

BMJ Open is committed to open peer review. As part of this commitment we make the peer review history of every article we publish publicly available.

When an article is published we post the peer reviewers' comments and the authors' responses online. We also post the versions of the paper that were used during peer review. These are the versions that the peer review comments apply to.

The versions of the paper that follow are the versions that were submitted during the peer review process. They are not the versions of record or the final published versions. They should not be cited or distributed as the published version of this manuscript.

BMJ Open is an open access journal and the full, final, typeset and author-corrected version of record of the manuscript is available on our site with no access controls, subscription charges or pay-per-view fees (<u>http://bmjopen.bmj.com</u>).

If you have any questions on BMJ Open's open peer review process please email <u>info.bmjopen@bmj.com</u>

BMJ Open

Correlation of the neutrophil to lymphocyte ratio and clinical outcomes in lung cancer patients receiving immunotherapy: a meta-analysis

Journal:	BMJ Open
Manuscript ID	bmjopen-2019-035031
Article Type:	Original research
Date Submitted by the Author:	17-Oct-2019
Complete List of Authors:	Jin, Jing; Sichuan University West China Hospital Yang, Lan; Sichuan University West China Hospital Liu, Dan; Sichuan University West China Hospital Li, Weimin; Sichuan University West China Hospital,
Keywords:	Immunology < BASIC SCIENCES, Epidemiology < ONCOLOGY, Respiratory tract tumours < ONCOLOGY
	·

SCHOLARONE[™] Manuscripts

I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd ("BMJ") its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our <u>licence</u>.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge ("APC") for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which <u>Creative Commons</u> licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author's Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.

reliez oni

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Correlation of the neutrophil to lymphocyte ratio and clinical outcomes in lung cancer patients receiving immunotherapy: a

meta-analysis

Jing Jin¹, Lan Yang¹, Dan Liu¹, Wei-Min Li^{1*}

1. Department of Pulmonary & Critical Care, West China Hospital, Sichuan

University, Chengdu 610041, China.

Running title: Neutrophil to lymphocyte ratio and lung cancer

Address correspondence to: Dr. Wei-Min Li, Department of Pulmonary & Critical

Care, West China Hospital, Sichuan University, Chengdu 610041, China. Tel: +86 (028)

85423998; E-mail: weimin003@yahoo.com

Article summary

Strengths and limitations of this study

1. Verifying the prognostic value of NLR in a large of lung cancer patients with

immunotherapy

2. Different clinical characteristics could affect the prognostic value

3. High heterogeneity was present in this analysis

Patient and Public Involvement: No patient involved

Abstract:

Objectives: We conducted a meta-analysis to explore the relationship between pretreatment or posttreatment neutrophil to lymphocyte ratio (NLR) and overall survival (OS)/progress free survival (PFS) in lung cancer patients receiving immunotherapy.

Setting: Medical Center in Southwestern of China

Participants: Studies reporting the prognostic value of NLR in lung cancer patients receiving immunotherapy were enrolled.

Primary and secondary outcome measures: We searched PubMed, Cochrane Library, Embase and Web of Science to collect relevant studies conducted until July 2019. We carefully reviewed the full text of included publications and combined the hazard ratios (HRs) and 95% confidence intervals (CIs) to assess the correlation between the NLR and survival time in lung cancer patients receiving immunotherapy. **Results:** Twenty-three studies with 2068 patients were enrolled. Among all patients, 1305 (64.0%) were males, and 643 (31.38%) were diagnosed with squamous carcinoma. In a pooled analysis of OS and PFS from all studies, an elevated NLR predicted poorer OS ((HR=1.62; 95% CI: 1.41-1.87; P< 0.001) and PFS (HR=1.47; 95% CI: 1.25-1.72; P< 0.0001). Subgroup analyses stratified showed that the

posttreatment NLR was not significantly related to OS and that patients in Asia were significantly associated with higher HRs than those in Europe and America. Furthermore, the proportion of squamous cell carcinoma and baseline level of NLR affect the prognosis value of NLR.

Conclusions: Our study found that an elevated NLR was associated with poorer OS and PFS in lung cancer patients receiving immunotherapy and that several clinical factors might have an impact on the predictive value of NLR in the survival of lung cancer patients. However, further studies are warranted to draw firm conclusions. **Trial registration:** The registration number of PROSPERO: CRD42018104856.

Keywords: NLR; systemic inflammation; prognostic markers; lung cancer

BMJ Open

Introduction:

Lung cancer is the most prevalent cancer and life-threatening malignancy worldwide.(1) The pathogenesis of lung cancer is complicated, and the primary treatments for lung cancer patients are surgery and chemotherapy. Unfortunately, most patients with lung cancer are diagnosed at advanced stages, and the benefits achieved from chemotherapy in advanced lung cancer patients are relatively small. Recently, many studies have revealed that tumor cells can evade the antitumor responses of T-cells by controlling the combined responses of programmed cell death protein 1 (PD-1) and programmed cell death ligand-1 (PD-L1).(2) Nivolumab, pembrolizumab, atezolizumab, durvalumab, ipilimumab and tremelimumab have successfully changed clinical experiences in lung cancer treatment.(3) Tumor mutational burden, (4) neoantigens (5) and classical monocytes in the peripheral blood(6) are effective predictive biomarkers for immune checkpoint therapy in lung cancer, especially PD-L1 expression on tumor cells.(7) Systemic inflammation in patients with cancer is considered to influence the growth and migration of tumors by some inflammatory factors.(8) Elevated levels of systemic inflammation, including Glasgow prognostic score (GPS), neutrophil to lymphocyte ratio (NLR), platelet to lymphocyte ratio (PLR), C-reactive protein to albumin ratio (CAR), has been

indicated to be associated with worse survival in solid tumors.(9-11) However, the data of prognosis from pretreatment NLR in lung cancer patients receiving immunotherapy trials are still scarce and inconsistent. Therefore, we collected the available publications and conducted a meta-analysis to explore the prognostic value of pretreatment NLR for OS and PFS in clinical trials of lung cancer patients receiving immunotherapy.

Materials and Methods

Search strategy

PRISMA guidelines for systematic review and meta-analysis were followed strictly in this article. An online search was conducted to identify relevant publications in PubMed, Cochrane Library, Web of Science and Embase databases. The following words were used: "Pulmonary Neoplasms", "neutrophil lymphocyte ratio", "immunotherapy", "programmed death receptor-1", and "immune checkpoint inhibitor" for studies on the associations between pretreatment NLR and survival time in patients with lung cancer published before July 2019. A full electronic search strategy is provided in the supplement materials (Supplement Table 1). Additional studies were selected for the full text to be reviewed by exploring the references cited in the selected articles and relevant reviews. The articles were limited to the English

BMJ Open

language but no restrictions were used for the minimum number of patients. Two authors (J Jin and L Yang) independently reviewed the titles and abstracts of the retrieved articles to select the potentially relevant articles that to be more carefully assessed.

Eligibility criteria

The inclusion criteria were as follows: 1) retrospective or prospective studies published before July 2019; 2) all patients enrolled in studies were diagnosed with lung cancer by biopsy and received immunotherapy; 3) the value of NLR was calculated based on the level of neutrophils and lymphocytes; and 4) HRs and 95% CIs were provided and data necessary to calculate them were reported. The exclusion criteria: 1) review, meeting abstract, letter, or full text unavailable in English; 2) nonhuman studies; and 3) research did not present the value of the NLR.

Data extraction

From each study, the name of the study, first author, year of publication, study design, number of patients, sex distribution, age, median follow-up time, histology, NLR cutoff value, NLR at baseline, line of therapy, drugs and HRs with 95% CIs for overall survival (OS) and progress free survival (PFS) were extracted by two authors (D Liu and L Yang). If univariate and multivariate analysis results were

simultaneously reported, only multivariate analysis results were extracted. Any disagreements between the authors were resolved by discussion and consensus. The most recent study was chosen when duplicate studies occurred.

Quality assessment

The primary studies were assessed by the NOS (Newcastle-Ottawa quality assessment Scale). The quality assessment was conducted by two independent researchers (J Jin and D Liu). The studies in which the mark was between 6 and 9 points were regarded as high-quality studies.

(http://www.ohri.ca/programs/clinical_epidemiology/oxford.asp)

Statistical analysis

The primary endpoints were OS and PFS of lung cancer patients receiving immunotherapy. PFS was defined as the time from the initial date of immunotherapy to the date of progression or death. OS was calculated from the date of inclusion to the time of death from any cause. HRs with 95% CIs were directly obtained from the articles or estimated from the Kaplan-Meier curves according to the methods reported by Tierney et al.(12) We calculated the pooled HRs of OS and PFS using random effects or fixed effects model. We performed the Q-test to assess between-study heterogeneity and calculated the I² statistic, which expresses the percentage of the

BMJ Open

total observed variability due to study heterogeneity. The heterogeneity between studies was considered small if the I² statistic was less than 50% and the P value for Q-test was less than 0.05. We performed a subgroup analysis to detect the source of heterogeneity. In addition, we only considered subgroups that included more than two studies. Publication bias was assessed by Egger's and Begg's test, and a significant publication bias was defined as a P<0.10.(13) Trim and fill method was applied when significant publication bias was found to confirm the pooled results. Sensitivity analyses were carried out by excluding each study individually from the metaanalysis.(14) All statistical analyses were performed with R (Version: 3.5.2).

Result

The characteristics of the included studies

A total of 1102 studies were retrieved in this meta-analysis, and 26 of these studies were selected for full-text review. In total, 23 studies with 2068 patients fulfilled the inclusion criteria, with publication dates ranging from 2017 to 2018.(15-37) The flow diagram of this study is shown in Fig 1. The sample size was between 19 and 201 patients. Of these studies, 9 were conducted in Europe, (16, 17, 21, 24, 27, 30, 35, 36) 5 were conducted in America, (22, 28, 31, 33, 37) and the remaining studies were conducted in Asia. Among all patients included, 1305 (64.0%) were males, and 643

(31.38%) were diagnosed with squamous carcinoma. Twenty studies explored the association between NLR and OS; fifteen studies investigated the relationship between PFS and NLR. Additionally, 7 of 23 studies provided data about posttreatment NLR. (21, 23, 25, 28, 29, 32, 33) If the study provided data about posttreatment NLR and OS, we treated it as an independent research in the subsequent analysis. Six trials were performed as first-line therapy, (16, 19, 25, 28, 31, 36) and the other studies were second or additional lines of therapy. Almost all patients received nivolumab as an immunotherapy for PD-1 inhibitor. The cutoff value of NLR was not the same in all studies; the value of 5 was mostly used among all publications, and the median cutoff value for all enrolled publications was also 5. The NOS scores of the enrolled studies ranged from 6-9. Detailed information about these studies is presented in Table 1.

Relationship between NLR and OS in lung cancer patients receiving

immunotherapy

A total of 1629 patients treated with immunotherapy from 20 studies provided the NLR value or the data to calculate the NLR and OS values. Five of these studies provided data about posttreatment NLR and OS. A total of 23 researches to combine the HR and 95% CI. In the pooled analysis of NLR and OS, we found that a higher

level of NLR was associated with a poorer OS with a high heterogeneity (HR=1.62; 95% CI: 1.41-1.87; P< 0.001) (I²=81.7%, P< 0.0001) (Fig 2). To detect the source of heterogeneity, we conducted a subgroup analysis on some clinical factors that may influence the final results, such as study design, the time of detecting NLR, ethnicity, sex ratio, the proportion of squamous cell carcinoma (SCC%), the level of NLR at baseline, the treatment line, median follow-up time, sample size and the drug for immunotherapy (Fig 3). Interestingly, the association between the pretreatment NLR and OS showed a similar trend to the pooled result (HR=1.87; 95% CI: 1.46-2.39; P <0.0001). However, the posttreatment NLR seemed to not be significantly related to the OS in lung cancer patients (HR=1.80; 95% CI: 0.81-4.00; P=0.11). However, these results were still highly heterogeneous (pretreatment: $I^2=79.80\%$, P< 0.0001; posttreatment: I²=83.5%, P<0.0001). Furthermore, the NLR was significantly unrelated to the OS in the studies in which the proportion of patients with squamous cell carcinoma or the proportion of patients whose NLR baseline levels exceeded the cutoff value was greater than 50% (Fig 3). The subgroup analysis stratified by ethnicity found that patients in Asia were significantly associated with a higher HR (HR=2.76; 95% CI: 1.88- 4.06) and smaller heterogeneity (I²=45.7%, P=0.09) than those in Europe and America (P_{interaction}=0.030).

