parameters per individual, which have been named 'size', 'tempo' and 'velocity' (22) (Figure 1). 'Size' indicates a shift of the growth curve up and down for an individual relative to the average growth curve. 'Tempo' indicates a shift of the growth curve to the left or right on the age scale for an individual relative to the average growth curve. Lastly, 'velocity' indicates a transformation of the age scale in the nonlinear model, shrinking or enlarging the age scale for an individual relative to the average growth curve. These three parameters are noted as having biologically meaningful interpretations, which are difficult to obtain with other growth models (23). Unless otherwise noted, any references to 'size', 'tempo', and 'velocity' refer to these parameters from the SITAR construct applied to early infant growth.

Figure 1 about here

The results from the second step analyses are reported. In addition to including males and females and adjusting for sex of the child (in the pooled analyses), sex-stratified analyses were also used for all three anthropometric outcomes, as some estimated associations between the SITAR growth parameters and SEP indicators differed by sex of the child.

The adjusted models in the second step started with four covariates: gestational age, maternal age, total years of maternal education, and Graffar index (20). We removed covariates from the model based on the least absolute shrinkage and selection operator (lasso) approach (25). This approach has better performance than conventional model selection methods with a univariate approach (26) such as stepwise methods (27). The lasso approach assists in selecting predictors with the strongest coefficients (28) while balancing bias and variation in the model. We used the glmnet package in R (29) to estimate shrunken parameters and the selectiveInference package (30) to provide inference via statistical tests and confidence intervals. Each set of comparisons by outcome, i.e. weight, length or weight-for-length were considered separately. Multiple comparisons increase the possibility of statistically significant study findings by chance alone. Therefore, we controlled for multiple comparisons using a Bonferroni correction at an alpha level of 0.05. A coefficient for the predictor of a weight size growth parameter outcome in the second step indicates a change in log(kg) for a one-unit change in the predictor; we multiply this coefficient by 100 to make a symmetric percentage difference on a modified percentage scale (31). Similarly, a one-unit change in the predictor corresponds to a symmetric percentage change in the velocity growth parameter. Time (days) is not log transformed and the coefficient for this outcome corresponds to a shift in the time scale in days.

For analyses, we used a complete case data set, i.e., all participants with non-missing covariates. The proportion of missing data was less than one percent for all variables except the Graffar index, which had less than three percent missing. The median number of non-missing outcome (anthropometric) values was six out of six monthly measures (birth to five months). The percent of missing outcome values at each time point ranged from 9%

at months 1 and 2 to 0.2% at birth. In a post hoc data analysis we used logistic regression models to estimate associations between SEP (the Graffar Index) as a continuous variable, and binary breastfeeding status outcomes – any or exclusive – at five months.

Patient and public involvement

Participants were mothers and infants recruited for research. The mothers were not involved in setting the study design, research questions or outcome measures for this study.

Results

Participants (n=1,412) were 53% male and 47% female. Median gestational age (Q1, Q3) was 40 weeks (39, 40). Median maternal age (Q1, Q3) was 26 years (22, 31), and mothers had a median (IQR) of 10 (8, 12) years of education at the time of their infant's birth (Table 1). For the six monthly anthropometric measurements prior to six months, each infant had at least two observations, and 72% had measures at all six time points.

Put table 1 about here

We assessed best model fit for each anthropometric measure via the lowest Bayesian Information Criterion (BIC) for growth independent of any covariates. After evaluating all possible combinations of SITAR models from one to three parameters for each of the three anthropometric measures, best fit (Appendix Table A2) models included: 1) all three growth parameters for weight, i.e. 'size', 'tempo', and 'velocity', 2) sex-specific growth trajectories with tempo and velocity parameters for length, and 3) sex-specific growth trajectories with size and tempo parameters for WFL.

The following sections outline the adjusted results of the growth trajectory analyses for the three anthropometric outcomes: weight (kg), length (cm) and weight-for-length (WFL) (g/cm).

Weight trajectories: size, tempo and velocity

After including all covariates in the model, gestational age was the only characteristic associated with any weight growth parameters. In the pooled sample, gestational age was significantly associated with the weight tempo parameter (-2.01, 95% CI = -2.98, -1.70), indicating a leftward shift of about two days for each additional week in gestational age. This indicates earlier timing of weight gain in infants who were born with higher gestational age (Table 2). There was no substantive difference in this association in the sexstratified analyses.

put table 2 about here

Length trajectories: tempo and velocity

When evaluating the relationship between deviations from the average length growth characteristics and sociodemographic predictors, we found associations for SEP and

gestational age. In the pooled group, the coefficient of association between the Graffar index and the velocity parameter (-0.22, 95% CI = -0.31, -0.13) (Table 3) indicated that for each unit increase in the Graffar index, lower values indicating higher SEP, there was a -0.22 percent decline from the average length velocity. Conversely, this association reflects a positive relationship between the length velocity parameter and SEP. This coefficient was not substantively different in the sex-stratified analyses, all of which indicated faster linear (length) growth with higher SEP. In contrast to the sex-stratified analyses, all covariates remained in the pooled adjusted model with less than 5% change from the unadjusted SEP coefficient (-0.23, 95% CI = -0.31, -0.15).

Similar to SEP, GA was also positively associated with the length velocity parameter, demonstrating a 0.61 percent (95% CI =0.06, 1.15) increase from the average length velocity in the pooled sample for every unit increase in GA (weeks). Gestational age was inversely associated with the length tempo parameter in the pooled sample (-2.94, 95% CI = -3.51, -2.41), indicating a leftward shift of about three days of the trajectory on the time scale, and a faster start to length growth, for each one week increase in gestational age (Table 3).

put Table 3 about here

Weight-for-length trajectories: size and tempo

Evaluations of shifts in WFL size and tempo from the average indicated associations with SEP and GA. Increases in the Graffar Index, equivalent to lower SEP, were associated with a positive shift in the WFL tempo parameter for females (0.25, 95% CI = 0.05, 0.42). This estimate approximates a rightward shift in time (days) relative to the average growth curve indicating later growth timing with lower SEP.

Similar to weight and length trajectory analyses, an increase in gestational age was inversely associated with a decline in tempo from the average in the pooled sample (-1.99, 95% CI = -2.83, -1.49) (Table 4) indicating about a two-day shift to the left on the time scale from the average growth curve for every one week increase in gestational age. Similar values were found in the sex-stratified analyses, all indicating earlier timing of WFL growth with higher gestational age.

put Table 4 about here

The post hoc analysis examining the association between odds of exclusive or any breastfeeding at five months and the continuous SEP measure (the Graffar index) did not find a substantive or significant association (data not shown).

Discussion

In this research, we found that lower SEP, measured by the Graffar index, was inversely associated with length growth characteristics -- but not weight -- in the first six months. Lower SEP was associated with later timing of WFL growth as reflected by the positive association between the Graffar Index and the WFL tempo parameter. These higher tempo

values translate to a rightward shift in growth relative to the average growth curve as well as a later age at peak velocity (32). This delay in growth can be considered an unfavorable outcome associated with lower SEP.

Maternal age was not associated with any of the three adjusted growth parameters for length, weight, or weight-for-length. Gestational age (GA) was inversely associated with the tempo growth parameters for length, weight, and weight-for-length indicating higher GA is associated with earlier timing of these three measures. Gestational age is also positively associated with length velocity in the pooled sample indicating faster length change with increasing GA.

Of three previous studies investigating associations between sociodemographic predictors and infant growth before six months, two found a positive association between length (linear) growth and maternal education (8,10), used as a proxy for SEP. Only one study found an inverse association with length growth (12). Many studies including age ranges exceeding six months of age up to five years of age demonstrated a positive association between maternal education and length/height growth (7,8,10). The majority of these studies support the conclusion that lower SEP is associated with slower length (linear) growth in infancy and early childhood.

Several prior studies representing high-income European countries have noted that their findings of either an inverse (12) or no relationship (7) between SEP and length (linear) growth may not generalize to low- to middle-income countries. Deviations from the Western diet and lifestyle were one of the reasons given for this limitation. Chile, the country from which our data were collected, offers an interesting context in this respect. The recruitment period for this study, 1991 to 1996, occurred as Chile was transitioning from a low-income to an upper-middle income country. In 1990, 40% of the Chilean population was below the poverty line (33); by 2012 WHO classified Chile as an upper middle-income country (34). There were nutrition and epidemiologic transitions (35,36) beginning in the 1970s and continuing during the 1990s when study infants were enrolled. Specifically, consumption of high-calorie food, accompanied by a sedentary lifestyle, resulted in rising obesity prevalence across all socioeconomic levels. In the context of an emerging Western diet and lifestyle, we found that lower SEP was associated with poorer length (linear) growth in early infancy. Of course, contemporary generations in Chile experience lower SEP in a new context of over-nutrition and higher levels of sedentary behavior. Thus, current studies in Chile may find distinct relationships between SEP and early growth when compared with generations born 20 years ago.

Plausible biological mechanisms, linked to modifiable factors, have been proposed for the observed association between lower SEP and length growth in the first five postnatal months. Breastfeeding and maternal smoking are two commonly proposed mechanisms, although evidence is limited. In our sample, breastfeeding was close to universal (37,38) and not associated with infant weight change in the first year. We did not evaluate maternal smoking in this study given the large proportion of missing information. However, prior studies did not find that either prenatal or postnatal maternal smoking substantially altered the association between SEP and growth (11,12,16).

Maternal age was the only sociodemographic predictor positively associated with the unadjusted SITAR size growth parameter for weight. This was similarly reported in another cohort from the same geographic area of Santiago, Chile, the Growth and Obesity Cohort Study (GOCS) (13), which started a decade later and studied ages between birth and 2 years. Our findings add to this work. Through our intense focus on the first five postnatal months, our results demonstrate that the association between SEP and weight growth appears earlier in the postnatal period than previously documented.

Other potential mechanisms relating to SEP could include gestational weight gain and maternal nutrient status. Size at birth, considered a proxy for these two factors and represented in these analyses by the size SITAR parameter, was not associated with any of the sociodemographic measures. Further research will be useful in clarifying the biological mechanisms behind the association between SEP and early infant growth.

Strengths of this study include the combination of an analytic approach to growth that better captures the nonlinear characteristic of growth in the first five months of life with a detailed measure of socioeconomic position appropriate to the context of a lower income setting. Another strength is the monthly anthropometric measures collected in the first five postnatal months. We also note several limitations. The sample size (n = 1,412) is smaller than other studies with sample sizes in the thousands or tens of thousands (5,13,14). Our study, therefore, may not have been powered to detect some effects reported in larger studies. Another limitation is that the Graffar index, developed to assess differences in lowto middle-income populations, limits the generalizability of our findings to higher income groups.

This investigation examined various growth characteristics from birth to five months and their association with sociodemographic factors in a Chilean infancy cohort. We found associations between lower SEP and slower length (linear) growth, which are similar in direction to previous findings for maternal education that span periods of time greater than the first six months and up to five years of age (7,8,10,12). The association between maternal age and weight size, in our study, was similar to findings in other studies of growth between birth and two years of age (13). In sum, our results extend findings from previous research by showing that sociodemographic factors affect infant growth even in the first five months of growth and in relatively homogenous low- to middle-income populations.

Acknowledgements

We thank the Santiago Longitudinal Study participants.

Contributors

AVH designed the study, conducted the data analysis, and wrote the first draft of the paper. KEN and SG supervised and contributed to the study design, interpretation of results, and draft revisions. EB helped acquire the data. All authors (AVH,KEN,SG,RB,EB,BL,AGH,AJ,MG,VSV) both contributed to revisions of the draft for intellectual content and approved the final version of the manuscript.

Funding

AVH was supported by an American Heart Association Mid-Atlantic Affiliate predoctoral fellowship (award number 16PRE29200008). KEN was supported by AHA grant 15GRNT25880008. The data for this work was supported by grants from the National Institutes of Health R01-HL-088530 and R01-HD-033487.

Competing interests

None declared.

Patient consent

Not required.

Ethics approval

The Santiago Longitudinal Study (SLS) had been approved by Institutional Review Boards from 1) University of Michigan Medical Center, Ann Arbor, 2) Institute of Nutrition and Food Technology (INTA), Chile and 3) University of California, San Diego. The Office of Human Research Ethics at the University of North Carolina, Chapel Hill exempted this current research using existing anonymous data from review under the 45 CFR 46.101(b) regulatory category.

Data sharing agreement

No additional data are available.

Disclaimer

AHA had no role in the study design, data collection, and analysis, decision to publish or preparation of the manuscript.

References

1. Gillman MW. The first months of life: A critical period for development of obesity. Am J Clin Nutr. 2008 Jun;87(6):1587–9.

2. Leunissen RWJ. Timing and tempo of first-year rapid growth in relation to cardiovascular and metabolic risk profile in early adulthood. JAMA. 2009 Jun 3;301(21):2234.

3. Touwslager RN, Houben AJ, Tan FE, Gielen M, Zeegers MP, Stehouwer CD, et al. Growth and endothelial function in the first 2 years of life. The Journal of Pediatrics. 2015 Mar;166(3):666–671.e1.

4. Plagemann A, Harder T, Schellong K, Schulz S, Stupin JH. Early postnatal life as a critical time window for determination of long-term metabolic health. Best Practice & Research Clinical Endocrinology & Metabolism. 2012 Oct;26(5):641–53.

5. McCrory C, O'Leary N, Fraga S, Ribeiro AI, Barros H, Kartiosuo N, et al. Socioeconomic differences in children's growth trajectories from infancy to early adulthood: Evidence from four european countries. Journal of Epidemiology and Community Health. 2017 Oct;71(10):981–9.

6. Murasko JE. Associations between household income, height and BMI in contemporary US children: Infancy through early childhood. Annals of Human Biology. 2014 Nov;41(6):488–96.

7. Howe LD, Tilling K, Galobardes B, Smith GD, Gunnell D, Lawlor DA. Socioeconomic differences in childhood growth trajectories: At what age do height inequalities emerge? Journal of Epidemiology and Community Health. 2012 Feb;66(2):143–8.

8. Patel R, Tilling K, Lawlor DA, Howe LD, Bogdanovich N, Matush L, et al. Socioeconomic differences in childhood length/height trajectories in a middle-income country: A cohort study. BMC public health. 2014;14(1):932.