Relationship between NLR and PFS in lung cancer patients receiving immunotherapy

The data for NLR and PFS of 1612 patients treated with immunotherapy in 15 studies (20 researches) were extracted to obtain a pooled HR and 95% CI. Four of these studies provided the posttreatment NLR and its relationship with PFS. The random effects model revealed a significant association between an elevated NLR and PFS in lung cancer patients receiving immunotherapy (HR=1.47; 95% CI: 1.25-1.72; P< 0.0001) with high heterogeneity (I²=72.5%, P< 0.0001) (Fig 4). To detect the potential source of heterogeneity in studies reporting PFS data, subgroup analysis stratified by the factors that affect the HR were proposed, as previously mentioned (Fig 5). Similar to the relationship between the NLR and OS, the NLR was significantly unrelated to the PFS in studies in which the proportion of patients with squamous cell carcinoma was greater than 50% (P_{interaction}=0.005). However, the pooled results for subgroups by other factors were not markedly changed with low-level heterogeneity.

Sensitivity analysis and Publication bias

We found high heterogeneity among studies enrolled in the analysis of the relationship among pretreatment NLR, OS and PFS. Therefore, we performed a

Page 13 of 33

BMJ Open

sensitivity analysis on all enrolled studies. The effect of each single study set on the combined HRs was evaluated by excluding each study individually from the metaanalysis. The results of the sensitivity analysis showed that the pooled HRs for OS and PFS were robust in our meta-analysis (Fig 6A and 6B). We conducted a subgroup analysis stratified by various factors to detect the source of heterogeneity. The Begg's test presented no evidence of obvious publication bias in both studies reporting the association between NLR and OS (P=0.673) and those reporting the association between NLR and PFS (P= 0.074), but the Egger's test showed significant publication bias in both (P<0.001 for both). Therefore, we performed a trim and fill analysis on studies reporting the relationship between NLR and OS/PFS. However, the result was unchanged after eliminating the influence of publication bias (OS: HR=1.40; 95% CI:1.22-1.60; P< 0.0001, PFS: HR=1.33; 95% CI:1.14-1.56; P= 0.0004, supplement fig 1).

Discussion:

The results of our meta-analysis revealed the prognostic effect of both pretreatment and posttreatment NLR on OS and PFS in lung cancer patients receiving immunotherapy. Twenty-three studies involving a total of 2049 lung cancer patients showed that an increased NLR was significantly associated with a poorer OS (HR=1.62; 95% CI: 1.41-1.87; P< 0.001) and PFS (HR=1.47; 95% CI: 1.25-1.72; P< 0.0001). Interestingly, the posttreatment NLR did not seem to be significantly related to OS, and patients in Asia were significantly associated with higher HRs than those in Europe and America.

The immune checkpoint is a kind of mechanism that plays a protective role in the human immune system and acts like a brake to prevent inflammatory damage caused by excessive activation of T cells.(38) Human anti-PD-1 IgG4 mAb is now widely used and shows higher efficacy than standard therapies in lung cancer. (39) Despite a wide consensus on testing tumor tissues for PD-L1 expression, it is limited by its "unperfected dichotomy" across studies and molecules; patients with low levels of PD-L1 expression have responded at rates of up to 17%, and roughly half of patients are "not-responders" despite high tumor PD-L1 levels. Several factors could affect the response and survival of patients receiving immunotherapy.(39) In addition to tumor mutation loads and the expression of tumor antigens, the status of systemic inflammation also occupies an important position in lung cancer patients receiving immunotherapy. The tumor-associated cytokine and relevant signaling pathway could be reflected by the level of systemic inflammation, which has been proven to be associated with a worse survival in patients with solid tumors.(8) Biomarkers such as

NLR, PLR, GPS and mGPS have been used as prognostic factors in lung cancer.(9-11) In addition, the role of systemic inflammation in patients receiving immunotherapy is particularly important for their survival. Several studies have explored the effect of pretreatment NLR on lung cancer patients receiving immunotherapy.(31, 40-45) There are also two meta-analyses concerning pretreatment NLR and survival in patients with advanced cancer. (46) (47) In summary, NLR is a reliable prognostic factor for patients with various cancer types. Sacdalan, D. B. reported that an increased NLR resulted in a worse PFS among several kinds of cancers, such as melanoma, non-small-cell lung cancer and genitourinary cancer,(46) which was consistent with our results. However, only three publications about lung cancer were enrolled in that meta-analysis, and a nonsignificant association was discovered between pretreatment NLR and OS. In addition, two of the three studies included in the meta-analysis previously mentioned only provided abstracts, and we cannot obtain more details about those cohorts or study designs. Another meta-analysis conducted by Jiang, T also revealed a trend similar to our results, but the results of the subgroup analysis showed that posttreatment NLR was also significantly related to a poorer OS and PFS, and this result was different from ours. We enrolled more research articles in our study. In addition, we performed subgroup analyses stratified by more

clinical factors. Furthermore, our results showed that the ethnicity, NLR level at baseline and proportion of squamous cell carcinoma may affect the prognosis value of the NLR. However, due to the high heterogeneity, the results must be interpreted with caution. Neutrophils were the most abundant immune cell type identified in NSCLC patients and accounted for nearly 20% of all CD45+ cells in patients from America.(48) However, this result was not found in Asia or Europe. The systemic inflammatory response might be different among different ethnicities. Furthermore, we collected baseline patient information, including the proportion of squamous cell carcinoma, from all studies, and our results showed that the histology of lung cancer might have an impact on the prognosis value of NLR. However, the mechanism needs further exploration, and many cofounding factors could affect the systemic inflammatory response.

The current research had several limitations. First, high heterogeneity was present in this analysis although we conducted sensitivity analyses on all studies. The results were robust after eliminating every study from a combination of HRs. In addition, we performed subgroup analyses on some possible impact factors to detect the source of heterogeneity. Second, the Egger's test showed that obvious publication bias was present in this current study. The pooled results should be treated with caution

2
3
4
5
6
6 7
/
8
9
10
11
12
12
13
14 15 16 17 18
15
16
10
17
18
19
20
20
21
22
20 21 22 23 24 25 26 27 28 29 30 31
23
24
25
25
26
27
28
20
29
30
31
32
33
34 35
36 37
27
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
55
54
55
50
57
58
59
.17

60

although a trim and fill analysis testing indicated credibility for this study.

Additionally, considering the high heterogeneity after subgroup analysis, other factors might be responsible for the high heterogeneity in this meta-analysis.

Conclusion:

Generally, our meta-analysis focused on the clinical prognostic agreement of NLR for OS and PFS in lung cancer patients. Importantly, given the limitations mentioned above, these findings should be treated with caution in clinical practice. More prospective cohort studies are needed to test our results.

Contributorship statement:

(I) Conception and design: W Li, J Jin, Lan Y; II) Administrative support: J Jin, W Li;

(III) Provision of study materials or patients: D Liu; (IV) Collection and assembly of

data: J Jin, D Liu; (V) Data analysis and interpretation: D Liu, Lan Y; (VI)

Manuscript writing: All authors; (VII) Final approval of manuscript: All authors.

Competing interests

The authors have no conflicts of interest to declare

Funding

None

Data sharing statement:

All data in the current study were available in published articles

Acknowledgments:

This work was supported by the Transformation Projects of Sci-Tech Achievements

of Sichuan Province (2016CZYD0001), the Sci-Tech Support Program of Science and

Technology Department of Sichuan Province (2016SZ0073), the National Major Sci-

Tech Project (2017ZX10103004-012) and the National Key Development Plan for

Precision Medicine Research (2017YFC0910004).

Compliance with Ethical Standards

Ethical approval: All procedures performed in the studies involving human

participants were in accordance with the ethical standards of the institutional and/or

national research committee and with the 1964 Helsinki declaration and its later

amendment.

Reference:

1. Siegel RL, Miller KD, Jemal A. Cancer statistics, 2015. CA Cancer J Clin. 2015;65(1):5-29.

2. Callahan MK, Postow MA, Wolchok JD. Targeting T Cell Co-receptors for Cancer Therapy. Immunity. 2016;44(5):1069-78.

12.

3. Chen YM. Immune checkpoint inhibitors for nonsmall cell lung cancer treatment. Journal of the Chinese Medical Association Jcma. 2016;80(1):7.

4. Yarchoan M, Hopkins A, Jaffee EM. Tumor Mutational Burden and Response Rate to PD-1 Inhibition. The New England journal of medicine. 2017;377(25):2500-1.

5. Anagnostou V, Smith KN, Forde PM, Niknafs N, Bhattacharya R, White J, et al. Evolution of Neoantigen Landscape during Immune Checkpoint Blockade in Non-Small Cell Lung Cancer. Cancer discovery. 2017;7(3):264-76.

Page 19 of 33

BMJ Open

6. Goswami S, Basu S, Sharma P. A potential biomarker for anti-PD-1 immunotherapy. Nature medicine. 2018;24(2):123-4.

7. Marchetti A, Barberis M, Franco R, De Luca G, Pace MV, Staibano S, et al. Multicenter Comparison of 22C3 PharmDx (Agilent) and SP263 (Ventana) Assays to Test PD-L1 Expression for NSCLC Patients to Be Treated with Immune Checkpoint Inhibitors. Journal of thoracic oncology : official publication of the International Association for the Study of Lung Cancer. 2017;12(11):1654-63.

8. Hooper CE, Lyburn ID, Searle J, Darby M, Hall T, Hall D, et al. The South West Area Mesothelioma and Pemetrexed trial: a multicentre prospective observational study evaluating novel markers of chemotherapy response and prognostication. British journal of cancer. 2015;112(7):1175-82.

9. Wang X, Teng F, Kong L, Yu J. Pretreatment neutrophil-to-lymphocyte ratio as a survival predictor for small-cell lung cancer. OncoTargets and therapy. 2016;9:5761-70.

10. Sanchez-Salcedo P, de-Torres JP, Martinez-Urbistondo D, Gonzalez-Gutierrez J, Berto J, Campo A, et al. The neutrophil to lymphocyte and platelet to lymphocyte ratios as biomarkers for lung cancer development. Lung cancer (Amsterdam, Netherlands). 2016;97:28-34.

11. Kos M, Hocazade C, Kos FT, Uncu D, Karakas E, Dogan M, et al. Prognostic role of pretreatment platelet/lymphocyte ratio in patients with non-small cell lung cancer. Wien Klin Wochenschr. 2016;128(17-18):635-40.

12. Tierney JF, Stewart LA, Ghersi D, Burdett S, Sydes MR. Practical methods for incorporating summary time-to-event data into meta-analysis. Trials. 2007;8(1):16.

13. Begg CB, Mazumdar M. Operating characteristics of a rank correlation test for publication bias. Biometrics. 1994;50(4):1088.

14. O'Rourke K, Shea B, Wells GA. Meta-Analysis of Clinical Trials: Springer New York; 2001. 397-424 p.

15. Ren F, Zhao T, Liu B, Pan L. Neutrophil-lymphocyte ratio (NLR) predicted prognosis for advanced non-small-cell lung cancer (NSCLC) patients who received immune checkpoint blockade (ICB). OncoTargets and therapy. 2019;12:4235-44.

16. Pavan A, Calvetti L, Dal Maso A, Attili I, Del Bianco P, Pasello G, et al. Peripheral Blood Markers Identify Risk of Immune-Related Toxicity in Advanced Non-Small Cell Lung Cancer Treated with Immune-Checkpoint Inhibitors. The oncologist. 2019.

17. Passiglia F, Galvano A, Castiglia M, Incorvaia L, Calo V, Listi A, et al. Monitoring blood biomarkers to predict nivolumab effectiveness in NSCLC patients. Therapeutic advances in medical oncology. 2019;11:1758835919839928.

18. Minami S, Ihara S, Ikuta S, Komuta K. Gustave Roussy Immune Score and Royal Marsden Hospital Prognostic Score Are Biomarkers of Immune-Checkpoint Inhibitor for Non-Small Cell Lung Cancer. World journal of oncology. 2019;10(2):90-100.

19. Ichiki Y, Taira A, Chikaishi Y, Matsumiya H, Mori M, Kanayama M, et al. Prognostic factors of

advanced or postoperative recurrent non-small cell lung cancer targeted with immune check point inhibitors. Journal of thoracic disease. 2019;11(4):1117-23.

20. Fukui T, Okuma Y, Nakahara Y, Otani S, Igawa S, Katagiri M, et al. Activity of Nivolumab and Utility of Neutrophil-to-Lymphocyte Ratio as a Predictive Biomarker for Advanced Non-Small-Cell Lung Cancer: A Prospective Observational Study. Clinical lung cancer. 2019;20(3):208-14.e2.

21. Dusselier M, Deluche E, Delacourt N, Ballouhey J, Egenod T, Melloni B, et al. Neutrophil-tolymphocyte ratio evolution is an independent predictor of early progression of second-line nivolumabtreated patients with advanced non-small-cell lung cancers. PloS one. 2019;14(7):e0219060.

22. Zer A, Sung MR, Walia P, Khoja L, Maganti M, Labbe C, et al. Correlation of Neutrophil to Lymphocyte Ratio and Absolute Neutrophil Count With Outcomes With PD-1 Axis Inhibitors in Patients With Advanced Non-Small-Cell Lung Cancer. Clinical lung cancer. 2018;19(5):426-+.

23. Takeda T, Takeuchi M, Saitoh M, Takeda S. Neutrophil-to-lymphocyte ratio after four weeks of nivolumab administration as a predictive marker in patients with pretreated non-small-cell lung cancer. Thoracic cancer. 2018;9(10):1291-9.

24. Svaton M, Zemanova M, Skrickova J, Jakubikova L, Kolek V, Kultan J, et al. Chronic Inflammation as a Potential Predictive Factor of Nivolumab Therapy in Non-small Cell Lung Cancer. Anticancer research. 2018;38(12):6771-82.

25. Suh KJ, Kim SH, Kim YJ, Kim M, Keam B, Kim TM, et al. Post-treatment neutrophil-to-lymphocyte ratio at week 6 is prognostic in patients with advanced non-small cell lung cancers treated with anti-PD-1 antibody. Cancer Immunology Immunotherapy. 2018;67(3):459-70.

26. Shiroyama T, Suzuki H, Tamiya M, Tamiya A, Tanaka A, Okamoto N, et al. Pretreatment advanced lung cancer inflammation index (ALI) for predicting early progression in nivolumab-treated patients with advanced non-small cell lung cancer. Cancer medicine. 2018;7(1):13-20.

27. Russo A, Franchina T, Ricciardi GRR, Battaglia A, Scimone A, Berenato R, et al. Baseline neutrophilia, derived neutrophil-to-lymphocyte ratio (dNLR), platelet-to-lymphocyte ratio (PLR), and outcome in non small cell lung cancer (NSCLC) treated with Nivolumab or Docetaxel. Journal of cellular physiology. 2018;233(10):6337-43.

28. Park W, Kwon D, Saravia D, Desai A, Vargas F, El Dinali M, et al. Developing a Predictive Model for Clinical Outcomes of Advanced Non-Small Cell Lung Cancer Patients Treated With Nivolumab. Clinical lung cancer. 2018;19(3):280-8.e4.

29. Nakaya A, Kurata T, Yoshioka H, Takeyasu Y, Niki M, Kibata K, et al. Neutrophil-to-lymphocyte ratio as an early marker of outcomes in patients with advanced non-small-cell lung cancer treated with nivolumab. International journal of clinical oncology. 2018;23(4):634-40.

30. Mezquita L, Auclin E, Ferrara R, Charrier M, Remon J, Planchard D, et al. Association of the Lung Immune Prognostic Index With Immune Checkpoint Inhibitor Outcomes in Patients With Advanced Non-Small Cell Lung Cancer. JAMA oncology. 2018;4(3):351-7.

31. Maymani H, Hess K, Groisberg R, Hong DS, Naing A, Piha-Paul S, et al. Predicting outcomes in patients with advanced non-small cell lung cancer enrolled in early phase immunotherapy trials. Lung cancer (Amsterdam, Netherlands). 2018;120:137-41.

32. Kiriu T, Yamamoto M, Nagano T, Hazama D, Sekiya R, Katsurada M, et al. The time-series behavior of neutrophil-to-lymphocyte ratio is useful as a predictive marker in non-small cell lung cancer. PloS one. 2018;13(2):e0193018.

33. Khunger M, Patil PD, Khunger A, Li M, Hu B, Rakshit S, et al. Post-treatment changes in hematological parameters predict response to nivolumab monotherapy in non-small cell lung cancer patients. PloS one. 2018;13(10):e0197743.

34. Inomata M, Hirai T, Seto Z, Tokui K, Taka C, Okazawa S, et al. Clinical Parameters for Predicting the Survival in Patients with Squamous and Non-squamous-cell NSCLC Receiving PD-1 Inhibitor Therapy. Pathology oncology research : POR. 2018.

35. Facchinetti F, Veneziani M, Buti S, Gelsomino F, Squadrilli A, Bordi P, et al. Clinical and hematologic parameters address the outcomes of non-small-cell lung cancer patients treated with nivolumab. Immunotherapy. 2018;10(8):681-94.

36. Diem S, Schmid S, Krapf M, Flatz L, Born D, Jochum W, et al. Neutrophil-to-Lymphocyte ratio (NLR) and Platelet-to-Lymphocyte ratio (PLR) as prognostic markers in patients with non-small cell lung cancer (NSCLC) treated with nivolumab. Lung cancer (Amsterdam, Netherlands). 2017;111:176-81.

37. Bagley SJ, Kothari S, Aggarwal C, Bauml JM, Alley EW, Evans TL, et al. Pretreatment neutrophil-tolymphocyte ratio as a marker of outcomes in nivolumab-treated patients with advanced non-small-cell lung cancer. Lung cancer (Amsterdam, Netherlands). 2017;106:1-7.

38. Ito A, Kondo S, Tada K, Kitano S. Clinical Development of Immune Checkpoint Inhibitors. Biomed Res Int. 2015;2015:605478.

 Carbone DP, Reck M, Paz-Ares L, Creelan B, Horn L, Steins M, et al. First-Line Nivolumab in Stage IV or Recurrent Non-Small-Cell Lung Cancer. The New England journal of medicine. 2017;376(25):2415-26.

40. Mezquita L, Auclin E, Ferrara R, Charrier M, Remon J, Planchard D, et al. Association of the Lung Immune Prognostic Index With Immune Checkpoint Inhibitor Outcomes in Patients With Advanced Non-Small Cell Lung Cancer. JAMA Oncol. 2018;4(3):351-7.

41. Nakaya A, Kurata T, Yoshioka H, Takeyasu Y, Niki M, Kibata K, et al. Neutrophil-to-lymphocyte ratio as an early marker of outcomes in patients with advanced non-small-cell lung cancer treated with nivolumab. Int J Clin Oncol. 2018.

42. Zer A, Sung MR, Walia P, Khoja L, Maganti M, Labbe C, et al. Correlation of Neutrophil to Lymphocyte Ratio and Absolute Neutrophil Count With Outcomes With PD-1 Axis Inhibitors in Patients With Advanced Non-Small-Cell Lung Cancer. Clin Lung Cancer. 2018.

43. Park W, Kwon D, Saravia D, Desai A, Vargas F, El Dinali M, et al. Developing a Predictive Model for

Clinical Outcomes of Advanced Non-Small Cell Lung Cancer Patients Treated With Nivolumab. Clinical Lung Cancer. 2018;19(3):280-8.e4.

44. Fukui T, Okuma Y, Nakahara Y, Otani S, Igawa S, Katagiri M, et al. Activity of Nivolumab and Utility of Neutrophil-to-Lymphocyte Ratio as a Predictive Biomarker for Advanced Non–Small-Cell Lung Cancer: A Prospective Observational Study. Clinical Lung Cancer. 2018.

45. Russo A, Franchina T, Ricciardi GRR, Battaglia A, Scimone A, Berenato R, et al. Baseline neutrophilia, derived neutrophil-to-lymphocyte ratio (dNLR), platelet-to-lymphocyte ratio (PLR), and outcome in non small cell lung cancer (NSCLC) treated with Nivolumab or Docetaxel. J Cell Physiol. 2018.

46. Sacdalan DB, Lucero JA, Sacdalan DL. Prognostic utility of baseline neutrophil-to-lymphocyte ratio in patients receiving immune checkpoint inhibitors: a review and meta-analysis. OncoTargets and therapy. 2018;11:955-65.

47. Jiang T, Bai Y, Zhou F, Li W, Gao G, Su C, et al. Clinical value of neutrophil-to-lymphocyte ratio in patients with non-small-cell lung cancer treated with PD-1/PD-L1 inhibitors. Lung cancer (Amsterdam, Netherlands). 2019;130:76-83.

48. Kargl J, Busch SE, Yang GH, Kim KH, Hanke ML, Metz HE, et al. Neutrophils dominate the immune cell composition in non-small cell lung cancer. Nature communications. 2017;8:14381.

Figure Legends

Figure 1 Flow chart of study selection

Figure 2 Forest plot of the association between NLR and OS in patients with lung

cancer receiving immunotherapy

Figure 3 Subgroup analysis of the relationship NLR and OS in patients with lung

cancer receiving immunotherapy

Abbreviation: ICI: Immune-Checkpoint Inhibitor; M/F: male/female; SCC%:

Proportion of Squamous cell carcinoma; X: the data here shows the proportion of

patients whose NLR baseline levels exceeded the cutoff value; N: Nivolumab; P:

1 2										
3 4 5		Pembrolizumab; D: Durvalumab; E: Embrolizumab; A: Atezolizumab								
6 7 8		Figure 4 Forest plot of the association between NLR and PFS in patients with lung								
9 10		cancer receiving immunotherapy								
11 12 13		Figure 5 Subgroup analysis of the relationship NLR and PFS in patients with lung								
14 15 16		cancer recei	ving in	nmunotherapy						
17 18		Abbreviatio	n: ICI:	Immune-Checkpo	oint Inhibitor	; M/F: male/fer	male; SCC	%:		
19 20 21		Proportion of	of Squa	mous cell carcino	ma; : 15 sti	udies (20 resea	rches) pro	vided the		
22 23 24		1		ant NLR and PFS,		1	1			
25 26 27				umab; P: Pembroli	izumab; D: I	Durvalumab; E	: Embroliz	umab; A:		
28 29 30		Atezolizuma		y analysis on OS (A) and DES	(D)				
31		rigule 0 Sel	lisitivit <u></u>	y allalysis oli OS (A) and FFS	(D)				
32 33 34		Table								
35		Table 1 The	basic o	characteristic of er	nrolled studie					
36 27	Study		Year	Country	Ethnicity	Sample size	MFP	M/F	NLR at baseline	
37 38	Russo A		2018	Italy	European	28	17	25/3	NM	
39	Zer A		2018	America	American	88	5.3	43/45	NLR>4:56.8%	
40	Nakaya A		2018	Japan	Asian	101	8.9	77/24	NLR≥3:46.5%	
41 42	Maymani	Н	2018	America	American	74	12.3	36/38	NLR>6:20.3%	
43	Mezquita	L	2018	Europe	European	161	12	100/61	NLR>3:39%	
44	Diem S		2017	Europe	European	52	NM	29/23	5.0(2.7-8.3) *	
45 46	Bagley SJ		2017	America	American	175	NM	80/95	NLR≥5:58%	
46 47	Fukui T		2018	Japan	Asian	52	10.9	37/15		
48	Park W		2018	America	American	159	11.5	82/77	4.3(0.5-24.1) *	
49 50	Ren, F		2019	China	Asian	147	2.6	94/53	NLR>2.5:59.9%	
50 —										