9. Queiroz VA de O, Assis AMO, Pinheiro SMC, Junior H da CR. Predictors of linear growth in the first year of life of a prospective cohort of full term children with normal birth weight. Jornal de Pediatria. 2012 Feb 15;88(1):79–86.

10. Matijasevich A, Howe LD, Tilling K, Santos IS, Barros AJD, Lawlor DA. Maternal education inequalities in height growth rates in early childhood: 2004 pelotas birth cohort study: Inequalities in childhood height. Paediatric and Perinatal Epidemiology. 2012 May;26(3):236–49.

11. Herngreen W, Buuren S van, Wieringen J van, Reerink J, Verloove-Vanhorick S, Ruys J. Growth in length and weight from birth to 2 years of a representative sample of netherlands children (born in 1988–89) related to socioeconomic status and other background characteristics. Annals of Human Biology. 1994 Jan;21(5):449–63.

12. Silva LM, Rossem L van, Jansen PW, Hokken-Koelega ACS, Moll HA, Hofman A, et al. Children of low socioeconomic status show accelerated linear growth in early childhood; results from the generation r study. Wang G, editor. PLoS ONE. 2012 May 23;7(5):e37356. 13. Pizzi C, Cole TJ, Richiardi L, dos-Santos-Silva I, Corvalan C, De Stavola B. Prenatal influences on size, velocity and tempo of infant growth: Findings from three contemporary cohorts. Wang G, editor. PLoS ONE. 2014 Feb 27;9(2):e90291.

14. Hui L, Leung GM, Cowling BJ, Lam T, Schooling CM. Determinants of infant growth: Evidence from hong kong's "children of 1997" birth cohort. Annals of Epidemiology. 2010 Nov;20(11):827–35.

15. Fuemmeler BF, Wang L, Iversen ES, Maguire R, Murphy SK, Hoyo C. Association between prepregnancy body mass index and gestational weight gain with size, tempo, and velocity of infant growth: Analysis of the newborn epigenetic study cohort. Childhood Obesity. 2016 Jun;12(3):210–8.

16. Wijlaars LPMM, Johnson L, Jaarsveld CHM van, Wardle J. Socioeconomic status and weight gain in early infancy. International Journal of Obesity. 2011 Jul;35(7):963–70.

17. Lejarraga H. Growth in infancy and childhood. In: Human growth and development. Elsevier; 2012. pp. 23–56.

18. Lozoff B, De Andraca I, Castillo M, Smith JB, Walter T, Pino P. Behavioral and developmental effects of preventing iron-deficiency anemia in healthy full-term infants. Pediatrics. 2003 Oct;112(4):846–54.

19. Lozoff B, Kaciroti N, Walter T. Iron deficiency in infancy: Applying a physiologic framework for prediction. The American journal of clinical nutrition. 2006;84(6):1412–21.

20. Graffar M. Une methode de classification sociales d'echantillons de population. Courrier. 1956;6:445–59.

21. Alvarez ML, Muzzo S, Ivanović D. Scale for measurement of socioeconomic level, in the health area. Rev Med Chil. 1985 Mar;113(3):243–9.

22. Cole TJ, Donaldson MDC, Ben-Shlomo Y. SITAR – a useful instrument for growth curve analysis. International Journal of Epidemiology. 2010 Jul 20;39(6):1558–66.

23. Beath KJ. Infant growth modelling using a shape invariant model with random effects. Statistics in Medicine. 2007 May 30;26(12):2547–64.

24. Pinheiro J, Bates D, DebRoy S, Sarkar D, R Core Team. Nlme: Linear and nonlinear mixed effects models [Internet]. 2017.

25. Tibshirani R. Regression shrinkage and selection via the lasso: A retrospective. Journal of the Royal Statistical Society: Series B (Statistical Methodology). 2011 Jun 1;73(3):273–82.

26. Greenland S. Invited commentary: Variable selection versus shrinkage in the control of multiple confounders. American Journal of Epidemiology. 2007 Dec 12;167(5):523–9.

27. Harrell FE. Regression modeling strategies: With applications to linear models, logistic and ordinal regression, and survival analysis [Internet]. 2015.

ו ר	
2 3	
3 4	
5	
5 6 7	
7	
8 9	
9 10	
11	
12	
13	
14	
15 16	
16 17	
18	
19	
20 21	
21	
22 23	
25 24	
25	
24 25 26 27	
27	
28	
29 30	
31	
32	
33	
34	
35 36	
30 37	
38	
39	
40	
41	
42 43	
44	
45	
46	
47	
48 49	
49 50	
51	
52	
53	
54	
55 56	
50 57	
58	
59	

28. Hastie T, Tibshirani R, Friedman JH. The elements of statistical learning: Data mining, inference, and prediction. Second edition, corrected at 12th printing 2017. New York: Springer; 2017. 745 pp. (Springer series in statistics).

29. Friedman J, Hastie T, Tibshirani R. Regularization paths for generalized linear models via coordinate descent. Journal of Statistical Software. 2010;33(1):1–22.

30. Tibshirani R, Tibshirani R, Taylor J, Loftus J, Reid S. selectiveInference: Tools for post-selection inference [Internet]. 2017.

31. Cole TJ, Altman DG. Statistics notes: Percentage differences, symmetry, and natural logarithms. BMJ. 2017 Aug 16;j3683.

32. Cole T, Kuh D, Johnson W, Ward K, Howe L, Adams J, et al. Using super-imposition by translation and rotation (SITAR) to relate pubertal growth to bone health in later life: The medical research council (MRC) national survey of health and development. International Journal of Epidemiology. 2016 Jul 27;dyw134.

33. Jimenez J, Romero MI. Reducing infant mortality in chile: Success in two phases. Health Affairs. 2007 Mar 1;26(2):458–65.

34. Gitlin LN, Fuentes P. The republic of chile: An upper middle-income country at the crossroads of economic development and aging. The Gerontologist. 2012 Jun 1;52(3):297–305.

35. Albala C, Vio F, Kain J, Uauy R. Nutrition transition in latin america: The case of chile. Nutr Rev. 2001 Jun;59(6):170–6.

36. Albala C, Vio F, Kain J, Uauy R. Nutrition transition in chile: Determinants and consequences. Public Health Nutrition. 2002 Feb;5(1).

37. Kang Sim DE, Cappiello M, Castillo M, Lozoff B, Martinez S, Blanco E, et al. Postnatal growth patterns in a chilean cohort: The role of SES and family environment. International Journal of Pediatrics. 2012;2012:1–8.

38. Khuc K, Blanco E, Burrows R, Reyes M, Castillo M, Lozoff B, et al. Adolescent metabolic syndrome risk is increased with higher infancy weight gain and decreased with longer breast feeding. International Journal of Pediatrics. 2012;2012:1–6.

BMJ Open

Table1. Descriptive statistics of sociodemographic characteristics, median [IQR]

Characteristic	Male	Female	Total
n	747	665	1412
Gestational age (weeks)	40.0 [39.0, 40.0]	40.0 [39.0, 40.0]	40.0 [39.0, 40.0]
Graffar Index	27.0 [23.0, 33.0]	27.0 [23.0, 33.0]	27.0 [23.0, 33.0]
Maternal age (years)	26.0 [21.8, 30.9]	25.5 [21.7, 30.3]	25.8 [21.8, 30.8]
Maternal Education (years)	10.0 [8.0, 12.0]	10.0 [8.0, 12.0]	10.0 [8.0, 12.0]
		15	
For	peer review only - http://	/bmjopen.bmj.com/site/	/about/guidelines.xhtml

BMJ Open

Table 2: Sociodemographic predictors and association with weight SITAR growth parameter ^{a,b} , stratified by
sex of child in the Santiago Longitudinal Study, 1991-1996

	Males							Females				Total						
		Unadjuste	d		Adjusted			Unadjuste	d		Adjusted	;		Unadjuste	d		Adjusted	2
Characterist	icSize	Tempo	Velocity	Size	Tempo	Velocity	Size	Tempo	Velocity	Size	Tempo	Velocity	Size	Tempo	Velocity	Size	Tempo	Velocity
Gest age	0.59 (-0.12, 1.31)	-2.28 (-3.15, -1.41)	-0.81 (-2.28, 0.66)	NA	-1.96 (-3.15, -1.40)	NA	0.76 (-0.02, 1.54)	-2.38 (-3.32, -1.45)	-2.14 (-3.87, -0.42)	0.45 (-0.32, 9.88)	-2.23 (-3.35, -1.47)	-1.58 (-3.85, 0.08)	0.64 (0.10, 1.18)	-2.35 (-2.98, -1.71)	-1.53 (-2.70, -0.37)	0.53 (-0.05, 1.15)	-2.01 (-2.98, -1.70)	-1.06 (-2.67, 0.01)
Maternal age	0.11 (-0.00, 0.23)	-0.06 (-0.20, 0.09)	-0.07 (-0.31, 0.17)	0.07 (-0.11, 0.21)	-0.06 (-0.21, 0.26)	-0.06 (-0.33, 0.82)	0.21 (0.07, 0.34)	-0.02 (-0.18, 0.15)	-0.41 (-0.71, -0.12)	0.19 (-6.13, 0.22)	0.01 (-2.29, 0.13)	-0.36 (-0.67, -0.04)	0.16 (0.07, 0.25)	-0.03 (-0.14, 0.07)	-0.20 (-0.39, -0.00)	0.15 (-0.78, 0.22)	-0.01 (-0.16, 0.83)	-0.18 (-0.56, 0.22)
Maternal education	-0.03 (-0.32, 0.26)	0.14 (-0.21, 0.49)	-0.04 (-0.62, 0.55)	NA	NA	NA	-0.01 (-0.31, 0.29)	0.06 (-0.30, 0.43)	-0.03 (-0.69, 0.64)	0.00 (-Inf, -0.41)	0.12 (-0.95, 0.52)	NA	-0.03 (-0.24, 0.19)	0.10 (-0.15, 0.36)	-0.04 (-0.50, 0.41)	0.00 (-10.67, 0.04)	0.04 (-1.59, 1.58)	-0.05 (-0.75, 4.42)
Graffar Index ^d	-0.12 (-0.23, -0.01)	-0.13 (-0.27, 0.01)	-0.15 (-0.39, 0.08)	-0.08 (-0.22, 0.07)	-0.13 (-0.28, 0.03)	-0.13 (-0.41, 0.28)	-0.07 (-0.19, 0.06)	0.12 (-0.03, 0.28)	0.28 (0.00, 0.57)	-0.03 (-5.15, 0.23)	0.13 (-0.24, 0.29)	0.23 (-0.16, 0.52)	-0.09 (-0.18, -0.00)	-0.01 (-0.11, 0.09)	0.06 (-0.12, 0.25)	-0.06 (-0.83, 0.04)	-0.00 (-0.06, 3.49)	0.02 (-1.66, 0.32)

^a Size units are percentage change in log(weight) from average, tempo units are time (days), velocity units in percent change from average.

^b Bold values indicate significance with Bonferroni correction at alpha level of 0.05

^c Adjusted linear regression models only include non-zero coefficients from lasso regression models that

include all covariates in full model.

^d Higher Graffar index values indicate lower socioeconomic status.

Table 3: Sociodemographic predictors and association with length SITAR growth parameters^{*a,b*}, stratified by sex of child in the Santiago Longitudinal Study, 1991-1996

		Ма	les			Fem	ales			Bo	oth	
	Unad	justed	Adju	steđ	Unad	justed	Adju	isted	Unad	justed	Adju	isteđ
Characteristic	Tempo	Velocity										
Gest age	-3.33 (-4.09, -2.56)	0.99 (0.29, 1.68)	-3.05 (-4.10, -2.55)	NA	-2.57 (-3.36, -1.79)	0.25 (-0.52, 1.02)	-2.53 (-3.33, -1.77)	NA	-2.97 (-3.52, -2.42)	0.64 (0.12, 1.15)	-2.94 (-3.51, -2.41)	0.61 (0.06, 1.15)
Maternal age	-0.04 (-0.18, 0.09)	0.09 (-0.03, 0.20)	-0.01 (-0.10, 1.64)	NA	-0.17 (-0.30, -0.03)	0.01 (-0.13, 0.14)	-0.15 (-0.29, 0.01)	NA	-0.10 (-0.19, -0.00)	0.05 (-0.04, 0.14)	-0.07 (-0.17, 0.06)	0.02 (-0.35, 0.10)
Maternal education	0.06 (-0.26, 0.38)	0.12 (-0.16, 0.40)	NA	NA	-0.18 (-0.49, 0.13)	0.28 (-0.01, 0.58)	-0.14 (-0.45, 0.52)	0.16 (-0.35, 0.52)	-0.05 (-0.28, 0.17)	0.20 (-0.00, 0.40)	-0.06 (-0.27, 0.73)	0.13 (-0.21, 0.34)
Graffar Index ^d	0.06 (-0.06, 0.19)	-0.26 (-0.37, -0.15)	0.05 (-0.25, 0.36)	-0.21 (-0.37, -0.14)	0.16 (0.03, 0.29)	-0.19 (-0.32, -0.07)	0.13 (-0.03, 0.26)	-0.17 (-0.31, -0.05)	0.11 (0.02, 0.20)	-0.23 (-0.31, -0.15)	0.09 (-0.02, 0.18)	-0.22 (-0.31, -0.13)

^{*a*} Size units are percentage change in log(length) from average, tempo units are time (days), velocity units in percent change from average

^b Bold values indicate significance with Bonferroni correction at alpha level of 0.05.

^c Adjusted linear regression models only include non-zero coefficients from lasso regression models that include all covariates in full model.

^d Higher Graffar index values indicate lower socioeconomic status.