2									
3 4	Pavan, A	2019	Italy	European	184	56.3	125/59	NLR≥3:	57.5%
4 5	Passiglia, F	2019	Italy	European	45	9.1	32/13	NLR>3	3.3:51.1%
6	Minami, S	2019	Japan	Asian	76	NM	49/27	NLR≥6:	14.5%
7	Ichiki, Y.	2019	Japan	Asian	44	4.83	38/6	NM	
8 9	Dusselier, M.	2019	France	European	59	NM	44/15	NLR>5	5:62.7%
10	Takeda, T.	2018	Japan	Asian	30	NM	19/11	NLR>5	5:30%
11 12	Svaton, M	2018	Czech Republic	European	120	NM	71/49	NLR>3	3.8:50%
12	Suh, Koung Jin	2018	Korea	Asian	54	26.2	42/12	NLR>5	5:14.8%
14	Shiroyama, Takayuki	2018	Japan	Asian	201	12.4	135/66	NLR>4	4:39.3%
15	Kiriu, T	2018	Japan	Asian	19.00	NM	19	NLR>5	5:31.6%
16 17	Khunger, M	2018	America	American	109	30	56/53	NLR≥5:	50.5%
18	Inomata, M	2018	Japan	Asian	36	NM	27/9	NLR≥5	44.4%
19	Facchinetti, F	2018	Italy	European	54	12.6	45/9	NM	
20 21									
22									
23	Study	SCC%	% Treatment lir	ies	Outcome	Study	(Cut-off	ΙΟ
24 25						desigr	1		
26	Russo A	60.719		1.0	OS/PFS	RO	3	3	Ν
27	Zer A	17.059			OS/PFS/DCR	RO	2		NM
28 29	Nakaya A	36.63			PFS/irAEs	RO	3	3	N
30	Maymani H	16.229	% including first	ling thorony					
31					OS/PFS	RO		5	N/P/D
	Mezquita L	28.579	% at least second	line therapy	OS/PFS	RO	3	3	N/E/A/D
32	Diem S	28.579 34.629	at least secondincluding first	line therapy line therapy	OS/PFS OS/PFS	RO RO	3	3 5	N/E/A/D N
	Diem S Bagley SJ	28.579 34.629 24.009	 at least second including first at least second 	line therapy line therapy line therapy	OS/PFS OS/PFS OS/PFS	RO RO RO	3	3 5 5	N/E/A/D N N
32 33 34 35	Diem S Bagley SJ Fukui T	28.579 34.629 24.009 30.779	 at least second including first at least second at least second at least second 	line therapy line therapy line therapy line therapy	OS/PFS OS/PFS OS/PFS OS/PFS/irAEs	RO RO RO PO	2	3 5 5 5	N/E/A/D N N N
32 33 34 35 36	Diem S Bagley SJ Fukui T Park W	28.579 34.629 24.009 30.779 24.539	 at least second including first at least second at least second at least second including first 	line therapy line therapy line therapy line therapy line therapy	OS/PFS OS/PFS OS/PFS OS/PFS/irAEs OS/PFS	RO RO RO PO RO	2 5 5 5	3 5 5 5 5	N/E/A/D N N N N
32 33 34 35	Diem S Bagley SJ Fukui T Park W Ren, F	28.579 34.629 24.009 30.779 24.539 42.189	 at least second including first at least second at least second at least second including first at least second at least second 	line therapy line therapy line therapy line therapy line therapy	OS/PFS OS/PFS OS/PFS/irAEs OS/PFS OS/PFS	RO RO PO RO RO		3 5 5 5 5 2.5	N/E/A/D N N N N/P
32 33 34 35 36 37 38 39	Diem S Bagley SJ Fukui T Park W Ren, F Pavan, A	28.579 34.629 24.009 30.779 24.539 42.189 32.079	 at least second including first at least second at least second including first at least second including first at least second including first including first 	line therapy line therapy line therapy line therapy line therapy line therapy	OS/PFS OS/PFS OS/PFS/irAEs OS/PFS OS/PFS OS/PFS/irAEs	RO RO PO RO RO RO		3 5 5 5 5 2.5 3	N/E/A/D N N N N/P N/P/A
32 33 34 35 36 37 38 39 40	Diem S Bagley SJ Fukui T Park W Ren, F Pavan, A Passiglia, F	28.579 34.629 24.009 30.779 24.539 42.189 32.079 44.449	 at least second including first at least second at least second at least second including first at least second at least second including first at least second at least second at least second 	line therapy line therapy line therapy line therapy line therapy line therapy line therapy	OS/PFS OS/PFS OS/PFS/irAEs OS/PFS OS/PFS OS/PFS/irAEs OS/TTP	RO RO PO RO RO RO RO RO		3 5 5 5 2.5 3 3.3	N/E/A/D N N N N/P N/P/A N
32 33 34 35 36 37 38 39	Diem S Bagley SJ Fukui T Park W Ren, F Pavan, A Passiglia, F Minami, S	28.579 34.629 24.009 30.779 24.539 42.189 32.079 44.449 23.689	 at least second including first at least second at least second including first at least second including first at least second including first at least second at least second at least second 	line therapy line therapy line therapy line therapy line therapy line therapy line therapy line therapy	OS/PFS OS/PFS OS/PFS/irAEs OS/PFS OS/PFS OS/PFS/irAEs OS/TTP OS/PFS	RO RO PO RO RO RO RO RO		3 5 5 5 2.5 3 3.3 5	N/E/A/D N N N N/P N/P/A N N/P/A
32 33 34 35 36 37 38 39 40 41 42 43	Diem S Bagley SJ Fukui T Park W Ren, F Pavan, A Passiglia, F Minami, S Ichiki, Y.	28.579 34.629 24.009 30.779 24.539 42.189 32.079 44.449 23.689 65.919	 at least second including first at least second at least second at least second including first at least second including first at least second including first at least second at least second at least second 	line therapy line therapy line therapy line therapy line therapy line therapy line therapy line therapy line therapy	OS/PFS OS/PFS OS/PFS/irAEs OS/PFS OS/PFS OS/PFS/irAEs OS/PFS OS/PFS	RO RO PO RO RO RO RO RO RO RO		3 5 5 5 5 2.5 3 3.3 5 NM	N/E/A/D N N N N/P N/P/A N/P/A N/P/A
32 33 34 35 36 37 38 39 40 41 42 43 44	Diem S Bagley SJ Fukui T Park W Ren, F Pavan, A Passiglia, F Minami, S Ichiki, Y. Dusselier, M.	28.579 34.629 24.009 30.779 24.539 42.189 32.079 44.449 23.689 65.919 20.349	 at least second including first at least second at least second including first at least second including first at least second including first at least second 	line therapy line therapy line therapy line therapy line therapy line therapy line therapy line therapy line therapy line therapy	OS/PFS OS/PFS OS/PFS/irAEs OS/PFS OS/PFS OS/PFS/irAEs OS/PFS OS/PFS/irAEs OS/PFS/irAEs	RO RO PO RO RO RO RO RO RO RO		3 5 5 5 5 2.5 3 3.3 5 NM 5	N/E/A/D N N N N/P N/P/A N N/P/A N/P N/P
32 33 34 35 36 37 38 39 40 41 42 43 44 45	Diem S Bagley SJ Fukui T Park W Ren, F Pavan, A Passiglia, F Minami, S Ichiki, Y. Dusselier, M. Takeda, T.	28.579 34.629 24.009 30.779 24.539 42.189 32.079 44.449 23.689 65.919 20.349 30.009	 at least second including first at least second at least second at least second including first at least second including first at least second 	line therapy line therapy line therapy line therapy line therapy line therapy line therapy line therapy line therapy line therapy	OS/PFS OS/PFS OS/PFS/irAEs OS/PFS OS/PFS OS/PFS/irAEs OS/PFS/irAEs OS/PFS/irAEs OS/PFS/irAEs	RO RO PO RO RO RO RO RO RO RO RO RO		3 5 5 5 5 2.5 3 3.3 5 NM 5 5	N/E/A/D N N N N N/P N/P/A N/P/A N/P/A N/P N/P N
 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 	Diem S Bagley SJ Fukui T Park W Ren, F Pavan, A Passiglia, F Minami, S Ichiki, Y. Dusselier, M. Takeda, T. Svaton, M	28.579 34.629 24.009 30.779 24.539 42.189 32.079 44.449 23.689 65.919 20.349 30.009 33.339	 at least second including first at least second at least second including first at least second including first at least second including first at least second 	line therapy line therapy	OS/PFS OS/PFS OS/PFS/irAEs OS/PFS OS/PFS/irAEs OS/PFS/irAEs OS/PFS/irAEs OS/PFS/irAEs OS/PFS/irAEs	RO RO PO RO RO RO RO RO RO RO RO RO RO		3 5 5 5 5 2.5 3 3.3 6 NM 5 5 3.8	N/E/A/D N N N N N/P N/P/A N/P/A N/P/A N/P N N/P N
 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 	Diem S Bagley SJ Fukui T Park W Ren, F Pavan, A Passiglia, F Minami, S Ichiki, Y. Dusselier, M. Takeda, T.	28.579 34.629 24.009 30.779 24.539 42.189 32.079 44.449 23.689 65.919 20.349 30.009	 at least second including first at least second at least second at least second including first at least second including first at least second 	line therapy line therapy	OS/PFS OS/PFS OS/PFS/irAEs OS/PFS OS/PFS OS/PFS/irAEs OS/PFS/irAEs OS/PFS/irAEs OS/PFS/irAEs	RO RO PO RO RO RO RO RO RO RO RO RO		3 5 5 5 5 2.5 3 3.3 5 NM 5 5	N/E/A/D N N N N N/P N/P/A N/P/A N/P/A N/P N/P N

2									
3 4	Kiriu, T	31.58%	at least second line therapy	OS/PFS/TTF	RO	5	N		
5	Khunger, M	23.85%	at least second line therapy	OS	RO	5	Ν		
6	Inomata, M	44.44%	at least second line therapy	PFS	RO	5	N/P		
7	Facchinetti, F	48.15%	at least second line therapy	OS/PFS/TTF/DP	РО	4	Ν		
8 9						_			
9 10	Abbı	reviation: NLR: n	eutrophil to lymphocyte rat	tio; NM: not menti	oned; M/F	:			
11									
12	male	/female; MFP: M	edian follow-up (month); S	SCC%: Proportion	of Squame	ous cell			
13 14									
14	carci	noma; IO: immur	notherapy; N: Nivolumab; I	P: Pembrolizumab	; D: Durva	lumab;			
16									
17	E: Ei	mbrolizumab; A:	Atezolizumab; OS: overall	survival; PFS: pro	gress free				
18				, I	0				
19 20	survi	val: DCR: diseas	e control rate; irAEs: immu	ine-related adverse	events: R	R:			
20		,							
22	resno	onse rate: TTF: tre	eatment failure; RO: retros	pective studies: PC): prospect	ive			
23	respe		autient fanare, RO. feuosj	peetive studies, i c	. prospect	1.00			
24	1:	NOC. Ottom	nu literation of Contract	k. 41	: 1 - 1 41				
25 26	studi	es, NOS. Ollawa	quality assessment Scale; '	· . the study just pro	ovided the	median			
27									
28	num	number and the range of NLR at baseline.							
29									
30 21	Supp	porting informat	ion						
31 32									
33	S1Fi	le. PRISMA 2009) checklist.						
34									
35	S2 S	earch strategy. Th	is file provides a full elect	onic search strates	gy for Publ	Med			
36	S2 Search strategy. This file provides a full electronic search strategy for PubMed								
37 38	S3 F	igure1 Trim and f	ill analysis on the data of C	OS and PES					
39	001		in unarysis on the data of c						
40									
41									
42									
43 44									
45									
46									
47									
48 49									
49 50									
51									
52									
53									
54									
55 56									

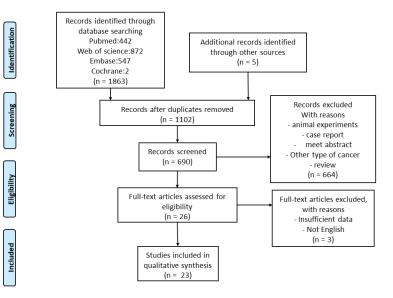


Figure 1 Flow chart of study selection

338x190mm (96 x 96 DPI)

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

P	a	g
1		
2 3		
3 4		
5		
6 7		
, 8		
9	~	
1 1	0 1	
1	2	
1	3 4	
1	5	
1	6 7	
1	7 8	
1	9	
2	0	
2	1 2	
2	3	
2 2	4 5	
2	6	
2	7	
	8 9	
3	0	
3	1	
3 3	2 3	
3	4	
	5	
3 3	6 7	
3	8	
3 ⊿	9 0	
4		
4		
4 4		
4		
4		
4 4		
4	9	
5		
5 5	12	
5		
-	л	

60

		Weight	Weight	Hazard Ratio	Hazard Ratio
Study	TE S	E (fixed)	(random)	IV, Fixed + Random, 95% CI	IV, Fixed + Random, 95% CI
Russo A 2018	0.13 0.069	5 4.2%	12.5%	1.14 [0.99; 1.31]	+
Zer A 2018	0.80 0.341	6 0.2%	3.3%	2.22 [1.14; 4.34]	
Maymani H 2018	0.26 0.328	5 0.2%	3.5%	1.30 [0.68; 2.48]	
Mezquita L 2018	0.80 0.301			2.22 [1.23; 4.01]	·
Diem S 2017	1.19 0.479	0 0.1%	1.9%	3.30 [1.29; 8.44]	i+
Bagley SJ 2017	0.73 0.237	6 0.4%	5.4%	2.07 [1.30; 3.30]	1- 1
Fukui T 2018	1.43 0.576	2 0.1%	1.4%	4.17 [1.35; 12.90]	· · · · · · · · · · · · · · · · · · ·
Park W[1] 2018	1.11 0.299	3 0.2%	4.0%	3.03 [1.69; 5.45]	
Park W[2] 2018	1.24 0.301	1 0.2%	4.0%	3.45 [1.91; 6.22]	
Ren, F 2019	0.77 0.336	3 0.2%	3.4%	2.17 [1.12; 4.18]	<u> </u>
Pavan, A 2019	0.13 0.020	6 47.7%	14.1%	1.14 [1.09; 1.18]	
Passiglia, F 2019	0.41 0.688	3 0.0%	1.0%	1.51 [0.39; 5.82]	
Minami, S 2019	1.59 0.414	1 0.1%	2.4%	4.90 [2.18; 11.04]	· · · · · · · · · · · · · · · · · · ·
Ichiki, Y. 2019	1.11 0.360	8 0.2%	3.0%	3.02 [1.49; 6.13]	li +
Dusselier, M[1] 2019	-0.37 0.459	7 0.1%	2.0%	0.69 [0.28; 1.70]	
Dusselier, M[2] 2019	-0.89 0.396	8 0.1%	2.6%	0.41 [0.19; 0.89]	
Svaton, M 2018	0.04 0.021	3 44.9%	14.0%	1.04 [1.00; 1.09]	
Suh, Koung Jin[1] 2018	1.57 0.724	7 0.0%	0.9%	4.82 [1.16; 19.95]	·
Suh, Koung Jin[2] 2018	1.34 0.447	0 0.1%	2.1%	3.82 [1.59; 9.17]	
Kiriu, T[2] 2018	0.27 0.277	6 0.3%	4.4%	1.31 [0.76; 2.25]	- + -
Khunger, MI112018	0.37 0.286	9 0.2%	4.2%	1.45 [0.83: 2.54]	- +
Khunger, M[2] 2018	0.97 0.305	2 0.2%	3.9%	2.63 [1.45; 4.79]	i +-+
Facchinetti, F 2018	1.17 0.463	2 0.1%	2.0%	3.22 [1.30; 7.98]	
Total (fixed effect, 95% CI)		100.0%	-	1.12 [1.09: 1.15]	
Total (random effects, 95% Cl	D	-	100.0%	1.62 [1.41; 1.87]	•
Heterogeneity: Tau ² = 0.0351; Chi		22 (P < 0.0	(1); $ ^2 = 82\%$		
,					0.1 0.5 1 2 10

Figure 2 Forest plot of the association between NLR and OS in patients with lung cancer receiving immunotherapy

396x246mm (96 x 96 DPI)

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

1	
2	
3	
4	
5	
5 6	
7	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47 49	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
57	

60

Subgroup	No. of Patients	No. of Research	Hazard Ra	tio(95 %CI)	1 ²	P Valu
Overall	1629	23	1 144	1.62(1.41-1.87)	81.70%	
Cut-off value						0.095
>5	834	14	·•i	2.08(1.42-3.04)	70.20%	
<5	751	8	⊢ •−i	1.46(1.11-1.93)	75.10%	
Not reported	44	1	·	3.02(1.49-6.13)	_	
Study design				0.02(1110-0.10)		0.079
Retrospective	1523	21		1.81(1.40-2.35)	81.80%	0.011
Prospective	106	2	· · · · · · · · · · · · · · · · · · ·	3.56(1.76-7.23)	0.00%	
Time of detection	100			0.00(11101120)	0.0070	0.93
Pre-treatment	1610	18		1.87(1.46-2.41)	79.80%	0.007
Post-treatment	19	5		1.80(0.81-4.00)	83.50%	
Ethnicity	19	5		1.60(0.81-4.00)	63.30%	0.030
European and American	1232	16		1.63(1.22-2.16)	75.20%	0.030
Asian	397	7			45.70%	
Gender (M/F)	397	/		2.76(1.88-4.06)	45.70%	0.001
		-				0.89
<1	337	3		1.86(1.34-2.59)	0.00%	
>1	1292	20	→ →	1.92(1.44-2.56)	82.60%	
SCC%						0.10
≥50%	131	4		1.02(0.45-2.31)	73.20%	
<50%	1498	19	H+	2.07(1.65-2.58)	82.90%	
NLR at baseline ※						0.043
>50%	851	10	↓ •−-1	1.36(0.97-1.92)	77.80%	
<50%	441	7		2.47(1.59-3.84)	56.30%	
Not reported	337	6		2.42(1.61-3.62)	85.70%	
Treatment line						0.16
At least second line therapy	1057	15		1.67(1.22-2.29)	79.00%	
Including first line therapy	572	8		2.36(1.62-3.44)	85.20%	
Median follow-up						0.043
≥12	669	9		1.78(1.28-2.46)	72.70%	
<12	535	7		2.77(2.11-3.63)	0.00%	
Not reported	425	7		1.42(0.76-2.66)	82.80%	
Sample Size						0.08
≥100	631	9	→→ →	1.84(1.37-2.45)	86.70%	
< 100	998	14		1.93(1.30-2.86)	75.40%	
ICI	000	14		1.00(1.00 2.00)	10.40%	0.294
N	786	14		1.69(1.20-2.38)	81.70%	0.20
N/P	250	4		2.91(1.94-4.31)	0.00%	
N/P/A	260	2		2.23(0.53-9.28)	91.90%	
N/P/D	74	2		1.30(0.68-2.48)	91.90%	
N/E/A/D	74 161		·[•'			
		1	·	2.22(1.23-4.01)	-	
Not reported	88	1	· · · · · · · · · · · · · · · · · · ·	2.22(1.14-4.34)	-	
			0.0 1.0 2.0 3.0 4.0 5.0			

Subgroup analysis of the relationship NLR and OS in patients with lung cancer receiving immunotherapy Abbreviation: ICI: Immune-Checkpoint Inhibitor; M/F: male/female; SCC%: Proportion of Squamous cell carcinoma; %: the data here shows the proportion of patients whose NLR baseline levels exceeded the cutoff value; N: Nivolumab; P: Pembrolizumab; D: Durvalumab; E: Embrolizumab; A: Atezolizumab

154x99mm (300 x 300 DPI)

	u:	9
1		
2 3 4		
5 6	,	
7 8	;	
	0 1	
1	1 2 3	
1	4 5	
1	6 7	
1	8 9 0	
2 2	1	
2 2	3	
2	5 6 7	
2	8	
3 3	0 1	
3	2 3 4	
3	5	
3	7 8	
4	9 0 1	
4	-2 -3	
4 4	4 5	
4	-6 -7 -8	
4	9 0	
5 5	1	
	3	

60

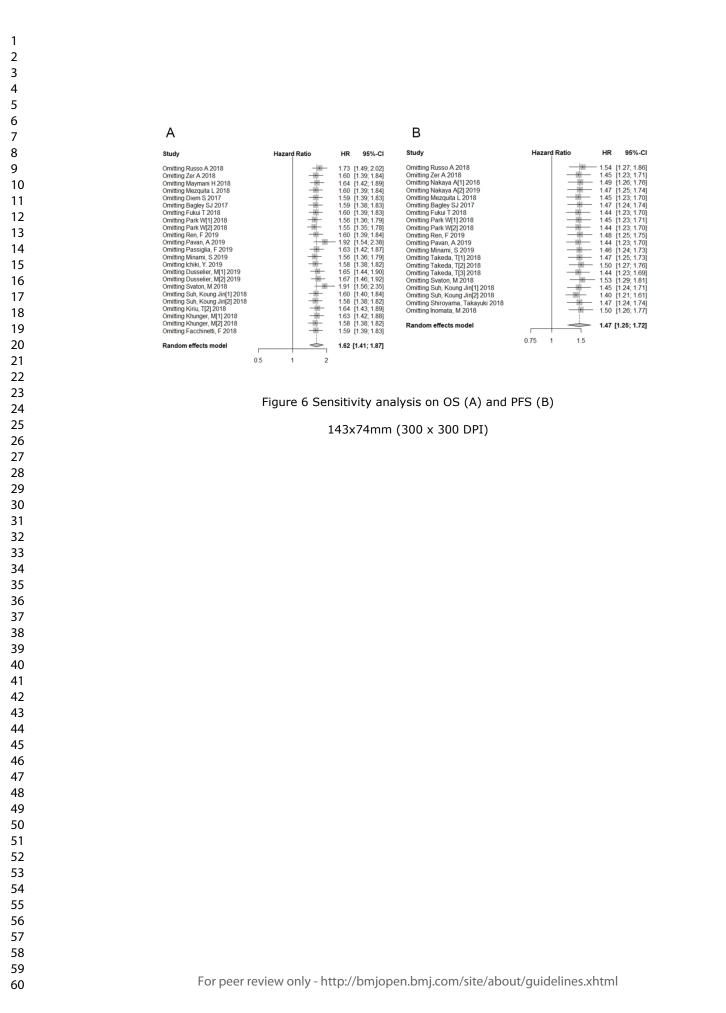
		Weight	Weight	Hazard Ratio	Hazard Ratio
Study	TE SE			IV, Fixed + Random, 95% CI	
Russo A 2018	0.05 0.0839	6.7%	9.2%	1.05 [0.89; 1.24]	+
Zer A 2018	0.54 0.2777	0.6%	4.7%	1.72 [1.00; 2.96]	
Nakaya A[1] 2018	0.19 0.2438	0.8%	5.4%		
Nakaya A[2] 2019	0.31 0.2996	0.5%	4.3%		++-
Mezquita L 2018	0.60 0.2496	0.8%	5.2%		
Bagley SJ 2017	0.36 0.1718	1.6%	7.0%	1.43 [1.02; 2.00]	H
Fukui T 2018	0.72 0.3169	0.5%	4.0%	2.05 [1.10: 3.82]	L++
Park W[1] 2018	0.52 0.2132	1.0%	6.0%		
Park W[2] 2018	0.60 0.2092	1.1%	6.1%		+
Ren, F 2019	0.32 0.1688	1.6%	7.1%		
Pavan, A 2019	0.59 0.1974	1.2%	6.4%		++-
Minami, S 2019	0.45 0.3544	0.4%	3.5%	1.56 [0.78: 3.13]	
Takeda, T[1] 2018	0.20 0.7033	0.1%	1.2%	1.23 0.31; 4.87]	
Takeda, T[2] 2018	-0.63 0.4970	0.2%	2.2%	0.53 0.20; 1.41]	
Takeda, T[3] 2018	1.79 0.8103	0.1%	0.9%	6.00 [1.22: 29.34]	
Svaton, M 2018	0.03 0.0242	80.0%	10.1%	1.03 [0.99; 1.08]	
Suh, Koung Jin[1] 2018	0.75 0.5005	0.2%	2.1%	2.11 [0.79; 5.62]	
Suh, Koung Jin[2] 2018	2.71 0.6118	0.1%	1.5%		—→
Shiroyama, Takayuki 2018	0.38 0.1620	1.8%	7.3%	1.46 [1.06; 2.01]	+
Inomata, M 2018	0.09 0.2357	0.8%	5.5%	1.09 [0.69; 1.73]	+
Total (fixed effect, 95% CI)		100.0%	-	1.09 [1.05; 1.14]	
Total (random effects, 95% C	CI)	-	100.0%	1.47 [1.25; 1.72]	 ↓
Heterogeneity; Tau ² = 0.0661; Ch		(P < 0.01); $I^2 = 72\%$		
					0.1 0.5 1 2 10