BMJ Open

Table 4: Sociodemographic predictors and association with weight-for-length (WFL) SITAR growth
parameters ^{<i>a,b,c</i>} stratified by sex of child in the Santiago Longitudinal Study, 1991-1996

		Ma	les		Females				Both			
	Unac	Unadjusted Adjusted		Unac	Unadjusted Adjusted			Unadjusted		Adjusted		
Characteristic	Size	Tempo	Size	Tempo	Size	Tempo	Size	Tempo	Size	Tempo	Size	Tempo
Gest age	0.09 (-0.55, 0.73)	-2.03 (-2.91, -1.15)	NA	-1.58 (-2.90, -1.11)	0.05 (-0.58, 0.69)	-2.34 (-3.35, -1.32)	NA	-2.32 (-3.35, -1.33)	0.07 (-0.38, 0.52)	-2.17 (-2.84, -1.51)	NA	-1.99 (-2.83, -1.49)
Maternal age	0.07 (-0.03, 0.18)	-0.09 (-0.23, 0.06)	0.04 (-0.23, 0.16)	-0.08 (-0.24, 0.17)	0.02 (-0.09, 0.13)	-0.18 (-0.36, -0.00)	NA	-0.13 (-0.36, 0.14)	0.05 (-0.03, 0.12)	-0.13 (-0.24, -0.02)	0.03 (-0.16, 0.12)	-0.11 (-0.22, 0.03)
Maternal education	-0.09 (-0.35, 0.16)	0.08 (-0.27, 0.44)	NA	NA	-0.10 (-0.35, 0.14)	0.00 (-0.40, 0.40)	NA	0.07 (-2.11, 0.42)	-0.10 (-0.28, 0.08)	0.04 (-0.22, 0.31)	NA	NA
Graffar Index ^d	-0.08 (-0.18, 0.02)	-0.07 (-0.21, 0.07)	-0.05 (-0.17, 0.15)	-0.08 (-0.24, 0.17)	0.08 (-0.02, 0.19)	0.26 (0.10, 0.43)	0.04 (-0.21, 0.18)	0.25 (0.05, 0.42)	-0.01 (-0.08, 0.07)	0.08 (-0.03, 0.19)	NA	0.06 (-0.14, 0.17)

^{*a*} Size units are percentage change in log(WFL) from average, tempo units are time (days), velocity units in percent change from average.

^{*b*} Bold values indicate significance with Bonferroni correction at alpha level of 0.05.

^{*c*} Adjusted linear regression models only include non-zero coefficients from lasso

regression models that include all covariates in full model.

^d Higher Graffar index values indicate lower socioeconomic status

Figure 1 caption: Type of change in random effects relative to the sample mean trajectory in weight growth curve trajectories following a shape invariant model (SIM).

tor oper terien only

Graffar item	Scale	n(%)
N		1412
No. people in hh 'eating from 1 pot' (%)	1: 1-3	230 (16.3)
	2: 4-6	865 (61.3)
	3: 7-9	254 (18.0)
	4: 10-12	55 (3.9)
	5: 13-15	6 (0.4)
	6: over 16	2 (0.1)
Father's presence in household (%)	1: father is present; not left hh	1197 (84.8)
	3: left hh but sends money	66 (4.7)
	4: partially left hh	38 (2.7)
	6: completely gone	111 (7.9)
Head of household's highest educational level (%)	1: university completed	12 (0.9)
	2: university not completed	9 (0.6)
	3: h.s. or technical studies completed	325 (23.0)
	4: completed 8th grade	664 (47.1)
	5: did not reach 8th grade	382 (27.1)
	6: no schooling	19 (1.3)
Property ownership (%)	1: owned	269 (19.1)
	2: home mortgage	83 (5.9)
	3: rent	243 (17.2)
	4: given to you as a gift	117 (8.3)
	5: squatters w tents or construction	7 (0.5)
	6: lving in back of main house	693 (49.1)
Type of house construction (%)	1: very large house	15 (1.1)
	2: smaller house	181 (12.8)
	3: tiny concrete house	330 (23.4)

 BMJ Open

Appendix Table 1. Description of items used for Graffar index

Graffar item	Scale	n(%)
	4: self-constructed home	398 (28.2)
	5: wooden house	94 (6.7)
	6: wooden house w/ less than three rooms	394 (27.9)
Characteristics of the kitchen (%)	1: independent kitchen in one room	931 (65.9)
	6: kitchen in a room with multiple uses	481 (34.1)
Sewage,plumbing (%)	1: inside plumbing	1402 (99.3)
	5: out house	9 (0.6)
	6: just go in woods	1(0.1)
Water (%)	1: water from inside home faucet	949 (67.2)
	6: water from outside faucet	463 (32.8)
No. times garbage collected per week (%)	1: more than 4x/week	6 (0.4)
	2: 3 times/week	1288 (91.2)
	3: 2 times/week	117 (8.3)
	6: never	1(0.1)
Total count of previous six goods,possessions (tv, washing machine, stereo, refrig., car) (%)	1: 13-15 (own all six goods)	77 (5.5)
	2: 10-12	311 (22.3)
	3: 7-9	302 (21.6)
	4: 4-6	277 (19.9)
	5: 1-3	374 (26.8)
	6: 0	54 (3.9)

Trajectory type	Model ID	Model description	BIC ^a
	no random effects	no random effects	NA
	m2	random size (alpha0)	-19546.4
	m3	random tempo (beta0)	-17232
	m4	random velocity (beta1)	-18323
	m5	random tempo and velocity (beta0 and beta1)	-21901.5
	m5.strat	m5 + sex-spec effects	-22123.4
	m5.strat2	m5.strat + sex-spec corr structure	-22107.5
	m6	random size and tempo (alpha0 and beta0)	-21740.4
	m7	random size and velocity (alpha0 and beta1)	-21629.8
Weight	m8	random size, tempo and velocity (alpha0, beta0, and beta1)	-22940.6
	no random effects	no random effects	NA
	m2	random size (alpha0)	-37399.5
	m3	random tempo (beta0)	-36684.1
	m4	random velocity (beta1)	-34985.7
	m5	random tempo and velocity (beta0 and beta1)	-37820
	m5.strat	m5 + sex-spec effects	-38000.7
	m5.strat2	m5.strat + sex-spec corr structure	-37978.2
	m6	random size and tempo (alpha0 and beta0)	-37381.5
Height	m7	random size and velocity (alpha0 and beta1)	-37819.9
	no random effects	no random effects	NA
	m2	random size (alpha0)	-21147.2
	m3	random tempo (beta0)	-18852.1
	m4	random velocity (beta1)	-20549.9
	m5	random tempo and velocity (beta0 and beta1)	-22598
	m5.strat	m5 + sex-spec effects	-22761.2
	m5.strat2	m5.strat + sex-spec corr structure	-22751.3
	m6	random size and tempo (alpha0 and beta0)	-22808.5
WFL	m7	random size and velocity (alpha0 and beta1)	-22484.6
	^a Bold values indicate lowest value within	a trajectory evaluation.	

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open

1 2 3 4 5	Reporting	I che	ecklist for cohort study.									
6 7 8 9	Based on the STROBE cohort guidelines.											
10 11 12	Instructions to authors											
13 14	Complete this checklist by entering the page numbers from your manuscript where readers will find											
15 16 17 18	each of the items listed below.											
19 20	Your article may not currently address all the items on the checklist. Please modify your text to											
20 21 22	include the missing information. If you are certain that an item does not apply, please write "n/a" and											
22 23 24 25	provide a short explanation.											
26 27 28	Upload your completed checklist as an extra file when you submit to a journal.											
29 30 31	In your methods section, say that you used the STROBE cohortreporting guidelines, and cite them											
32 33	as:											
34 35 36	von Elm E, Altman DG, Egger M, Pocock SJ, Gotzsche PC, Vandenbroucke JP. The Strengthening											
37 38	the Reporting of Ol	the Reporting of Observational Studies in Epidemiology (STROBE) Statement: guidelines for										
39 40 41	reporting observati	reporting observational studies.										
42 43				Page								
44 45 46			Reporting Item	Number								
47 48 49 50	Title and abstract											
50 51 52	Title	<u>#1a</u>	Indicate the study's design with a commonly used term in the	1								
53 54 55 56 57 58			title or the abstract									
59 60		For pee	er review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml									

1 2	Abstract	<u>#1b</u>	Provide in the abstract an informative and balanced summary	3
3 4 5			of what was done and what was found	
6 7 8	Introduction			
9 10 11	Background /	<u>#2</u>	Explain the scientific background and rationale for the	4
12 13 14	rationale		investigation being reported	
15 16	Objectives	<u>#3</u>	State specific objectives, including any prespecified	4
17 18			hypotheses	
19 20 21 22	Methods			
23 24 25	Study design	<u>#4</u>	Present key elements of study design early in the paper	5
26 27 28	Setting	<u>#5</u>	Describe the setting, locations, and relevant dates, including	5
28 29 30			periods of recruitment, exposure, follow-up, and data	
31 32 33			collection	
34 35	Eligibility criteria	<u>#6a</u>	Give the eligibility criteria, and the sources and methods of	5
36 37 38			selection of participants. Describe methods of follow-up.	
39 40	Eligibility criteria	<u>#6b</u>	For matched studies, give matching criteria and number of	na
41 42 43 44			exposed and unexposed	
44 45 46	Variables	<u>#7</u>	Clearly define all outcomes, exposures, predictors, potential	5
47 48			confounders, and effect modifiers. Give diagnostic criteria, if	
49 50 51			applicable	
52 53 54	Data sources /	<u>#8</u>	For each variable of interest give sources of data and details	5
55 56	measurement		of methods of assessment (measurement). Describe	
57 58			comparability of assessment methods if there is more than	
59 60		For pee	er review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml	

Page 27 of 28			BMJ Open	
1			one group. Give information separately for for exposed and	
2 3 4			unexposed groups if applicable.	
5 6 7	Bias	<u>#9</u>	Describe any efforts to address potential sources of bias	6
8 9 10	Study size	<u>#10</u>	Explain how the study size was arrived at	5
11 12 13	Quantitative	<u>#11</u>	Explain how quantitative variables were handled in the	6
14 15	variables		analyses. If applicable, describe which groupings were	
16 17 18			chosen, and why	
19 20 21	Statistical	<u>#12a</u>	Describe all statistical methods, including those used to	6
21 22 23 24	methods		control for confounding	
24 25 26	Statistical	<u>#12b</u>	Describe any methods used to examine subgroups and	na
27 28 29	methods		interactions	
30 31	Statistical	<u>#12c</u>	Explain how missing data were addressed	7
32 33 34	methods			
35 36 37	Statistical	<u>#12d</u>	If applicable, explain how loss to follow-up was addressed	na
38 39 40	methods		Describe any sensitivity analyses	
41 42	Statistical	<u>#12e</u>	Describe any sensitivity analyses	na
43 44 45	methods			
46 47 48	Results			
49 50 51	Participants	<u>#13a</u>	Report numbers of individuals at each stage of study—eg	7
52 53			numbers potentially eligible, examined for eligibility,	
54 55 56 57 58			confirmed eligible, included in the study, completing follow-	
59 60		For pee	er review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml	

RM I	Open
DIVIJ	Open

1			up, and analysed. Give information separately for for	
2 3 4			exposed and unexposed groups if applicable.	
5 6 7	Participants	<u>#13b</u>	Give reasons for non-participation at each stage	7
8 9 10 11	Participants	<u>#13c</u>	Consider use of a flow diagram	na
12 13	Descriptive data	<u>#14a</u>	Give characteristics of study participants (eg demographic,	7
14 15			clinical, social) and information on exposures and potential	
16 17			confounders. Give information separately for exposed and	
18 19 20			unexposed groups if applicable.	
21 22 23	Descriptive data	<u>#14b</u>	Indicate number of participants with missing data for each	7
24 25 26			variable of interest	
27 28 29	Descriptive data	<u>#14c</u>	Summarise follow-up time (eg, average and total amount)	na
30 31	Outcome data	<u>#15</u>	Report numbers of outcome events or summary measures	na
32 33			over time. Give information separately for exposed and	
34 35 36			unexposed groups if applicable.	
37 38 39	Main results	<u>#16a</u>	Give unadjusted estimates and, if applicable, confounder-	7-8
40 41			adjusted estimates and their precision (eg, 95% confidence	
42 43			interval). Make clear which confounders were adjusted for	
44 45 46			and why they were included	
47 48 49	Main results	<u>#16b</u>	Report category boundaries when continuous variables were	na
50 51 52			categorized	
53 54	Main results	<u>#16c</u>	If relevant, consider translating estimates of relative risk into	na
55 56 57			absolute risk for a meaningful time period	
58 59 60		For pee	r review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml	

BMJ Open

1 2	Other analyses	<u>#17</u>	Report other analyses done—e.g., analyses of subgroups	na
3 4 5			and interactions, and sensitivity analyses	
6 7 8	Discussion			
9 10 11	Key results	<u>#18</u>	Summarise key results with reference to study objectives	8-9
12 13 14	Limitations	<u>#19</u>	Discuss limitations of the study, taking into account sources	10
15 16			of potential bias or imprecision. Discuss both direction and	
17 18 19			magnitude of any potential bias.	
20 21	Interpretation	<u>#20</u>	Give a cautious overall interpretation considering objectives,	10
22 23 24			limitations, multiplicity of analyses, results from similar	
25 26 27			studies, and other relevant evidence.	
28 29	Generalisability	<u>#21</u>	Discuss the generalisability (external validity) of the study	10
30 31			results	
32 33 34 35	Other Information			
36 37	Funding	<u>#22</u>	Give the source of funding and the role of the funders for the	10
38 39 40			present study and, if applicable, for the original study on	
40 41 42 43			which the present article is based	
43 44 45	The STROBE chec	klist is d	distributed under the terms of the Creative Commons Attribution Licens	se
46 47	CC-BY. This check	list was	completed on 16. August 2019 using https://www.goodreports.org/, a	tool
48 49 50	made by the <u>EQUA</u>	TOR N	etwork in collaboration with Penelope.ai	
51 52 53				
54 55 56				
57 58				
59 60		For pee	er review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml	

BMJ Open

BMJ Open

Sociodemographic predictors of early postnatal growth: evidence from a Chilean infancy cohort.