Figure 4 Forest plot of the association between NLR and PFS in patients with lung cancer receiving immunotherapy

396x246mm (96 x 96 DPI)

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

1	
2	
3	
4 5 7 8 9 10 11 12	
5	
6	
7	
, o	
0	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
10	
12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34	
20	
21	
22	
23	
24	
25	
26	
27	
20	
20	
29	
30	
31	
32	
33	
34	
34 35 36 37 38	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
40 49	
50	
51	
52	
53	
54	
55	
56	
57	
58	
28	


60

1

Subgroup	No. of Patients	No. of Research	Hazard Ra	tio(95 %CI)	1 ²	P Value
Overall	1612	20	1 ***	1.47(1.25-1.72)	72.50%	
Cut-off value						0.165
>5	582	11	H	2.08(1.42-3.04)	65.90%	
<5	1030	9	144	1.46(1.11-1.93)	60.90%	
Study design						0.356
Retrospective	1560	19	H.	1.50(1.20-1.88)	72.30%	
Prospective	52	1	·	2.05(1.10-3.82)	_	
Time of detection %						0.302
Pre-treatment	1612	15	101	1.32(1.18-1.49)	62.50%	
Post-treatment	344	5	· · · · · · · · · · · · · · · · · · ·	2.40(0.78-7.35)	81.00%	
Ethnicity						0.434
European and American	915	8	++-	1.40(1.16-1.68)	77.00%	
Asian	697	12	→	1.65(1.08-2.52)	57.30%	
Gender (M/F)						0.930
<1	263	2	H-	1.50(1.13-2.00)	73.30%	
>1	1349	18	H+	1.53(1.19-1.97)	0.00%	
SCC%						0.005
>50%	28	1		1.05(0.89-1.24)	-	
<50%	1594	19	H+	1.56(1.25-1.96)	73.80%	
NLR at baseline						0.607
>50%	714	5	H+H	1.34(1.09-1.65)	76.20%	
<50%	711	12	⊢ •──i	1.70(1.12-2.59)	58.30%	
Not reported	187	3		1.41(0.99-2.01)	77.90%	
Treatment line				, ,		0.084
At least second line therapy	1215	15	144	1.29(1.12-1.49)	55.40%	
Including first line therapy	397	5	·•	2.50(1.20-5.24)	66.50%	
Median follow-up				,		0.287
>12	628	6		2.07(1.05-4.07)	82.50%	
<12	547	7	++-	1.55(1.31-1.84)	0.00%	
Not reported	437	7	+ -	1.21(0.86-1.71)	47.40%	
Sample Size						0.390
≥100	1248	10	H.	1.38(1.21-1.59)	73.70%	
< 100	364	10	— •—	1.77(1.03-3.03)	72.50%	
ICI						0.290
N	902	13	He-I	1.31(1.10-1.56)	61.70%	01200
N/P	201	3	·	3.25(0.79-13.40)	_	
N/P/A	260	2		1.74(1.24-2.44)	_	
N/E/A/D	161	1	·•	1.83(1.12-2.99)	86.10%	
Not reported	88	1	— •——	1.72(1.00-2.96)	0.00%	
notropontou				111 2(1100 2100)	0.0070	

Subgroup analysis of the relationship NLR and PFS in patients with lung cancer receiving immunotherapy Abbreviation: ICI: Immune-Checkpoint Inhibitor; M/F: male/female; SCC%: Proportion of Squamous cell carcinoma; %: 15 studies (20 researches) provided the data for pretreatment NLR and PFS, and 5 of them also provided posttreatment NLR and PFS; N: Nivolumab; P: Pembrolizumab; D: Durvalumab; E: Embrolizumab; A: Atezolizumab

162x99mm (300 x 300 DPI)

PRISMA 2009 Checklist

Section/topic	#	Checklist item	Reported on page #	
TITLE				
Title	1	Identify the report as a systematic review, meta-analysis, or both.	1	
ABSTRACT				
Structured summary	2	Provide a structured summary including, as applicable: background; objectives; data sources; study eligibility criteria, participants, and interventions; study appraisal and synthesis methods; results; limitations; conclusions and implications of key findings; systematic review registration number.	2-3	
INTRODUCTION				
Rationale	3	Describe the rationale for the review in the context of what is already known.	4	
Objectives	4	Provide an explicit statement of questions being addressed with reference to participants, interventions, comparisons, outcomes, and study design (PICOS).	5	
METHODS				
Protocol and registration	5	Indicate if a review protocol exists, if and where it can be accessed (e.g., Web address), and, if available, provide registration information including registration number.	5-6	
Eligibility criteria	6	Specify study characteristics (e.g., PICOS, length of follow-up) and report characteristics (e.g., years considered, language, publication status) used as criteria for eligibility, giving rationale.	6	
Information sources	7	Describe all information sources (e.g., databases with dates of coverage, contact with study authors to identify additional studies) in the search and date last searched.	5	
Search	8	Present full electronic search strategy for at least one database, including any limits used, such that it could be repeated.	5-6 and supplements	
Study selection	9	State the process for selecting studies (i.e., screening, eligibility, included in systematic review, and, if applicable, included in the meta-analysis).	5-8	
Data collection process	10	Describe method of data extraction from reports (e.g., piloted forms, independently, in duplicate) and any processes for obtaining and confirming data from investigators.	6-7	
Data items	11	List and define all variables for which data were sought (e.g., PICOS, funding sources) and any assumptions and simplifications made.	6	
Risk of bias in individual studies	12	Describe methods used for assessing risk of bias of individual studies (including specification of whether this was done at the study or outcome level), and how this information is to be used in any data synthesis.	8	
Summary measures	13	State the principal summary measures (e.g., risk ratio, difference in means).	7-8	
Synthesis of results	14	Describe the methods of handling data and combining results of studies, if done, including measures of consistency (e.g., I^2) for each meta-analysis.	7-8	

PRISMA 2009 Checklist

3 4 5	Section/topic	#	Checklist item	Reported on page #		
6 7 8	Risk of bias across studies	15	Specify any assessment of risk of bias that may affect the cumulative evidence (e.g., publication bias, selective reporting within studies).	8		
9 1(Additional analyses	16	Describe methods of additional analyses (e.g., sensitivity or subgroup analyses, meta-regression), if done, indicating which were pre-specified.	8		
11	, RESULTS					
13 14	Study selection	17	Give numbers of studies screened, assessed for eligibility, and included in the review, with reasons for exclusions at each stage, ideally with a flow diagram.	8-9		
15 16 17	Study characteristics	18	For each study, present characteristics for which data were extracted (e.g., study size, PICOS, follow-up period) and provide the citations.	9-10		
18	Risk of bias within studies	19	Present data on risk of bias of each study and, if available, any outcome level assessment (see item 12).	11-12		
19 20	Results of individual studies	20	For all outcomes considered (benefits or harms), present, for each study: (a) simple summary data for each intervention group (b) effect estimates and confidence intervals, ideally with a forest plot.	8-11		
22	Synthesis of results	21	Present results of each meta-analysis done, including confidence intervals and measures of consistency.	8-11		
23	Risk of bias across studies	22	Present results of any assessment of risk of bias across studies (see Item 15).	11-12		
25	Additional analysis	23	Give results of additional analyses, if done (e.g., sensitivity or subgroup analyses, meta-regression [see Item 16]).	12		
26	DISCUSSION	DISCUSSION				
28 29	Summary of evidence	24	Summarize the main findings including the strength of evidence for each main outcome; consider their relevance to key groups (e.g., healthcare providers, users, and policy makers).	12-13		
30 31	Limitations	25	Discuss limitations at study and outcome level (e.g., risk of bias), and at review-level (e.g., incomplete retrieval of identified research, reporting bias).	15-16		
33	Conclusions	26	Provide a general interpretation of the results in the context of other evidence, and implications for future research.	16		
34 35	FUNDING					
37	Funding	27	Describe sources of funding for the systematic review and other support (e.g., supply of data); role of funders for the systematic review.	17		
39	38 39 <i>From:</i> Moher D, Liberati A, Tetzlaff J, Altman DG, The PRISMA Group (2009). Preferred Reporting Items for Systematic Reviews and Meta-Analyses: The PRISMA Statement. PLoS Med 6(7): e1000097. 40 doi:10.1371/journal.pmed1000097					
4						
42 43			Page 2 of 2			
44 45 46	4 5 For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml					

BMJ Open

Supplement Table1 Search strategy for meta-analysis of Correlation of the neutrophil to lymphocyte ratio and clinical outcomes in lung cancer patients receiving immunotherapy: a meta-analysis (PubMed via NLM)

	Search terms: neutrophil to lymphocyte ratio and lung cancer patients with immunotherapy						
Po	pulation: persons with lung cancer receiving immunotherapy						
1	(((((Cancer of Lung) OR Pulmonary Neoplasms) OR Neoplasms, Lung) OR Lung Neoplasm) OR						
	Neoplasm, Lung) OR Neoplasms, Pulmonary) OR Neoplasm, Pulmonary) OR Pulmonary						
	Neoplasm) OR Lung Cancer) OR Cancer, Lung) OR Cancers, Lung) OR Lung Cancers) OR						
	Pulmonary Cancer) OR Cancer, Pulmonary) OR Cancers, Pulmonary) OR Pulmonary Cancers)						
	OR Cancer of the Lung) OR "Lung Neoplasms"[Mesh]))))) AND (("Immunotherapy"[Mesh])						
	AND Immunotherapies)						
Intervention (Expose): neutrophil to lymphocyte ratio							
2	((NLR) OR (neutrophil to lymphocyte ratio) OR neutrophil lymphocyte ratio))						
Con	Combined sets						
3	1 and 2						
Lim	Limits						
4	3 AND English [Language]						

[Mesh] = Term from the Medline controlled vocabulary, including terms found below this term in the Mesh hierarchy

BMJ Open

Association of the neutrophil to lymphocyte ratio and clinical outcomes in lung cancer patients receiving immunotherapy: a meta-analysis

Journal:	BMJ Open
Manuscript ID	bmjopen-2019-035031.R1
Article Type:	Original research
Date Submitted by the Author:	14-Feb-2020
Complete List of Authors:	Jin, Jing; Sichuan University West China Hospital Yang, Lan; Sichuan University West China Hospital Liu, Dan; Sichuan University West China Hospital Li, Weimin; Sichuan University West China Hospital,
Primary Subject Heading :	Oncology
Secondary Subject Heading:	Respiratory medicine
Keywords:	Immunology < BASIC SCIENCES, Epidemiology < ONCOLOGY, Respiratory tract tumours < ONCOLOGY

I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd ("BMJ") its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our <u>licence</u>.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge ("APC") for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which <u>Creative Commons</u> licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author's Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.

reliez oni

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

1	Association of the neutrophil to lymphocyte ratio and clinical
2	outcomes in lung cancer patients receiving immunotherapy: a
3	meta-analysis
4	
5	Jing Jin ¹ , Lan Yang ¹ , Dan Liu ¹ , Wei-Min Li ¹ *
6	1. Department of Pulmonary & Critical Care, West China Hospital, Sichuan
7	University, Chengdu 610041, China.
8	Running title: Neutrophil to lymphocyte ratio and lung cancer
g	Address correspondence to: Dr. Wei-Min Li, Department of Pulmonary & Critical
10	Care, West China Hospital, Sichuan University, Chengdu 610041, China. Tel: +86 (028)
11	85423998; E-mail: weimin003@yahoo.com
12	
13	
14	
15	
16	
17	
18	

Page 3 of 35

BMJ Open

2 3		
3 4	1	Abstract:
5	T	
6 7	2	Objectives: To explore the relationship between the pretreatment or posttreatment
8		
9 10	3	neutrophil to lymphocyte ratio (NLR) and overall survival (OS)/ progression-free
11 12 13	4	survival (PFS) in lung cancer patients receiving immunotherapy.
14 15	5	Design: We searched several databases to collect relevant studies conducted until July
16 17 18	6	2019. We carefully reviewed the full text of the included publications and combined
19 20	7	the hazard ratios (HRs) and 95% confidence intervals (CIs) to assess the association
21 22 23	8	between the NLR and survival time in lung cancer patients receiving immunotherapy.
24 25 26	9	Data Sources: PubMed, the Cochrane Library, Embase and Web of Science
27 28	10	Eligibility Criteria: Studies reporting the prognostic value of the NLR in lung cancer
29 30 31	11	patients receiving immunotherapy were enrolled.
32 33	12	Data extraction and synthesis: Basic information on the articles and patients(NLR
34 35 36	13	cutoff value, NLR at baseline, and HRs with 95% CIs for OS and PFS) was extracted
37 38 39	14	by two authors independently. The pooled HRs of OS and PFS were synthesized
40 41	15	using the random effects or fixed effects model.
42 43 44	16	Results: Twenty-three studies with 2068 patients were enrolled. Among all patients,
45 46	17	1305 (64.0%) were males, and 643 (31.4%) were diagnosed with squamous cell
47 48 49	18	carcinoma. In a pooled analysis of OS and PFS from all studies, an elevated NLR
50		
51 52		
52 53		
54		
55		

1	predicted poor OS (HR=1.62; 95% CI: 1.41-1.87; P< 0.001) and PFS (HR=1.47; 95%
2	CI: 1.25-1.72; $P < 0.0001$). Subgroup analyses stratified showed that the posttreatment
3	NLR was not significantly related to OS and that patients in Asia had significantly
4	higher HRs than those in Europe and America. Furthermore, the proportion of
5	squamous cell carcinoma and baseline NLR could affect the prognostic value of the
6	NLR.
7	Conclusions: Our study found that an elevated NLR was associated with poor OS and
8	PFS in lung cancer patients receiving immunotherapy and that several clinical factors
9	might have an impact on the predictive value of the NLR in the survival of lung
10	cancer patients.
11	Strengths and limitations of this study
12	1. Verification of the prognostic value of the NLR in a large number of lung
13	cancer patients who received immunotherapy
14	2. Different clinical characteristics could affect the prognostic value of the NLR
15	3. High heterogeneity was present in this analysis
16	Keywords: NLR; systemic inflammation; prognostic markers; lung cancer
17	
18	

BMJ Open

2		
3		
4 5	1	Introduction:
6 7	2	Lung cancer is the most prevalent cancer and life-threatening malignancy
8 9 10	3	worldwide.(1) The pathogenesis of lung cancer is complicated, and the primary
11 12 13	4	treatments for lung cancer patients are surgery and chemotherapy. Unfortunately,
14 15	5	most patients with lung cancer are diagnosed at advanced stages, and the benefits
16 17 18	6	achieved from chemotherapy in advanced lung cancer patients are relatively small.
19 20 21	7	Recently, many studies have revealed that tumor cells can evade the antitumor
22 23	8	responses of T cells by controlling the combined responses of programmed cell death
24 25 26	9	protein 1 (PD-1) and programmed cell death ligand-1 (PD-L1).(2) Nivolumab,
27 28 29	10	pembrolizumab, atezolizumab, durvalumab, ipilimumab and tremelimumab have
30 31	11	successfully changed clinical experiences in lung cancer treatment.(3) Tumor
32 33 34	12	mutational burden,(4) neoantigens(5) and classical monocytes in the peripheral
35 36	13	blood(6) and PD-L1 expression on tumor cells in particular, (7) are effective
37 38 39	14	predictive biomarkers for immune checkpoint therapy in lung cancer. Systemic
40 41 42	15	inflammation in cancer patients is believed to influence the growth and migration of
43 44	16	tumors via certain inflammatory factors.(8) An elevated level of systemic
45 46 47	17	inflammation, including Glasgow prognostic score (GPS), neutrophil to lymphocyte
48 49 50 51 52	18	ratio (NLR), platelet to lymphocyte ratio (PLR), and C-reactive protein to albumin

2
3
4
5
6
7
8
•
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
57 58 59

1	ratio (CAR), have been indicated to be associated with poor survival in patients with
2	solid tumors.(9-11) However, data on the prognostic value of the pretreatment NLR in
3	lung cancer patients receiving immunotherapy remain scarce and inconsistent.
4	Therefore, we reviewed available publications and conducted a meta-analysis to
5	explore the prognostic value of the pretreatment NLR for r overall survival (OS) and
6	progression-free survival (PFS) in clinical trials on lung cancer patients receiving
7	immunotherapy.
8	Materials and Methods
9	Patient and Public Involvement: No patient was involved
10	Search strategy
11	The PRISMA guidelines for a systematic review and meta-analysis were strictly
12	followed in this article (registration number PROSPERO: CRD42018104856). An
13	online search was conducted to identify relevant publications in the PubMed,
14	Cochrane Library, Web of Science and Embase databases. The following words were
15	used to search for studies on the associations between the pretreatment NLR and
16	survival time in patients with lung cancer published before July 2019: "pulmonary
17	neoplasms", "neutrophil lymphocyte ratio", "immunotherapy", "programmed death
18	receptor-1", and "immune checkpoint inhibitor". A full electronic search strategy is

Page 7 of 35

1

BMJ Open

2
2
3
4
3 4 5 6 7 8 9 10 11
6
7
/
8
9
10
11
11
12 13
13
14
1
15
16
17
18
10
19
20
14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 30 31 32 33 34 35
22
~~ >>
23
24
25
26
20
27
28
29
20
50
31
32
33
21
54
35
34 35 36 37
37
37 38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
57
50
59

60

1	provided in the supplementary information (Supplementary Table 1). Additional
2	studies were selected for a full-text review were selected by exploring the references
3	cited in the selected articles and relevant reviews. The articles were limited to the
4	English language, but there were no restrictions on the minimum number of patients.
5	Two authors (J Jin and L Yang) independently reviewed the titles and abstracts of the
6	retrieved articles to select the potentially relevant articles for a careful assessment.
7	Eligibility criteria
8	The inclusion criteria were as follows: 1) retrospective or prospective studies
9	published before July 2019; 2) all patients enrolled in the studies were diagnosed with
10	lung cancer by biopsy and received immunotherapy; 3) the value of the NLR was
11	calculated based on the level of neutrophils and lymphocytes; and 4) HRs and 95%
12	CIs were provided and data necessary to calculate them were reported.
13	The exclusion criteria were as follows: 1) review, meeting abstract, letter, or full text
14	unavailable in English; 2) nonhuman studies; and 3) research that did not provide the
15	value of the NLR.
16	Data extraction
17	From each study, the name of the study, first author, year of publication, study design,

number of patients, sex distribution, age, median follow-up time, histology, NLR

1	
2	
3	
1	
5	
6	
/	
8	
9	
2 3 4 5 6 7 8 9 10 11 12 13 14 15	
11	
12 13 14 15 16 17 18	
13	
14	
15	
16	
17	
10	
10 10	
19	
20	
21	
20 21 22 23 24 25 26 27 28 29 30 31	
23	
24	
25	
26	
27	
28	
20	
29	
30	
31	
32	
33 34 35 36 37	
34	
35	
36	
37	
38	
39	
40	
41	
42	
42 43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
54 55	
56	
57	
58	
59	

60

1	cutoff value, NLR at baseline, line of therapy, drugs and HRs with 95% CIs for OS
2	and PFS were extracted by two authors (D Liu and L Yang). If univariate and
3	multivariate analysis results were simultaneously reported, only the multivariate
4	analysis results were extracted. Any disagreements between the authors were resolved
5	by a discussion and consensus. The most recent study was chosen when duplicate
6	studies occurred.
7	Quality assessment
8	The primary studies were assessed by the Newcastle-Ottawa quality assessment Scale
9	(NOS). The quality assessment was conducted by two independent researchers (J Jin
10	and D Liu). The studies in which the mark was between 6 and 9 points were regarded
11	as high-quality studies.
12	(http://www.ohri.ca/programs/clinical_epidemiology/oxford.asp)
13	Statistical analysis
14	The primary endpoints were the OS and PFS of lung cancer patients receiving
15	immunotherapy. PFS was defined as the time from the initial date of immunotherapy
16	to the date of progression or death. OS was calculated from the date of inclusion to
17	the time of death from any cause. HRs with 95% CIs were directly obtained from the
18	articles or estimated from the Kaplan-Meier curves according to the methods reported

Page 9 of 35

BMJ Open

1	by Tierney et al.(12) We calculated the pooled HRs of OS and PFS using random
2	effects or fixed effects model. We performed the Q-test to assess between-study
3	heterogeneity and calculated the I ² statistic, which expresses the percentage of the
4	total observed variability due to study heterogeneity. The heterogeneity between
5	studies was considered small if the I^2 statistic was less than 50% and the P value for
6	the Q-test was less than 0.05. We performed a subgroup analysis to detect the source
7	of heterogeneity. In addition, we considered only subgroups that included more than
8	two studies. Publication bias was assessed by Egger's and Begg's test, and
9	significant publication bias was defined as a P<0.10.(13) The trim and fill method was
10	applied when significant publication bias was found to confirm the pooled results.
11	Sensitivity analyses were carried out by excluding each study individually from the
12	meta-analysis.(14) All statistical analyses were performed with R (Version: 3.5.2).
13	Result
14	The characteristics of the included studies
15	A total of 1102 studies were retrieved in this meta-analysis, and 279 studies were
16	selected for full-text review. In total, 23 studies with 2068 patients fulfilled the
17	inclusion and exclusion criteria, with publication dates ranging from 2017 to
18	2018.(15-37) The flow diagram of this study is shown in Figure 1. The sample size