Journal:	BMJ Open
Manuscript ID	bmjopen-2019-033695.R2
Article Type:	Original research
Date Submitted by the Author:	27-Feb-2020
Complete List of Authors:	Von Holle, Ann; University of North Carolina at Chapel Hill, Epidemiology North, Kari; University of North Carolina at Chapel Hill Gahagan, Sheila; University of California San Diego, Child Development and Community Health Burrows, Raquel; University of Chile, Institute of Nutrition and Food Tecnology Blanco, Estela; University of California San Diego, Child Development and Community Health Lozoff, Betsy; University of Michigan, Department of Pediatrics Howard, Annie Green; University of North Carolina System, Biostatistics Justice, Anne; Geisinger Health, Center for Biomedical and Translational Informatics Graff, Misa; University of North Carolina at Chapel Hill, Epidemiology Voruganti, V. Saroja; University of North Carolina at Chapel Hill, Department of Nutrition and UNC Nutrition Research Institute
Primary Subject Heading :	Epidemiology
Secondary Subject Heading:	Paediatrics
Keywords:	EPIDEMIOLOGY, PUBLIC HEALTH, Community child health < PAEDIATRICS

I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd ("BMJ") its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our <u>licence</u>.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge ("APC") for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which <u>Creative Commons</u> licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author's Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.

reliez oni

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Title: Sociodemographic predictors of early postnatal growth: evidence from a Chilean infancy cohort

Ann Von Holle

PO Box 12233 Mail Drop A3-03, 111 TW Alexander Drive, Research Triangle Park, NC 27709-2233. Email: avonholle@gmail.com; tel. 919-593-0299

(Corresponding author)

Kari E. North

Department of Epidemiology, University of North Carolina, Chapel Hill, NC, United States

Sheila Gahagan

Academic General Pediatrics, Child Development and Community Health Division, University of California, San Diego, CA, United States

Raquel Burrows

Institute of Nutrition and Food Technology, University of Chile, Santiago, Chile

Estela Blanco

Child Development and Community Health Division; University of California, San Diego, CA, United States

Betsy Lozoff

Department of Pediatrics, University of Michigan, Ann Arbor, MI, United States

Annie Green Howard

Department of Biostatistics, University of North Carolina, Chapel Hill, NC, United States

Anne Justice

Center for Biomedical and Translational Informatics, Geisinger Health, Danville, PA, United States

Misa Graff

Department of Epidemiology, University of North Carolina, Chapel Hill, NC, United States

Venkata Saroja Voruganti

Department of Nutrition and UNC Nutrition Research Institute, University of North Carolina, Chapel Hill, NC, United States

Word Count: ~3,124

Number of references: 39

for oper terrer only

Abstract

Objectives

Infant anthropometric growth varies across socioeconomic factors, including maternal education and income, and may serve as an indicator of environmental influences in early life with long term health consequences. Previous research has identified sociodemographic gradients in growth with a focus on the first year and beyond, but estimates are sparse for growth before six months. Thus, our objective was to examine the relationship between sociodemographic factors and infant growth patterns between birth and five months of age.

Design

Prospective cohort study

Settings

Low- to middle-income neighborhoods in Santiago, Chile (1991-1996).

Participants

1,412 participants from a randomized iron deficiency anemia preventive trial in healthy infants.

Main outcome measures

Longitudinal anthropometrics including monthly weight (kg), length (cm) and weight-forlength (WFL) values. For each measure, we estimated three individual-level growth parameters (size, timing, and velocity) from SuperImposition by Translation and Rotation (SITAR) models. Size and timing changes represent vertical and horizontal growth curve shifts, respectively, and velocity change represents growth rate shifts. We estimated the linear association between growth parameters and gestational age, maternal age, education, and socioeconomic position (SEP).

Results

Lower SEP was associated with a slower linear (length) velocity growth parameter (-0.22, 95% CI=-0.31,-0.13) – outcome units are percent change in velocity from the average growth curve. Lower SEP was associated with later WFL growth timing as demonstrated through the tempo growth parameter for females (0.25, 95% CI=0.05,0.42) – outcome units are shifts in days from the average growth curve. We found no evidence of associations between SEP and the weight size, timing, or velocity growth rate parameters.

Conclusion

Previous research on growth in older infants and children shows associations between lower SEP with slower length velocity. We found evidence supporting this association in the first five months of life, which may inform age-specific prevention efforts aimed at infant length growth.

Strengths and Limitations of this Study

- The sample includes monthly anthropometric measures in the first five postnatal months not available in any study to date and allowing better fitting growth models.
- We used the Graffar Index, a detailed measure of socioeconomic position (SEP) specific to low- to middle-income groups, an understudied population, which may reduce misclassification of SEP.
- As the sample was low- to middle-income, these results may not generalize to groups with even lower or higher income or SEP.

Introduction

Interest in early life infant growth has grown as evidence accumulates that it is associated with the development of adult disease, sometimes decades later. Some chronic disease outcomes associated with infant growth characteristics include obesity, endothelial dysfunction, and metabolic syndrome [1–3]. Explanations for these associations include early infancy as a critical window of time for susceptibility to environmental exposures for chronic disease risk factors [4]. Socioeconomic position (SEP) is one such exposure. SEP is associated with child growth patterns, in particular, length [5–12] and weight [13–16]. In these studies, lower SEP is generally associated with faster weight gain during childhood, while the inverse holds true for length. These socioeconomic gradients in growth appear to emerge in early life [7] and persist [5].

Gaps remain in our understanding regarding sociodemographic predictors of growth during infancy and childhood. One such gap relates to the earliest period of infant growth. Most studies to date include three or fewer observations before six months [5– 8,10,11,13,14,16], preventing nonlinear specifications between weight or height spanning this time. However, curvilinear models of growth with more than three observations offer better model fit for early infancy growth. Growth during the first six months in the human lifespan is characterized by accelerated growth at the outset and leveling off at around six months [17]. Given these unique features, early infant growth may yield unique associations with predictors not influential during later periods of growth. Understanding the relationship between early infant growth and sociodemographic factors may yield new information that highlight the potential for earlier interventions to promote optimal health.

Identifying novel associations in this age range can better pinpoint the timing and influence of sociodemographic factors. Given the sparsity of information in the literature focusing on these points, our aim in this study is to examine sociodemographic predictors of infant weight, length and weight-for-length (WFL) growth from zero to five months in an infancy cohort of over 1,400 healthy Chilean children. Based on prior research in middle- to highincome countries applied to a wider range of ages in childhood that is described above, we expected that SEP will be inversely associated with weight gain and positively associated with length growth.

Methods

Study sample

The data in this study are drawn from the Santiago Longitudinal Study (SLS), a cohort study from low- to middle-income neighborhoods in Santiago, Chile. Between 1991 and 1996, infants were recruited for an infancy iron deficiency anemia preventive trial [18] or neuromaturation study [19]. Inclusion criteria for the infancy studies included full term infants [greater than or equal to 37 weeks gestational age (GA)] with birthweight ≥ 3.0 kg, vaginal birth, no major health problems for the infant, and, for the preventive trial, no iron deficiency anemia present at five to six months. Those with iron deficiency anemia and the next nonanemic control were invited to participate in the neuromaturation study and are not considered here. Participant eligibility and follow-up information have previously been reported [18]. The Santiago Longitudinal Study (SLS) had been approved by Institutional Review Boards from 1) the University of Michigan, Ann Arbor, 2) Institute of Nutrition and Food Technology (INTA), Chile and 3) University of California, San Diego.

We characterized the growth period prior to treatment randomization, which occurred at six months. Anthropometric measures prior to study enrollment were obtained from the medical chart. The total sample size included 1,657 infants who completed the preventive trial.

Outcome and sociodemographic measures

Anthropometric measurements included weight (kg), length (cm), and weight-for-length (WFL) (g/cm). Weight was measured to the nearest 0.01 kg on an electronic scale at local public health clinics. Length was measured on a recumbent board to the nearest 0.1 cm. Gestational age (GA), obtained from the medical chart, was among the set of variables included in the models as a covariate.

Sociodemographic measures were self-reported by the mother, including maternal age (years), total years of education, and the modified Graffar index [20], an index of SEP used in lower-income countries [21]. The modified Graffar index represents a sum of 10 measures regarding education, family composition, and housing characteristics, which are summed to create a scale with higher values indicating lower social class (Appendix Table A1). Mothers self-reported breastfeeding characteristics from birth, including date of first bottle and age at weaning if weaned. From this information, we created variables for breastfeeding as the sole source of milk and mixed breast and bottle feeding at five months.

Statistical analyses

Summary statistics included median and interquartile ranges for continuous variables and percent with counts for categorical variables. All summary statistics were stratified by child sex. We used two steps to assess the association between infant growth and sociodemographic predictors: 1) SuperImposition by Translation and Rotation (SITAR) approach [22] to estimate infant weight, length and weight-for-length (WFL) growth characteristics from birth to five months followed by 2) linear regression to estimate the

relationship between sociodemographic predictors and these growth characteristics. We used a nonlinear mixed effects model [23] to estimate the growth characteristics with the R nlme package [24]. Each model produces up to three different SITAR growth parameters per individual, which have been named 'size', 'tempo' and 'velocity' [22] (Figure 1). 'Size' indicates a shift of the growth curve up and down for an individual relative to the average growth curve. 'Tempo' indicates a shift of the growth curve to the left or right on the age scale for an individual relative to the average growth curve. Lastly, 'velocity' indicates a transformation of the age scale in the nonlinear model, shrinking or enlarging the age scale for an individual relative to the average growth curve. These three parameters are noted as having biologically meaningful interpretations, which are difficult to obtain with other growth models [23]. Unless otherwise noted, any references to 'size', 'tempo', and 'velocity' refer to these parameters from the SITAR construct applied to early infant growth.

Figure 1 about here

The results from the second step analyses are reported. In addition to including males and females and adjusting for sex of the child (in the pooled analyses), sex-stratified analyses were also used for all three anthropometric outcomes, as some estimated associations between the SITAR growth parameters and SEP indicators differed by sex of the child.

The adjusted models in the second step started with four covariates: gestational age, maternal age, total years of maternal education, and Graffar index [20]. We removed covariates from the model based on the least absolute shrinkage and selection operator (lasso) approach [25]. This approach has better performance than conventional model selection methods with a univariate approach [26] such as stepwise methods [27]. The lasso approach assists in selecting predictors with the strongest coefficients [28] while balancing bias and variation in the model. We used the glmnet package in R [29] to estimate shrunken parameters and the selectiveInference package [30] to provide inference via statistical tests and confidence intervals. Each set of comparisons by outcome, i.e. weight, length or weight-for-length were considered separately. Multiple comparisons increase the possibility of statistically significant study findings by chance alone. Therefore, we controlled for multiple comparisons using a Bonferroni correction at an alpha level of 0.05. A coefficient for the predictor of a weight size growth parameter outcome in the second step indicates a change in log(kg) for a one-unit change in the predictor; we multiply this coefficient by 100 to make a symmetric percentage difference on a modified percentage scale [31,32]. Similarly, a one-unit change in the predictor corresponds to a symmetric percentage change in the velocity growth parameter. Time (days) is not log transformed and the coefficient for this outcome corresponds to a shift in the time scale in days.

For analyses, we used a complete case data set, i.e., all participants with non-missing covariates. The proportion of missing data was less than one percent for all variables except the Graffar index, which had less than three percent missing. The median number of non-missing outcome (anthropometric) values was six out of six monthly measures (birth to five months). The percent of missing outcome values at each time point ranged from 9% at months 1 and 2 to 0.2% at birth. In a post hoc data analysis we used logistic regression

models to estimate associations between SEP (the Graffar Index) as a continuous variable, and binary breastfeeding status outcomes – any or exclusive – at five months.

Patient and public involvement

Participants were mothers and infants recruited for research. The mothers were not involved in setting the study design, research questions or outcome measures for this study.

Results

Participants (n=1,412) were 53% male and 47% female. Median gestational age (Q1, Q3) was 40 weeks (39, 40). Median maternal age (Q1, Q3) was 26 years (22, 31), and mothers had a median (IQR) of 10 (8, 12) years of education at the time of their infant's birth (Table 1). For the six monthly anthropometric measurements prior to six months, each infant had at least two observations, and 72% had measures at all six time points.

Put table 1 about here

We assessed best model fit for each anthropometric measure via the lowest Bayesian Information Criterion (BIC) for growth independent of any covariates. After evaluating all possible combinations of SITAR models from one to three parameters for each of the three anthropometric measures, best fit (Appendix Table A2) models included: 1) all three growth parameters for weight, i.e. 'size', 'tempo', and 'velocity', 2) sex-specific growth trajectories with tempo and velocity parameters for length, and 3) sex-specific growth trajectories with size and tempo parameters for WFL.

The following sections outline the adjusted results of the growth trajectory analyses for the three anthropometric outcomes: weight (kg), length (cm) and weight-for-length (WFL) (g/cm).

Weight trajectories: size, tempo and velocity

After including all covariates in the model, gestational age was the only characteristic associated with any weight growth parameters. In the pooled sample, gestational age was significantly associated with the weight tempo parameter (-2.01, 95% CI = -2.98, -1.70), indicating a leftward shift of about two days for each additional week in gestational age. This indicates earlier timing of weight gain in infants who were born with higher gestational age (Table 2). There was no substantive difference in this association in the sexstratified analyses.

put table 2 about here

Length trajectories: tempo and velocity

When evaluating the relationship between deviations from the average length growth characteristics and sociodemographic predictors, we found associations for SEP and gestational age. In the pooled group, the coefficient of association between the Graffar

index and the velocity parameter (-0.22, 95% CI = -0.31, -0.13) (Table 3) indicated that for each unit increase in the Graffar index, lower values indicating higher SEP, there was a -0.22 percent decline from the average length velocity. Conversely, this association reflects a positive relationship between the length velocity parameter and SEP. This coefficient was not substantively different in the sex-stratified analyses, all of which indicated faster linear (length) growth with higher SEP. In contrast to the sex-stratified analyses, all covariates remained in the pooled adjusted model with less than 5% change from the unadjusted SEP coefficient (-0.23, 95% CI = -0.31, -0.15). Similar to SEP, GA was also positively associated with the length velocity parameter, demonstrating a 0.61 percent (95% CI = 0.06, 1.15) increase from the average length velocity in the pooled sample for every unit increase in GA (weeks). Gestational age was inversely associated with the length tempo parameter in the pooled sample (-2.94, 95% CI = -3.51, -2.41), indicating a leftward shift of about three days of the trajectory on the time scale, and a faster start to length growth, for each one week increase in gestational age (Table 3).

put Table 3 about here

Weight-for-length trajectories: size and tempo

Evaluations of shifts in WFL size and tempo from the average indicated associations with SEP and GA. Increases in the Graffar Index, equivalent to lower SEP, were associated with a positive shift in the WFL tempo parameter for females (0.25, 95% CI = 0.05, 0.42). This estimate approximates a rightward shift in time (days) relative to the average growth curve indicating later growth timing with lower SEP.

Similar to weight and length trajectory analyses, an increase in gestational age was inversely associated with a decline in tempo from the average in the pooled sample (-1.99, 95% CI = -2.83, -1.49) (Table 4) indicating about a two-day shift to the left on the time scale from the average growth curve for every one week increase in gestational age. Similar values were found in the sex-stratified analyses, all indicating earlier timing of WFL growth with higher gestational age.

put Table 4 about here

The post hoc analysis examining the association between odds of exclusive or any breastfeeding at five months and the continuous SEP measure (the Graffar index) did not find a substantive or significant association (data not shown).

Discussion

In this research, we found that lower SEP, measured by the Graffar index, was inversely associated with length growth characteristics – but not weight – in the first five months. Lower SEP was associated with later timing of WFL growth as reflected by the positive association between the Graffar Index and the WFL tempo parameter. These higher tempo values translate to a rightward shift in growth relative to the average growth curve as well as a later age at peak velocity [33]. This delay in growth can be considered an unfavorable outcome associated with lower SEP.

Maternal age was not associated with any of the three adjusted growth parameters for length, weight, or weight-for-length. Gestational age (GA) was inversely associated with the tempo growth parameters for length, weight, and weight-for-length indicating higher GA is associated with earlier timing of these three measures. Gestational age is also positively associated with length velocity in the pooled sample indicating faster length change with increasing GA.

Of three previous studies investigating associations between sociodemographic predictors and infant growth before six months, two studies found a significant and fully-adjusted positive association between length (linear) growth and maternal education [8,10], used as a proxy for SEP. Only one study found an inverse association with length growth [12], which was close to null upon adjustment. Many studies including age ranges exceeding six months of age up to five years of age demonstrated a positive association between maternal education and length/height growth [7,8,10]. The majority of these studies support the conclusion that lower SEP is associated with slower length (linear) growth in infancy and early childhood.

Several prior studies representing high-income European countries have noted that their findings of no evidence of a relationship [7,12] between SEP and length (linear) growth prior to six months may not generalize to low- to middle-income countries. Deviations from the Western diet and lifestyle were one of the reasons given for this limitation. Chile, the country from which our data were collected, offers an interesting context in this respect. The recruitment period for this study, 1991 to 1996, occurred as Chile was transitioning from a low-income to an upper-middle income country. In 1990, 40% of the Chilean population was below the poverty line [34]; by 2012 WHO classified Chile as an upper middle-income country [35]. There were nutrition and epidemiologic transitions [36,37] beginning in the 1970s and continuing during the 1990s when study infants were enrolled. Specifically, consumption of high-calorie food, accompanied by a sedentary lifestyle, resulted in rising obesity prevalence across all socioeconomic levels. In the context of an emerging Western diet and lifestyle, we found that lower SEP was associated with poorer length (linear) growth in early infancy. Of course, contemporary generations in Chile experience lower SEP in a new context of over-nutrition and higher levels of sedentary behavior. Thus, current studies in Chile may find distinct relationships between SEP and early growth when compared with generations born 20 years ago.

Plausible biological mechanisms, linked to modifiable factors, have been proposed for the observed association between lower SEP and length growth in the first five postnatal months. Breastfeeding and maternal smoking are two commonly proposed mechanisms, although evidence is limited. In our sample, breastfeeding was close to universal [38,39] and not associated with infant weight change in the first year. We did not evaluate maternal smoking in this study given the large proportion of missing information. However, prior studies did not find that either prenatal or postnatal maternal smoking substantially altered the association between SEP and growth [11,12,16].

Maternal age was the only sociodemographic predictor positively associated with the unadjusted SITAR size growth parameter for weight. This was similarly reported in another cohort from the same geographic area of Santiago, Chile, the Growth and Obesity

Cohort Study (GOCS) [13], which started a decade later and studied ages between birth and 2 years. Our findings add to this work. Through our intense focus on the first five postnatal months, our results demonstrate that the association between SEP and weight growth appears earlier in the postnatal period than previously documented.

Other potential mechanisms relating to SEP could include gestational weight gain and maternal nutrient status. Size at birth, considered a proxy for these two factors and represented in these analyses by the size SITAR parameter, was not associated with any of the sociodemographic measures. Further research will be useful in clarifying the biological mechanisms behind the association between SEP and early infant growth.

Strengths of this study include the combination of an analytic approach to growth that better captures the nonlinear characteristic of growth in the first five months of life with a detailed measure of socioeconomic position appropriate to the context of a lower income setting. Another strength is the monthly anthropometric measures collected in the first five postnatal months. We also note several limitations. The sample size (n = 1,412) is smaller than other studies with sample sizes in the thousands or tens of thousands [5,13,14]. Our study, therefore, may not have been powered to detect some effects reported in larger studies. Another limitation is that the Graffar index, developed to assess differences in lowto middle-income populations, limits the generalizability of our findings to higher income groups.

This investigation examined various growth characteristics from birth to five months and their association with sociodemographic factors in a Chilean infancy cohort. We found associations between lower SEP and slower length (linear) growth, which are similar in direction to previous findings for maternal education that span periods of time greater than the first six months and up to five years of age [7,8,10,12]. The association between maternal age and weight size, in our study, was similar to findings in other studies of growth between birth and two years of age [13]. In sum, our results extend findings from previous research by showing that sociodemographic factors affect infant growth even in the first five months of growth and in relatively homogenous low- to middle-income populations.

Acknowledgements

We thank the Santiago Longitudinal Study participants.

Contributors

AVH designed the study, conducted the data analysis, and wrote the first draft of the paper. KEN and SG supervised and contributed to the study design, interpretation of results, and draft revisions. EB helped acquire the data. All authors (AVH,KEN,SG,RB,EB,BL,AGH,AJ,MG,VSV) both contributed to revisions of the draft for intellectual content and approved the final version of the manuscript.

Funding

AVH was supported by an American Heart Association Mid-Atlantic Affiliate predoctoral fellowship (award number 16PRE29200008). KEN was supported by AHA grant 15GRNT25880008. The data for this work was supported by grants from the National Institutes of Health R01-HL-088530 and R01-HD-033487

Competing interests

None declared.

Patient consent

Not required.

Ethics approval

The Santiago Longitudinal Study (SLS) had been approved by Institutional Review Boards from 1) University of Michigan Medical Center, Ann Arbor, 2) Institute of Nutrition and Food Technology (INTA), Chile and 3) University of California, San Diego. The Office of Human Research Ethics at the University of North Carolina, Chapel Hill exempted this current research using existing anonymous data from review under the 45 CFR 46.101(b) regulatory category.

Data sharing agreement

No additional data are available.

Disclaimer

AHA had no role in the study design, data collection, and analysis, decision to publish or preparation of the manuscript.

References

1. Gillman MW. The first months of life: A critical period for development of obesity. Am J Clin Nutr. 2008 Jun;87(6):1587–9.

2. Leunissen RWJ. Timing and tempo of first-year rapid growth in relation to cardiovascular and metabolic risk profile in early adulthood. JAMA. 2009 Jun 3;301(21):2234.

3. Touwslager RN, Houben AJ, Tan FE, Gielen M, Zeegers MP, Stehouwer CD, et al. Growth and endothelial function in the first 2 years of life. The Journal of Pediatrics. 2015 Mar;166(3):666–671.e1.

4. Plagemann A, Harder T, Schellong K, Schulz S, Stupin JH. Early postnatal life as a critical time window for determination of long-term metabolic health. Best Practice & Research Clinical Endocrinology & Metabolism. 2012 Oct;26(5):641–53.

5. McCrory C, O'Leary N, Fraga S, Ribeiro AI, Barros H, Kartiosuo N, et al. Socioeconomic differences in children's growth trajectories from infancy to early adulthood: Evidence from four european countries. Journal of Epidemiology and Community Health. 2017 Oct;71(10):981–9.

6. Murasko JE. Associations between household income, height and BMI in contemporary US children: Infancy through early childhood. Annals of Human Biology. 2014 Nov;41(6):488–96.

7. Howe LD, Tilling K, Galobardes B, Smith GD, Gunnell D, Lawlor DA. Socioeconomic differences in childhood growth trajectories: At what age do height inequalities emerge? Journal of Epidemiology and Community Health. 2012 Feb;66(2):143–8.

8. Patel R, Tilling K, Lawlor DA, Howe LD, Bogdanovich N, Matush L, et al. Socioeconomic differences in childhood length/height trajectories in a middle-income country: A cohort study. BMC public health. 2014;14(1):932.

9. Queiroz VA de O, Assis AMO, Pinheiro SMC, Junior H da CR. Predictors of linear growth in the first year of life of a prospective cohort of full term children with normal birth weight. Jornal de Pediatria. 2012 Feb 15;88(1):79–86.

10. Matijasevich A, Howe LD, Tilling K, Santos IS, Barros AJD, Lawlor DA. Maternal education inequalities in height growth rates in early childhood: 2004 pelotas birth cohort study: Inequalities in childhood height. Paediatric and Perinatal Epidemiology. 2012 May;26(3):236–49.

11. Herngreen W, Buuren S van, Wieringen J van, Reerink J, Verloove-Vanhorick S, Ruys J. Growth in length and weight from birth to 2 years of a representative sample of netherlands children (born in 1988–89) related to socioeconomic status and other background characteristics. Annals of Human Biology. 1994 Jan;21(5):449–63.

12. Silva LM, Rossem L van, Jansen PW, Hokken-Koelega ACS, Moll HA, Hofman A, et al. Children of low socioeconomic status show accelerated linear growth in early childhood; results from the generation r study. Wang G, editor. PLoS ONE. 2012 May 23;7(5):e37356.

13. Pizzi C, Cole TJ, Richiardi L, dos-Santos-Silva I, Corvalan C, De Stavola B. Prenatal influences on size, velocity and tempo of infant growth: Findings from three contemporary cohorts. Wang G, editor. PLoS ONE. 2014 Feb 27;9(2):e90291.

14. Hui L, Leung GM, Cowling BJ, Lam T, Schooling CM. Determinants of infant growth: Evidence from hong kong's "children of 1997" birth cohort. Annals of Epidemiology. 2010 Nov;20(11):827–35. 15. Fuemmeler BF, Wang L, Iversen ES, Maguire R, Murphy SK, Hoyo C. Association between prepregnancy body mass index and gestational weight gain with size, tempo, and velocity of infant growth: Analysis of the newborn epigenetic study cohort. Childhood Obesity. 2016 Jun;12(3):210–8.

16. Wijlaars LPMM, Johnson L, Jaarsveld CHM van, Wardle J. Socioeconomic status and weight gain in early infancy. International Journal of Obesity. 2011 Jul;35(7):963–70.

17. Lejarraga H. Growth in infancy and childhood. In: Human growth and development. Elsevier; 2012. pp. 23–56.

18. Lozoff B, De Andraca I, Castillo M, Smith JB, Walter T, Pino P. Behavioral and developmental effects of preventing iron-deficiency anemia in healthy full-term infants. Pediatrics. 2003 Oct;112(4):846–54.

19. Lozoff B, Kaciroti N, Walter T. Iron deficiency in infancy: Applying a physiologic framework for prediction. The American journal of clinical nutrition. 2006;84(6):1412–21.

20. Graffar M. Une methode de classification sociales d'echantillons de population. Courrier. 1956;6:445–59.

21. Alvarez ML, Muzzo S, Ivanović D. Scale for measurement of socioeconomic level, in the health area. Rev Med Chil. 1985 Mar;113(3):243–9.

22. Cole TJ, Donaldson MDC, Ben-Shlomo Y. SITAR – a useful instrument for growth curve analysis. International Journal of Epidemiology. 2010 Jul 20;39(6):1558–66.

23. Beath KJ. Infant growth modelling using a shape invariant model with random effects. Statistics in Medicine. 2007 May 30;26(12):2547–64.

24. Pinheiro J, Bates D, DebRoy S, Sarkar D, R Core Team. nlme: Linear and nonlinear mixed effects models. 2017.

25. Tibshirani R. Regression shrinkage and selection via the lasso: A retrospective. Journal of the Royal Statistical Society: Series B (Statistical Methodology). 2011 Jun 1;73(3):273–82.

26. Greenland S. Invited commentary: Variable selection versus shrinkage in the control of multiple confounders. American Journal of Epidemiology. 2007 Dec 12;167(5):523–9.

27. Harrell FE. Regression modeling strategies: with applications to linear models, logistic regression, and survival analysis. New York: Springer; 2015. (Springer series in statistics).

28. Hastie T, Tibshirani R, Friedman JH. The elements of statistical learning: Data mining, inference, and prediction. Second edition, corrected at 12th printing 2017. New York: Springer; 2017. 745 pp. (Springer series in statistics).

29. Friedman J, Hastie T, Tibshirani R. Regularization paths for generalized linear models via coordinate descent. Journal of Statistical Software. 2010;33(1):1–22.

30. Tibshirani R, Tibshirani R, Taylor J, Loftus J, Reid S. selectiveInference: Tools for postselection inference [R package version 1.2.4]. 2017.

31. Cole TJ, Altman DG. Statistics notes: Percentage differences, symmetry, and natural logarithms. BMJ. 2017 Aug 16;j3683.

32. Cole TJ. Sympercents: Symmetric percentage differences on the 100 loge scale simplify the presentation of log transformed data. Statistics in Medicine. 2000 Nov 30;19(22):3109–25.

33. Cole T, Kuh D, Johnson W, Ward K, Howe L, Adams J, et al. Using super-imposition by translation and rotation (SITAR) to relate pubertal growth to bone health in later life: The medical research council (MRC) national survey of health and development. International Journal of Epidemiology. 2016; 1125(4): 1125-1134

34. Jimenez J, Romero MI. Reducing infant mortality in Chile: Success in two phases. Health Affairs. 2007 Mar 1;26(2):458–65.