1
1 ว
2
4
5
6
7
8
9
10
11
12
13
14
15
16 17
17
19
20
21
22
23
24
25
26
27
28
29
30
31
32 33
33 34
35
36
37
38
39
40
41
42
43
44
45
46
47
48 40
49 50
50 51
52
53
54
55
56
57
58
59
60

60

1	was between 19 and 201. Of these studies, 9 were conducted in Europe, (16, 17, 21,
2	24, 27, 30, 35, 36) 5 were conducted in America, (22, 28, 31, 33, 37) and the
3	remaining studies were conducted in Asia. Among all patients included, 1305 (64.0%)
4	were males, and 643 (31.4%) were diagnosed with squamous cell carcinoma. Twenty
5	studies explored the association between the NLR and OS; fifteen studies investigated
6	the relationship between the NLR and PFS. Additionally, 7 of 23 studies provided
7	data on the posttreatment NLR. (21, 23, 25, 28, 29, 32, 33) If the study provided data
8	about posttreatment NLR and OS, we treated it as an independent study in the
9	subsequent analysis. Six trials performed first-line therapy, (16, 19, 25, 28, 31, 36)
10	and the other trails performed second or additional-lines of therapy. Most patients
11	received nivolumab, a PD-1 inhibitor, as immunotherapy. The cutoff value of the
12	NLR was not the same in all studies; a value of 5 was used frequently, and the median
13	cutoff value for all enrolled publications was also 5. The NOS scores of the enrolled
14	studies ranged from 6-9. Detailed information on these studies is presented in Table 1.
15	Relationship between the NLR and OS in lung cancer patients receiving
16	immunotherapy
17	Twenty studies on a total of 1629 patients treated with immunotherapy provided the

18

NLR value or data that could be used to calculate the NLR and OS. Five of these

Page 11 of 35

BMJ Open

35	BMJ Open
1	studies provided data on the posttreatment NLR and OS. Data from a total of 23
2	studies were used to combine HRs and 95% CIs. In the pooled analysis of the NLR
3	and OS, we found that a higher NLR was associated with poorer OS, with high
4	heterogeneity (HR=1.62; 95% CI: 1.41-1.87; P< 0.001) (I ² =81.7%, P< 0.001) (Figure
5	2). To detect the source of heterogeneity, we conducted a subgroup analysis on certain
6	clinical factors that may influence the final results, such as study design, the time at
7	which the NLR was determined, ethnicity, sex ratio, the proportion of patients with
8	squamous cell carcinoma (SCC%), the NLR at baseline, the treatment line, the
9	median follow-up time, sample size and the drug given for immunotherapy (Figure 3).
10	Interestingly, the association between the pretreatment NLR and OS showed a similar
11	trend to the pooled result (HR=1.87; 95% CI: 1.46-2.39; $P < 0.001$). However, the
12	posttreatment NLR was not significantly related to the OS in lung cancer patients
13	(HR=1.80; 95% CI: 0.81-4.00; P=0.111). However, these results were still highly
14	heterogeneous (pretreatment: I ² =79.80%, P< 0.001; posttreatment: I ² =83.5%, P<
15	0.001). Furthermore, the NLR was significantly unrelated to the OS in studies in
16	which the proportion of patients with squamous cell carcinoma or whose baseline
17	NLR exceeded the cutoff value was greater than 50% (Figure 3). The subgroup
18	analysis stratified by ethnicity found that patients in Asia had significantly higher HR
	10

1	(HR=2.76; 95% CI: 1.88- 4.06) and less heterogeneity (I ² =45.7%, P=0.091) than
2	those in Europe and America (P _{interaction} =0.030) (Figure 3).
3	Relationship between the NLR and PFS in lung cancer patients receiving
4	immunotherapy
5	Data on the NLR and PFS of 1612 patients treated with immunotherapy in 20 studies
6	were extracted to obtain the pooled HR and 95% CI. Four of these studies provided
7	the posttreatment NLR and its relationship with PFS. The random effects model
8	revealed a significant association between an elevated NLR and PFS in lung cancer
9	patients receiving immunotherapy (HR=1.47; 95% CI: 1.25-1.72; P< 0.001) with high
10	heterogeneity (I ² =72.5%, P< 0.001) (Figure 4). To detect the potential source of
11	heterogeneity in studies reporting PFS data, a subgroup analysis stratified by the
12	factors that affect the NLR was performed as previously described (Figure 5). Similar
13	to the relationship between the NLR and OS, the NLR was significantly unrelated to
14	the PFS in studies in which the proportion of patients with squamous cell carcinoma
15	was greater than 50% ($P_{interaction}=0.005$). However, the pooled results for subgroups
16	based on other factors were not markedly changed with a low level of heterogeneity.
17	Sensitivity analysis and Publication bias

18 We found high heterogeneity among studies in which the relationship between the

Page 13 of 35

BMJ Open

	matroatment NLP. OS and DES was analyzed. Therefore, we menformed a sourcitivity
1	pretreatment NLR, OS and PFS was analyzed. Therefore, we performed a sensitivity
2	analysis on all enrolled studies. The effect of each study set on the combined HRs was
3	evaluated by excluding each study individually from the meta-analysis. The results of
4	the sensitivity analysis showed that the pooled HRs for OS and PFS were robust in
5	our meta-analysis (Figure 6A and 6B). We also conducted a subgroup analysis
6	stratified by various factors to detect the source of heterogeneity. Begg's test
7	presented no evidence of obvious publication bias in studies reporting the association
8	between the NLR and OS (P=0.673) or in those reporting the association between the
9	NLR and PFS (P= 0.074), but Egger's test showed significant publication bias in
10	which both were reported (P<0.001 for both). Therefore, we performed a trim and fill
11	analysis on studies reporting the relationship between the NLR and OS/PFS.
12	However, the result was unchanged after eliminating the influence of publication bias
13	(OS: HR=1.40; 95% CI:1.22-1.60; P< 0.001, PFS: HR=1.33; 95% CI:1.14-1.56; P<
14	0.001, Supplementary Figure 1).
15	Discussion:
16	The results of our meta-analysis revealed the prognostic effect of both the
17	pretreatment and posttreatment NLR on OS and PFS in lung cancer patients receiving
18	immunotherapy. Twenty-three studies involving a total of 2049 lung cancer patients

1
1 ว
2
4
5
6
7
8
9
10
11
12
13
14 15
15 16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31 32
32 33
34
35
36
37
38
39
40
41
42
43
44 45
45 46
40 47
48
49
50
51
52
53
54
55
56
57
58
59 60

60

1	showed that an increased NLR was significantly associated with poor OS (HR=1.62;	
2	95% CI: 1.41-1.87; P< 0.001) and PFS (HR=1.47; 95% CI: 1.25-1.72; P< 0.001).	
3	Interestingly, the posttreatment NLR was not significantly associated with OS, and	
4	patients in Asia had significantly higher HRs than those in Europe and America.	
5	The immune checkpoint is a kind of mechanism that plays a protective role in the	
6	human immune system and acts as a brake to prevent inflammatory damage caused by	
7	the excessive activation of T cells.(38) Human anti-PD-1 IgG4 mAb is now widely	
8	used and shows higher efficacy than standard therapies in lung cancer therapies. (39)	
9	Despite a wide consensus on testing tumor tissues for PD-L1 expression, the human	
10	anti-PD-1 IgG4 mAb is limited by its "unperfected dichotomy" across studies and	
11	molecules; patients with low levels of PD-L1 expression have response rates of up to	
12	17%, and roughly half of patients are "not-responders" despite having high tumor	
13	levels of PD-L1. Several factors could affect the response and survival of patients	
14	receiving immunotherapy.(39) In addition to tumor mutation loads and the expression	
15	of tumor antigens, the status of systemic inflammation also plays an important role in	
16	lung cancer patients receiving immunotherapy. Tumor-associated cytokines and the	
17	relevant signaling pathways could be reflected by the level of systemic inflammation,	
18	which has been proven to be associated with poor survival in patients with solid	

1
2
3
4
5
6
0
7
8
9
10
10
11
12
13
14 15
15
16
10
16 17 18
18
19
20
20
21
22
23
20 21 22 23 24 25 26 27 28 29 30
24
25
26
27
27
28
29
30
21
31
32
33
31
34 35
35
36 27
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
59 60
011

60

1	tumors.(8) Biomarkers such as NLR, PLR, GPS and modified GPS(mGPS) have been
2	used as prognostic factors in lung cancer.(9-11) In addition, the role of systemic
3	inflammation in patients receiving immunotherapy is particularly important for their
4	survival. Several studies have explored the effect of the pretreatment NLR on lung
5	cancer patients receiving immunotherapy.(31, 40-45) There are also two meta-
6	analyses concerning the pretreatment NLR and survival in patients with advanced
7	cancer. (46) (47) In summary, the NLR is a reliable prognostic factor for patients with
8	various cancer types.
9	Sacdalan D. B reported that a high NLR resulted in poor PFS in patients with several
10	kinds of cancers, such as melanoma, non-small-cell lung cancer (NSCLC) and
11	genitourinary cancer,(46) which was consistent with our results. However, only three
12	publications on lung cancer were enrolled in the previous meta-analysis, and a
13	nonsignificant association was discovered between the pretreatment NLR and OS was
14	discovered. In addition, two of the three studies included in the meta-analysis
15	previously mentioned only provided only abstracts, and we cloud not obtain more
16	details about those cohorts or study designs. Another meta-analysis conducted by Jiang
17	T also revealed a trend similar to ours, but the results of the subgroup analysis showed
18	that posttreatment NLR was significantly associated with poor OS and PFS, which is

1	inconsistent with our result. We enrolled more research articles in our study. In addition,
2	we performed subgroup analyses stratified by additional clinical factors. Furthermore,
3	our results showed that the ethnicity, the NLR at baseline and the proportion of patients
4	with squamous cell carcinoma may affect the prognostic value of the NLR. However,
5	due to the high heterogeneity, the results must be interpreted with caution. We found
6	that patients in Asia had a significant higher HR than those in Europe and America in
7	the subgroup analysis of the relationship between the NLR and OS. Some studies
8	showed that neutrophils were the most abundant immune cell type identified in NSCLC
9	patients and accounted for nearly 20% of all CD45+ cells in patients from America.(48)
10	However, this result was not found in patients from Asia or Europe. The systemic
11	inflammatory response in different ethnicities might differ. Furthermore, we collected
12	baseline patient information, including the proportion of patients with squamous cell
13	carcinoma, from all studies, and our results showed that the histology of lung cancer
14	might have an impact on the prognostic value of the NLR. Many factors including
15	tumor mutation load and the expression of tumor antigens, affect patient response and
16	survival. (39) Patients with lung adenocarcinoma have a high EGFR mutation rate and
17	some studies revealed that patients with targetable oncogenes were associated with a
18	poor response to immunotherapy. (49) This may account for the results of our article.

BMJ Open

1	The current study had several limitations. First, high heterogeneity was present in this
2	analysis although we conducted sensitivity analyses on all studies. The results were
3	robust after eliminating each study from the analysis. In addition, we performed
4	subgroup analyses on certain possible impact factors to detect the source of
5	heterogeneity. Second, Egger's test showed that obvious publication bias in the
6	current study. The pooled results should be treated with caution, although trim and fill
7	analysis testing indicated credibility for this study. Additionally, considering the high
8	heterogeneity after subgroup analysis, other factors might be responsible for the high
9	heterogeneity in this meta-analysis.
10	Conclusion:
11	Generally, our meta-analysis focused on the clinical prognostic agreement of the NLR
12	and OS and PFS in lung cancer patients. Importantly, given the limitations mentioned
13	above, these findings should be treated with caution in clinical practice. More
14	prospective cohort studies are needed to confirm our results.
15	Contributorship statement:
16	(I) Conception and design: W Li, J Jin and Lan Y; II