35. Gitlin LN, Fuentes P. The republic of Chile: An upper middle-income country at the crossroads of economic development and aging. The Gerontologist. 2012 Jun 1;52(3):297–305.

36. Albala C, Vio F, Kain J, Uauy R. Nutrition transition in Latin America: The case of Chile. Nutr Rev. 2001 Jun;59(6):170–6.

37. Albala C, Vio F, Kain J, Uauy R. Nutrition transition in Chile: Determinants and consequences. Public Health Nutrition. 2002 Feb;5(1).

38. Kang Sim DE, Cappiello M, Castillo M, Lozoff B, Martinez S, Blanco E, et al. Postnatal growth patterns in a Chilean cohort: The role of SES and family environment. International Journal of Pediatrics. 2012;2012:1–8.

39. Khuc K, Blanco E, Burrows R, Reyes M, Castillo M, Lozoff B, et al. Adolescent metabolic syndrome risk is increased with higher infancy weight gain and decreased with longer breast feeding. International Journal of Pediatrics. 2012;2012:1–6.

BMJ Open

Table1. Descriptive statistics of sociodemographic characteristics, median [IQR]

Characteristic	Male	Female	Total
n	747	665	1412
Gestational age (weeks)	40.0 [39.0, 40.0]	40.0 [39.0, 40.0]	40.0 [39.0, 40.0]
Graffar Index	27.0 [23.0, 33.0]	27.0 [23.0, 33.0]	27.0 [23.0, 33.0]
Maternal age (years)	26.0 [21.8, 30.9]	25.5 [21.7, 30.3]	25.8 [21.8, 30.8]
Maternal Education (years)	10.0 [8.0, 12.0]	10.0 [8.0, 12.0]	10.0 [8.0, 12.0]
		15	
For	peer review only - http://	/bmjopen.bmj.com/site/	/about/guidelines.xhtml

BMJ Open

Table 2: Sociodemographic predictors and association with weight SITAR growth parameter ^{a,b} , stratified by
sex of child in the Santiago Longitudinal Study, 1991-1996

	Males							Females				Total						
		Unadjuste	d		Adjusted			Unadjuste	d		Adjusted	:		Unadjuste	d		Adjusted	2
Characterist	icSize	Tempo	Velocity	Size	Tempo	Velocity	Size	Tempo	Velocity	Size	Tempo	Velocity	Size	Tempo	Velocity	Size	Tempo	Velocity
Gest age	0.59 (-0.12, 1.31)	-2.28 (-3.15, -1.41)	-0.81 (-2.28, 0.66)	NA	-1.96 (-3.15, -1.40)	NA	0.76 (-0.02, 1.54)	-2.38 (-3.32, -1.45)	-2.14 (-3.87, -0.42)	0.45 (-0.32, 9.88)	-2.23 (-3.35, -1.47)	-1.58 (-3.85, 0.08)	0.64 (0.10, 1.18)	-2.35 (-2.98, -1.71)	-1.53 (-2.70, -0.37)	0.53 (-0.05, 1.15)	-2.01 (-2.98, -1.70)	-1.06 (-2.67, 0.01)
Maternal age	0.11 (-0.00, 0.23)	-0.06 (-0.20, 0.09)	-0.07 (-0.31, 0.17)	0.07 (-0.11, 0.21)	-0.06 (-0.21, 0.26)	-0.06 (-0.33, 0.82)	0.21 (0.07, 0.34)	-0.02 (-0.18, 0.15)	-0.41 (-0.71, -0.12)	0.19 (-6.13, 0.22)	0.01 (-2.29, 0.13)	-0.36 (-0.67, -0.04)	0.16 (0.07, 0.25)	-0.03 (-0.14, 0.07)	-0.20 (-0.39, -0.00)	0.15 (-0.78, 0.22)	-0.01 (-0.16, 0.83)	-0.18 (-0.56, 0.22)
Maternal education	-0.03 (-0.32, 0.26)	0.14 (-0.21, 0.49)	-0.04 (-0.62, 0.55)	NA	NA	NA	-0.01 (-0.31, 0.29)	0.06 (-0.30, 0.43)	-0.03 (-0.69, 0.64)	0.00 (-Inf, -0.41)	0.12 (-0.95, 0.52)	NA	-0.03 (-0.24, 0.19)	0.10 (-0.15, 0.36)	-0.04 (-0.50, 0.41)	0.00 (-10.67, 0.04)	0.04 (-1.59, 1.58)	-0.05 (-0.75, 4.42)
Graffar Index ^d	-0.12 (-0.23, -0.01)	-0.13 (-0.27, 0.01)	-0.15 (-0.39, 0.08)	-0.08 (-0.22, 0.07)	-0.13 (-0.28, 0.03)	-0.13 (-0.41, 0.28)	-0.07 (-0.19, 0.06)	0.12 (-0.03, 0.28)	0.28 (0.00, 0.57)	-0.03 (-5.15, 0.23)	0.13 (-0.24, 0.29)	0.23 (-0.16, 0.52)	-0.09 (-0.18, -0.00)	-0.01 (-0.11, 0.09)	0.06 (-0.12, 0.25)	-0.06 (-0.83, 0.04)	-0.00 (-0.06, 3.49)	0.02 (-1.66, 0.32)

^a Size units are percentage change in log(weight) from average, tempo units are time (days), velocity units in percent change from average.

^b Bold values indicate significance with Bonferroni correction at alpha level of 0.05

^c Adjusted linear regression models only include non-zero coefficients from lasso regression models that

include all covariates in full model.

^d Higher Graffar index values indicate lower socioeconomic status.

Table 3: Sociodemographic predictors and association with length SITAR growth parameters^{*a,b*}, stratified by sex of child in the Santiago Longitudinal Study, 1991-1996

		Ма	les			Fem	ales		Both			
	Unad	justed	Adju	steđ	Unad	Unadjusted		Adjusted		Unadjusted		isteđ
Characteristic	Tempo	Velocity										
Gest age	-3.33 (-4.09, -2.56)	0.99 (0.29, 1.68)	-3.05 (-4.10, -2.55)	NA	-2.57 (-3.36, -1.79)	0.25 (-0.52, 1.02)	-2.53 (-3.33, -1.77)	NA	-2.97 (-3.52, -2.42)	0.64 (0.12, 1.15)	-2.94 (-3.51, -2.41)	0.61 (0.06, 1.15)
Maternal age	-0.04 (-0.18, 0.09)	0.09 (-0.03, 0.20)	-0.01 (-0.10, 1.64)	NA	-0.17 (-0.30, -0.03)	0.01 (-0.13, 0.14)	-0.15 (-0.29, 0.01)	NA	-0.10 (-0.19, -0.00)	0.05 (-0.04, 0.14)	-0.07 (-0.17, 0.06)	0.02 (-0.35, 0.10)
Maternal education	0.06 (-0.26, 0.38)	0.12 (-0.16, 0.40)	NA	NA	-0.18 (-0.49, 0.13)	0.28 (-0.01, 0.58)	-0.14 (-0.45, 0.52)	0.16 (-0.35, 0.52)	-0.05 (-0.28, 0.17)	0.20 (-0.00, 0.40)	-0.06 (-0.27, 0.73)	0.13 (-0.21, 0.34)
Graffar Index ^d	0.06 (-0.06, 0.19)	-0.26 (-0.37, -0.15)	0.05 (-0.25, 0.36)	-0.21 (-0.37, -0.14)	0.16 (0.03, 0.29)	-0.19 (-0.32, -0.07)	0.13 (-0.03, 0.26)	-0.17 (-0.31, -0.05)	0.11 (0.02, 0.20)	-0.23 (-0.31, -0.15)	0.09 (-0.02, 0.18)	-0.22 (-0.31, -0.13)

^{*a*} Size units are percentage change in log(length) from average, tempo units are time (days), velocity units in percent change from average

^b Bold values indicate significance with Bonferroni correction at alpha level of 0.05.

^c Adjusted linear regression models only include non-zero coefficients from lasso regression models that include all covariates in full model.

^d Higher Graffar index values indicate lower socioeconomic status.

BMJ Open

Table 4: Sociodemographic predictors and association with weight-for-length (WFL) SITAR growth
parameters ^{<i>a,b,c</i>} stratified by sex of child in the Santiago Longitudinal Study, 1991-1996

		Ma	les		Females				Both			
	Unac	ljusted	Adju	usteđ	Unac	ljusted	Adj	usteđ	Unadjusted		Adj	usteđ
Characteristic	Size	Tempo	Size	Tempo	Size	Tempo	Size	Tempo	Size	Tempo	Size	Tempo
Gest age	0.09 (-0.55, 0.73)	-2.03 (-2.91, -1.15)	NA	-1.58 (-2.90, -1.11)	0.05 (-0.58, 0.69)	-2.34 (-3.35, -1.32)	NA	-2.32 (-3.35, -1.33)	0.07 (-0.38, 0.52)	-2.17 (-2.84, -1.51)	NA	-1.99 (-2.83, -1.49)
Maternal age	0.07 (-0.03, 0.18)	-0.09 (-0.23, 0.06)	0.04 (-0.23, 0.16)	-0.08 (-0.24, 0.17)	0.02 (-0.09, 0.13)	-0.18 (-0.36, -0.00)	NA	-0.13 (-0.36, 0.14)	0.05 (-0.03, 0.12)	-0.13 (-0.24, -0.02)	0.03 (-0.16, 0.12)	-0.11 (-0.22, 0.03)
Maternal education	-0.09 (-0.35, 0.16)	0.08 (-0.27, 0.44)	NA	NA	-0.10 (-0.35, 0.14)	0.00 (-0.40, 0.40)	NA	0.07 (-2.11, 0.42)	-0.10 (-0.28, 0.08)	0.04 (-0.22, 0.31)	NA	NA
Graffar Index ^d	-0.08 (-0.18, 0.02)	-0.07 (-0.21, 0.07)	-0.05 (-0.17, 0.15)	-0.08 (-0.24, 0.17)	0.08 (-0.02, 0.19)	0.26 (0.10, 0.43)	0.04 (-0.21, 0.18)	0.25 (0.05, 0.42)	-0.01 (-0.08, 0.07)	0.08 (-0.03, 0.19)	NA	0.06 (-0.14, 0.17)

^{*a*} Size units are percentage change in log(WFL) from average, tempo units are time (days), velocity units in percent change from average.

^{*b*} Bold values indicate significance with Bonferroni correction at alpha level of 0.05.

^{*c*} Adjusted linear regression models only include non-zero coefficients from lasso

regression models that include all covariates in full model.

^d Higher Graffar index values indicate lower socioeconomic status

Figure 1 caption: Type of change in random effects relative to the sample mean trajectory in weight growth curve trajectories following a shape invariant model (SIM).

tor oper terien only

Graffar item	Scale	n(%)
N		1412
No. people in hh 'eating from 1 pot' (%)	1: 1-3	230 (16.3)
	2: 4-6	865 (61.3)
	3: 7-9	254 (18.0)
	4: 10-12	55 (3.9)
	5: 13-15	6 (0.4)
	6: over 16	2 (0.1)
Father's presence in household (%)	1: father is present; not left hh	1197 (84.8)
	3: left hh but sends money	66 (4.7)
	4: partially left hh	38 (2.7)
	6: completely gone	111 (7.9)
Head of household's highest educational level (%)	1: university completed	12 (0.9)
	2: university not completed	9 (0.6)
	3: h.s. or technical studies completed	325 (23.0)
	4: completed 8th grade	664 (47.1)
	5: did not reach 8th grade	382 (27.1)
	6: no schooling	19 (1.3)
Property ownership (%)	1: owned	269 (19.1)
	2: home mortgage	83 (5.9)
	3: rent	243 (17.2)
	4: given to you as a gift	117 (8.3)
	5: squatters w tents or construction	7 (0.5)
	6: Iving in back of main house	693 (49.1)
Type of house construction (%)	1: very large house	15 (1.1)
	2: smaller house	181 (12.8)
	3: tiny concrete house	330 (23.4)

 BMJ Open

Appendix Table 1. Description of items used for Graffar index

Graffar item	Scale	n(%)
	4: self-constructed home	398 (28.2)
	5: wooden house	94 (6.7)
	6: wooden house w/ less than three rooms	394 (27.9)
Characteristics of the kitchen (%)	1: independent kitchen in one room	931 (65.9)
	6: kitchen in a room with multiple uses	481 (34.1)
Sewage,plumbing (%)	1: inside plumbing	1402 (99.3)
	5: out house	9 (0.6)
	6: just go in woods	1(0.1)
Water (%)	1: water from inside home faucet	949 (67.2)
	6: water from outside faucet	463 (32.8)
No. times garbage collected per week (%)	1: more than 4x/week	6 (0.4)
	2: 3 times/week	1288 (91.2)
	3: 2 times/week	117 (8.3)
	6: never	1(0.1)
Total count of previous six goods,possessions (tv, washing machine, stereo, refrig., car) (%)	1: 13-15 (own all six goods)	77 (5.5)
	2: 10-12	311 (22.3)
	3: 7-9	302 (21.6)
	4: 4-6	277 (19.9)
	5: 1-3	374 (26.8)
	6: 0	54 (3.9)

m3 random tempo (beta0) 1.7232 m4 random tempo (beta0) 1.7232 m5 random tempo and velocity (beta1) 1.8323 m5.strat m5.strat m5.strat m6 random size and tempo (alpha0 and beta1) 2.2123 m6 random size and velocity (alpha0 and beta1) 2.2123 m6 random size and velocity (alpha0 and beta1) 2.2124 m7 random size and velocity (alpha0 and beta1) 2.2123 m8 random size and velocity (alpha0 and beta1) 2.2124 m7 random size (alpha0) 3.7399 m8 random size (alpha0) 3.7399 m3 random size (alpha0) 3.7392 m6 random size (alpha0) 3.7392 m6 random size (alpha0) 3.7392 m5.strat2 m5.strat2 3.7392 m5.strat2 m5.strat3 3.7392 m5.strat2 m5.strat4 s.7392 m5.strat2 m5.strat4 3.7392 m6 random size and velocity (beta0 and beta1) 3.7381 <th></th> <th>Model description</th> <th>BIC^a</th>		Model description	BIC ^a
m3 random tempo (beta0) 1.7232 m4 random tempo (beta0) 1.7232 m5 random tempo and velocity (beta1) 1.8323 m5.strat m5.strat m5.strat m6 random size and tempo (alpha0 and beta1) 2.2123 m6 random size and velocity (alpha0 and beta1) 2.2123 m6 random size and velocity (alpha0 and beta1) 2.2124 m7 random size and velocity (alpha0 and beta1) 2.2123 m8 random size and velocity (alpha0 and beta1) 2.2124 m7 random size (alpha0) 3.7399 m8 random size (alpha0) 3.7399 m3 random size (alpha0) 3.7392 m6 random size (alpha0) 3.7392 m6 random size (alpha0) 3.7392 m5.strat2 m5.strat2 3.7392 m5.strat2 m5.strat3 3.7392 m5.strat2 m5.strat4 s.7392 m5.strat2 m5.strat4 3.7392 m6 random size and velocity (beta0 and beta1) 3.7381 <td>no random effects</td> <td>no random effects</td> <td>NA</td>	no random effects	no random effects	NA
m4 random velocity (beta1) -18823 m5 random tempo and velocity (beta0 and beta1) -21901 m5.strat m5.strat m5.strat m6 random size and tempo (alpha0 and beta0) -21740 m7 random size and velocity (alpha0 and beta1) -21629 m7 random size and velocity (alpha0 and beta1) -21629 m8 random size (alpha0) and beta1) -22940 m8 random size (alpha0) and beta1) -22940 m8 random size (alpha0) -37399 -37399 m8 random size (alpha0) -37390 -37390 m8 random size (alpha0) -37390 -37390 m6 random size (alpha0) -37390 -37390 m5 random size (alpha0) -37390 -37390 m5 random size (alpha0) -37390 -37978 m5 random size and tempo (alpha0 and beta1) -37819 -37978 m6 random size and tempo (alpha0 and beta1) -37819 -37819 m6 random size	m2	random size (alpha0)	-19546.4
weight m5 random tempo and velocity (beta0 and beta1) -21901 m5.strat m5.strat m5.strat -22127 m6 random size and tempo (alpha0 and beta0) -21740 m7 random size and tempo (alpha0 and beta1) -21629 m8 random size and velocity (alpha0 and beta1) -22940 m8 random size and velocity (alpha0, beta0, and beta1) -22940 m8 random size (alpha0) -37399 m7 random size (alpha0) -37890 m8 random size (alpha0) -37890 m6 random size (alpha0) -37890 m6 random size (alpha0) -37890 m6 random velocity (beta1) -37890 m5.strat m5.strat m5.strat m6 random size and tempo (alpha0 and beta1) -37810 m6 random size and velocity (alpha0 and beta1) -37810 m6 random size (alpha0) -21147 m8 random size (alpha0) -21147 m8 random size (alpha0) -21147 m7	m3	random tempo (beta0)	-17232
m5.strat m5 + sex-spec effects -22123 m5.strat2 m5.strat + sex-spec corr structure -22107 m6 random size and tempo (alpha0 and beta0) -21740 m7 random size and velocity (alpha0, beta0) -21740 m8 random size, tempo and velocity (alpha0, beta0), and beta1) -22940 m8 random size, tempo and velocity (alpha0, beta0, and beta1) -22940 m7 random size (alpha0) -37399 m3 random tempo (beta0) -36684 m6 random velocity (beta1) -34985 m5 random tempo (alpha0 and beta1) -37892 m5.strat1 m5 + sex-spec effects -38000 m5.strat2 m5.strat + sex-spec corr structure -37978 m6 random size and velocity (beta0 and beta1) -37819 m6 random size and velocity (alpha0 and beta1) -37819 m6 random size and velocity (alpha0 and beta1) -37819 m6 random size and velocity (alpha0 and beta1) -37819 m6 random velocity (beta1) -20549 m7 rand	m4	random velocity (beta1)	-18323
m5.strat2 m5.strat + sex-spec corr structure -22107 m6 random size and tempo (alpha0 and beta0) -21740 m7 random size and velocity (alpha0 and beta1) -21629 m8 random size, tempo and velocity (alpha0, beta0, and beta1) -22940 m8 random size, tempo and velocity (alpha0, beta0, and beta1) -22940 m9 random size (alpha0) -37399 m3 random tempo (beta0) -36684 m4 random velocity (beta1) -348965 m5 random tempo and velocity (beta0 and beta1) -37890 m5.strat2 m5.strat + sex-spec effects -38000 m5.strat2 m5.strat + sex-spec corr structure -37978 m6 random size and velocity (alpha0 and beta1) -37880 m6 random size and velocity (alpha0 and beta1) -37881 m6 random size and velocity (alpha0 and beta1) -37881 m6 random size and velocity (alpha0 and beta1) -22940 m6 random size and velocity (beta1) -20549 m7 random size (alpha0) -21147	m5	random tempo and velocity (beta0 and beta1)	-21901.5
m6random size and tempo (alpha0 and beta0)21740m7random size and velocity (alpha0 and beta1)21629m8random size, tempo and velocity (alpha0, beta0, and beta1)22940m0 random effectsno random effectsNAm2random size (alpha0)37399m3random tempo (beta0)36684m4random velocity (beta1)34985m5random tempo (beta0)36820m5random tempo and velocity (beta1)37820m5.stratm5 + sex-spec effects38000m5.strat2m5.strat + sex-spec corr structure37379m6random size and velocity (alpha0 and beta1)37819Heightm7random size and velocity (alpha0 and beta1)37819Heightm7random size and velocity (beta1)37819M6random size and velocity (beta1)3781937819M6random size and velocity (beta1)3781937819M6random size and velocity (beta1)3781937819M6random size (alpha0)211473819M6random size (alpha0)211473855m3random tempo (beta0)1885232598m4random velocity (beta1)3259832598m5random tempo and velocity (beta1)3259832598m5random tempo and velocity (beta0 and beta1)3259832598m5random size and tempo (alpha0 and beta0)3259832598m5random size and tempo (alpha0 and beta0)325	m5.strat	m5 + sex-spec effects	-22123.4
m7 random size and velocity (alpha0 and beta1) -21629 m8 random size, tempo and velocity (alpha0, beta0, and beta1) -22940 m0 random effects no random effects NA m2 random size (alpha0) -37399 m3 random tempo (beta0) -36684 m4 random tempo (beta0) -36898 m5 random tempo and velocity (beta1) -37820 m5.strat m5 sex-spec effects -38000 m5.strat2 m5.strat m5 sex-spec effects -38000 m6 random size and tempo (alpha0 and beta1) -37819 Meight m7 random size and tempo (alpha0 and beta1) -37810 M6 random size and velocity (alpha0 and beta1) -37819 m6 random size (alpha0) -21147 m3 random velocity (beta1) -20549 m4 random velocity (beta0 and beta1) -22598 m5 random velocity (beta0 and beta1) -22598 m5 random velocity (beta0 and beta1) -22598 m5 random velocity (beta0 and beta1)	m5.strat2	m5.strat + sex-spec corr structure	-22107.5
Weightm8random size, tempo and velocity (alpha0, beta0, and beta1)-22940no random effectsno random effectsno random effectsNAm2random size (alpha0)-37399m3random tempo (beta0)-36684m4random velocity (beta1)-34985m5random tempo and velocity (beta0 and beta1)-37820m5.stratm5 strat + sex-spec effects-38000m6random size and tempo (alpha0 and beta1)-37819m6random size and velocity (alpha0 and beta1)-37819m7random size and velocity (alpha0 and beta1)-37819m8random effectsno random effectsm6random size and velocity (alpha0 and beta1)-37819m7random size and velocity (beta1)-20549m8random velocity (beta1)-22598m9m4random velocity (beta0 and beta1)-22598m6random tempo and velocity (beta0 and beta1)-22598m8random velocity (beta1)-22598m8random velocity (beta0 and beta1)-22598m5random tempo (alpha0 and beta1)-22598m5random size and tempo (alpha0 and beta0)-22598m8random size and tempo (alpha0 and beta1)-22598m9random size and tempo (alpha0 and beta1)-22598m6random size and tempo (alpha0 and beta1)-22598m6random size and tempo (alpha0 and beta1)-22598m6random size and tempo (alpha0 and beta1)-22598m	m6	random size and tempo (alpha0 and beta0)	-21740.4
Height no random effects no random effects no random effects NA M2 random size (alpha0) -37399 m3 random tempo (beta0) -36684 m4 random velocity (beta1) -34985 m5 random tempo and velocity (beta0 and beta1) -37820 m5.strat m5 + sex-spec effects -38000 m5.strat2 m5.strat + sex-spec corr structure -37978 m6 random size and velocity (alpha0 and beta0) -37819 m6 random size and velocity (alpha0 and beta1) -37819 m7 random size (alpha0) -21147 m3 random size and velocity (beta1) -20549 m4 random size (alpha0) -21147 m3 random velocity (beta1) -20549 m4 random velocity (beta1) -20549 m5 random tempo and velocity (beta0 and beta1) -22598 m5.strat1 m5 + sex-spec corr structure -22761 m5.strat2 m5.strat + sex-spec corr structure -22761 m5.strat2 m5.strat + sex-spec corr structure<	m7	random size and velocity (alpha0 and beta1)	-21629.8
no random effects no random effects NA m2 random size (alpha0) -37399 m3 random tempo (beta0) -36684 m4 random velocity (beta1) -34985 m5 random tempo and velocity (beta0 and beta1) -37820 m5.strat m5 + sex-spec effects -38000 m5.strat2 m5.strat + sex-spec corr structure -37978 m6 random size and tempo (alpha0 and beta1) -37880 m6 random size and velocity (alpha0 and beta1) -37880 m6 random size and velocity (alpha0 and beta1) -37880 m6 random size and velocity (alpha0 and beta1) -37880 m7 random size and velocity (alpha0 and beta1) -37880 m8 no random effects no random effects NA m7 random size and velocity (alpha0 and beta1) -21147 m3 random tempo and velocity (beta0 -21147 m3 random tempo and velocity (beta1) -20549 m4 random velocity (beta1) -20549 m5 random tempo and velocity (beta0	m8	random size, tempo and velocity (alpha0, beta0, and beta1)	-22940.6
m3random tempo (beta0)-36684m4random velocity (beta1)-34985m5random tempo and velocity (beta0 and beta1)-37820m5.stratm5 + sex-spec effects-38000m5.strat2m5.strat + sex-spec corr structure-37978m6random size and tempo (alpha0 and beta0)-37381m7random size and velocity (alpha0 and beta1)-37819no random effectsno random effectsNAm2random size (alpha0)-21147m3random tempo (beta0)-18852m4random velocity (beta1)-20549m5random tempo and velocity (beta0 and beta1)-22598m5random tempo and velocity (beta0 and beta1)-22598m5random tempo and velocity (beta0 and beta1)-22598m5.strat2m5.strat + sex-spec corr structure-22751m6random size and tempo (alpha0 and beta0)-22808WFLm7random size and velocity (alpha0 and beta1)-22844	no random effects	no random effects	NA
m4 random velocity (beta1) -34985 m5 random tempo and velocity (beta0 and beta1) -37820 m5.strat m5 + sex-spec effects -38000 m5.strat2 m5.strat + sex-spec corr structure -37978 m6 random size and tempo (alpha0 and beta0) -37381 m7 random size and velocity (alpha0 and beta1) -37819 no random effects no random effects NA m2 random size (alpha0) -21147 m3 random tempo (beta0) -8852 m4 random velocity (beta1) -20549 m5.strat m5 + sex-spec effects -22761 m5 random tempo (alpha0 and beta1) -22598 m5.strat m5 + sex-spec effects -22761 m5.strat m5 + sex-spec effects -22761 m6 random size and tempo (alpha0 and beta1) -22898 wFL m7 random size and tempo (alpha0 and beta1) -22848	m2	random size (alpha0)	-37399.5
m5random tempo and velocity (beta0 and beta1)-37820m5.stratm5 + sex-spec effects-38000m5.strat2m5.strat + sex-spec corr structure-37978m6random size and tempo (alpha0 and beta0)-37381m7random size and velocity (alpha0 and beta1)-37819no random effectsno random effectsNAm2random size (alpha0)-21147m3random tempo (beta0)-18852m4random velocity (beta1)-20549m5.stratm5 + sex-spec effects-22761m5.strat2m5 + sex-spec effects-22751m5.strat2m5.strat + sex-spec corr structure-22751m6random size and tempo (alpha0 and beta0)-22808WFLm7random size and velocity (alpha0 and beta1)-22848	m3	random tempo (beta0)	-36684.1
Heightm5.stratm5 + sex-spec effects-38000m5.strat2m5.strat + sex-spec corr structure-37978m6random size and tempo (alpha0 and beta0)-37381m7random size and velocity (alpha0 and beta1)-37819no random effectsno random effectsNAm2random size (alpha0)-21147m3random tempo (beta0)-18852m4random velocity (beta1)-20549m5random tempo and velocity (beta0 and beta1)-22598m5.stratm5 + sex-spec effects-22761m5.strat2m5.strat + sex-spec corr structure-22751m6random size and velocity (alpha0 and beta1)-22808WFLm7random size and velocity (alpha0 and beta1)-22484	m4	random velocity (beta1)	-34985.7
Heightm5.strat2m5.strat + sex-spec corr structure-37978M6random size and tempo (alpha0 and beta0)-37381m7random size and velocity (alpha0 and beta1)-37819no random effectsno random effectsNAm2random size (alpha0)-21147m3random tempo (beta0)-18852m4random velocity (beta1)-20549m5random tempo and velocity (beta0 and beta1)-22598m5.stratm5 + sex-spec effects-22761m5.strat2m5.strat + sex-spec corr structure-22751m6random size and velocity (alpha0 and beta1)-22808WFLm7random size and velocity (alpha0 and beta1)-22484	m5	random tempo and velocity (beta0 and beta1)	-37820
Heightm6random size and tempo (alpha0 and beta0)-37381M7random size and velocity (alpha0 and beta1)-37819no random effectsno random effectsNAm2random size (alpha0)-21147m3random tempo (beta0)-18852m4random velocity (beta1)-20549m5random tempo and velocity (beta0 and beta1)-22598m5.stratm5 + sex-spec effects-22751m6random size and tempo (alpha0 and beta0)-22808WFLm7random size and velocity (alpha0 and beta1)-22484	m5.strat	m5 + sex-spec effects	-38000.7
Heightm7random size and velocity (alpha0 and beta1)-37819no random effectsno random effectsno random effectsNAm2random size (alpha0)-21147m3random tempo (beta0)-18852m4random velocity (beta1)-20549m5random tempo and velocity (beta0 and beta1)-22598m5.stratm5+sex-spec effects-22761m6random size and tempo (alpha0 and beta0)-22808WFLm7random size and velocity (alpha0 and beta1)-22484	m5.strat2	m5.strat + sex-spec corr structure	-37978.2
Integrit no random effects no random effects NA m2 random size (alpha0) -21147 m3 random tempo (beta0) -18852 m4 random velocity (beta1) -20549 m5 random tempo and velocity (beta1) -20549 m5.strat m5 + sex-spec effects -22761 m6 random size and tempo (alpha0 and beta0) -22808 WFL m7 random size and velocity (alpha0 and beta1) -22484	m6	random size and tempo (alpha0 and beta0)	-37381.5
NANAm2random effects-21147m3random tempo (beta0)-21147m4random velocity (beta1)-20549m5random tempo and velocity (beta1)-22598m5.stratm5 + sex-spec effects-22761m5.strat2m5.strat + sex-spec corr structure-22751m6random size and tempo (alpha0 and beta1)-22808WFLm7random size and velocity (alpha0 and beta1)-22484	m7	random size and velocity (alpha0 and beta1)	-37819.9
m3random tempo (beta0)-18852m4random velocity (beta1)-20549m5random tempo and velocity (beta0 and beta1)-22598m5.stratm5 + sex-spec effects-22761m5.strat2m5.strat + sex-spec corr structure-22751m6random size and tempo (alpha0 and beta0)-22808WFLm7random size and velocity (alpha0 and beta1)-22484	no random effects	no random effects	NA
m4 random velocity (beta1) -20549 m5 random tempo and velocity (beta0 and beta1) -22598 m5.strat m5 + sex-spec effects -22761 m6 random size and tempo (alpha0 and beta0) -22808 WFL m7 random size and velocity (alpha0 and beta1) -22484	m2	random size (alpha0)	-21147.2
m5random tempo and velocity (beta0 and beta1)-22598m5.stratm5 + sex-spec effects-22761m5.strat2m5.strat + sex-spec corr structure-22751m6random size and tempo (alpha0 and beta0)-22808WFLm7random size and velocity (alpha0 and beta1)-22484	m3	random tempo (beta0)	-18852.1
m5.strat m5 + sex-spec effects -22761 m5.strat2 m5.strat + sex-spec corr structure -22751 m6 random size and tempo (alpha0 and beta0) -22808 WFL m7 random size and velocity (alpha0 and beta1) -22484	m4	random velocity (beta1)	-20549.9
m5.strat2 m5.strat + sex-spec corr structure -22751 m6 random size and tempo (alpha0 and beta0) -22808 WFL m7 random size and velocity (alpha0 and beta1) -22484	m5	random tempo and velocity (beta0 and beta1)	-22598
m6random size and tempo (alpha0 and beta0)-22808WFLm7random size and velocity (alpha0 and beta1)-22484	m5.strat	m5 + sex-spec effects	-22761.2
WFL m7 random size and velocity (alpha0 and beta1) -22484	m5.strat2	m5.strat + sex-spec corr structure	-22751.3
VVFL	m6	random size and tempo (alpha0 and beta0)	-22808.5
	m7	random size and velocity (alpha0 and beta1)	-22484.6
	^a Bold values indicate lowest value within a	a trajectory evaluation.	
		m2 m3 m4 m5 m5.strat m6 m7 m8 no random effects m2 m3 m4 m5 m6 m7 m8 no random effects m2 m3 m4 m5 m6 m7 m8 m0 random effects m4 m5 m5.strat m5.strat2 m6 m7 no random effects m2 m6 m7 no random effects m2 m3 m4 m5 m4 m5.strat m5.strat m5.strat m5.strat2 m6 m5.strat2 m6 m5.strat2 m6 m7 <td>m2random size (alpha0)m3random tempo (beta0)m4random velocity (beta1)m5random tempo and velocity (beta0 and beta1)m5.stratm5 + sex-spec effectsm5.strat2m5.strat + sex-spec corr structurem6random size and tempo (alpha0 and beta0)m7random size and velocity (alpha0 and beta1)m8random size and velocity (alpha0, beta0, and beta1)m8random size, tempo and velocity (alpha0, beta0, and beta1)m8random size (alpha0)m7random size (alpha0)m8random size (alpha0)m3random tempo (beta0)m4random velocity (beta1)m5random tempo and velocity (beta0 and beta1)m5random size and velocity (beta0 and beta1)m5random size and velocity (beta0 and beta1)m6random size (alpha0)m7random size and velocity (beta0 and beta1)m5.strat1m5 + sex-spec effectsm5.strat2no random effectsm6random size and velocity (alpha0 and beta1)m6random size and velocity (alpha0 and beta1)m7random size and velocity (alpha0 and beta1)m6random size (alpha0)m7random size (alpha0)m8random size (alpha0)m7random velocity (beta0)m6random size (alpha0)m7random size (alpha0)m8random tempo and velocity (beta0 and beta1)m6random tempo and velocity (beta0 and beta1)m6random tempo a</td>	m2random size (alpha0)m3random tempo (beta0)m4random velocity (beta1)m5random tempo and velocity (beta0 and beta1)m5.stratm5 + sex-spec effectsm5.strat2m5.strat + sex-spec corr structurem6random size and tempo (alpha0 and beta0)m7random size and velocity (alpha0 and beta1)m8random size and velocity (alpha0, beta0, and beta1)m8random size, tempo and velocity (alpha0, beta0, and beta1)m8random size (alpha0)m7random size (alpha0)m8random size (alpha0)m3random tempo (beta0)m4random velocity (beta1)m5random tempo and velocity (beta0 and beta1)m5random size and velocity (beta0 and beta1)m5random size and velocity (beta0 and beta1)m6random size (alpha0)m7random size and velocity (beta0 and beta1)m5.strat1m5 + sex-spec effectsm5.strat2no random effectsm6random size and velocity (alpha0 and beta1)m6random size and velocity (alpha0 and beta1)m7random size and velocity (alpha0 and beta1)m6random size (alpha0)m7random size (alpha0)m8random size (alpha0)m7random velocity (beta0)m6random size (alpha0)m7random size (alpha0)m8random tempo and velocity (beta0 and beta1)m6random tempo and velocity (beta0 and beta1)m6random tempo a

BMJ Open

1 2 3 4 5	Reporting	I che	ecklist for cohort study.						
6 7 8 9	Based on the STR	OBE col	nort guidelines.						
10 11 12	Instructions to	autho	Drs						
13 14	Complete this chec	klist by	entering the page numbers from your manuscript where readers	will find					
15 16 17 18	each of the items li	sted be	ow.						
19 20	Your article may no	ot currer	ntly address all the items on the checklist. Please modify your tex	kt to					
20 21 22	include the missing	informa	ation. If you are certain that an item does not apply, please write	"n/a" and					
23 24 25	provide a short exp	lanatior	n.						
26 27 28	Upload your compl	eted cho	ecklist as an extra file when you submit to a journal.						
29 30 31	In your methods se	ection, s	ay that you used the STROBE cohortreporting guidelines, and ci	te them					
32 33	as:								
34 35 36	von Elm E, Altman	DG, Eg	ger M, Pocock SJ, Gotzsche PC, Vandenbroucke JP. The Stren	gthening					
37 38	the Reporting of Observational Studies in Epidemiology (STROBE) Statement: guidelines for								
39 40 41	reporting observational studies.								
42 43				Page					
44 45 46			Reporting Item	Number					
47 48 49 50	Title and abstract								
50 51 52	Title	<u>#1a</u>	Indicate the study's design with a commonly used term in the	1					
53 54 55 56 57 58			title or the abstract						
59 60		For pee	er review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml						

1 2	Abstract	<u>#1b</u>	Provide in the abstract an informative and balanced summary	3
3 4 5			of what was done and what was found	
6 7 8	Introduction			
9 10 11	Background /	<u>#2</u>	Explain the scientific background and rationale for the	4
12 13 14	rationale		investigation being reported	
15 16	Objectives	<u>#3</u>	State specific objectives, including any prespecified	4
17 18			hypotheses	
19 20 21 22	Methods			
23 24 25	Study design	<u>#4</u>	Present key elements of study design early in the paper	5
26 27 28	Setting	<u>#5</u>	Describe the setting, locations, and relevant dates, including	5
28 29 30			periods of recruitment, exposure, follow-up, and data	
31 32 33			collection	
34 35	Eligibility criteria	<u>#6a</u>	Give the eligibility criteria, and the sources and methods of	5
36 37 38			selection of participants. Describe methods of follow-up.	
39 40	Eligibility criteria	<u>#6b</u>	For matched studies, give matching criteria and number of	na
41 42 43 44			exposed and unexposed	
44 45 46	Variables	<u>#7</u>	Clearly define all outcomes, exposures, predictors, potential	5
47 48			confounders, and effect modifiers. Give diagnostic criteria, if	
49 50 51			applicable	
52 53 54	Data sources /	<u>#8</u>	For each variable of interest give sources of data and details	5
55 56	measurement		of methods of assessment (measurement). Describe	
57 58			comparability of assessment methods if there is more than	
59 60		For pee	er review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml	

Page 2	7 of 28		BMJ Open	
1			one group. Give information separately for for exposed and	
2 3 4			unexposed groups if applicable.	
5 6 7	Bias	<u>#9</u>	Describe any efforts to address potential sources of bias	6
8 9 10	Study size	<u>#10</u>	Explain how the study size was arrived at	5
11 12 13	Quantitative	<u>#11</u>	Explain how quantitative variables were handled in the	6
14 15	variables		analyses. If applicable, describe which groupings were	
16 17 18			chosen, and why	
19 20 21	Statistical	<u>#12a</u>	Describe all statistical methods, including those used to	6
21 22 23 24	methods		control for confounding	
24 25 26	Statistical	<u>#12b</u>	Describe any methods used to examine subgroups and	na
27 28 29	methods		interactions	
30 31	Statistical	<u>#12c</u>	Explain how missing data were addressed	7
32 33 34	methods			
35 36 37	Statistical	<u>#12d</u>	If applicable, explain how loss to follow-up was addressed	na
38 39 40	methods		Describe any sensitivity analyses	
41 42	Statistical	<u>#12e</u>	Describe any sensitivity analyses	na
43 44 45	methods			
46 47 48	Results			
49 50 51	Participants	<u>#13a</u>	Report numbers of individuals at each stage of study—eg	7
52 53			numbers potentially eligible, examined for eligibility,	
54 55 56 57 58			confirmed eligible, included in the study, completing follow-	
59 60		For pee	r review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml	

RM I	Open
DIVIJ	Open

1			up, and analysed. Give information separately for for	
2 3 4			exposed and unexposed groups if applicable.	
5 6 7 8 9 10 11 12 13	Participants	<u>#13b</u>	Give reasons for non-participation at each stage	7
	Participants	<u>#13c</u>	Consider use of a flow diagram	na
	Descriptive data	<u>#14a</u>	Give characteristics of study participants (eg demographic,	7
14 15			clinical, social) and information on exposures and potential	
16 17			confounders. Give information separately for exposed and	
18 19 20			unexposed groups if applicable.	
21 22 23	Descriptive data	<u>#14b</u>	Indicate number of participants with missing data for each	7
24 25 26			variable of interest	
27 28 29	Descriptive data	<u>#14c</u>	Summarise follow-up time (eg, average and total amount)	na
30 31	Outcome data	<u>#15</u>	Report numbers of outcome events or summary measures	na
32 33 34			over time. Give information separately for exposed and	
35 36			unexposed groups if applicable.	
37 38 39	Main results	<u>#16a</u>	Give unadjusted estimates and, if applicable, confounder-	7-8
40 41			adjusted estimates and their precision (eg, 95% confidence	
42 43			interval). Make clear which confounders were adjusted for	
44 45 46			and why they were included	
47 48 49	Main results	<u>#16b</u>	Report category boundaries when continuous variables were	na
50 51 52			categorized	
53 54	Main results	<u>#16c</u>	If relevant, consider translating estimates of relative risk into	na
55 56 57			absolute risk for a meaningful time period	
58 59 60		For pee	r review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml	

BMJ Open

1 2	Other analyses	<u>#17</u>	Report other analyses done—e.g., analyses of subgroups	na	
3 4 5			and interactions, and sensitivity analyses		
6 7 8	Discussion				
9 10 11 12 13 14 15 16 17 18 19	Key results	<u>#18</u>	Summarise key results with reference to study objectives	8-9	
	Limitations	<u>#19</u>	Discuss limitations of the study, taking into account sources	10	
			of potential bias or imprecision. Discuss both direction and		
			magnitude of any potential bias.		
20 21	Interpretation	<u>#20</u>	Give a cautious overall interpretation considering objectives,	10	
22 23 24			limitations, multiplicity of analyses, results from similar		
24 25 26 27			studies, and other relevant evidence.		
28 29	Generalisability	<u>#21</u>	Discuss the generalisability (external validity) of the study	10	
30 31			results		
32 33 34 35	Other Information				
36 37	Funding	<u>#22</u>	Give the source of funding and the role of the funders for the	10	
38 39 40			present study and, if applicable, for the original study on		
40 41 42 43			which the present article is based		
4.4	The STROBE checklist is distributed under the terms of the Creative Commons Attribution License				
46 47	CC-BY. This checklist was completed on 16. August 2019 using https://www.goodreports.org/, a tool				
48 49 50	made by the EQUATOR Network in collaboration with Penelope.ai				
51 52 53					
54 55 56					
57 58					
59 60 For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml					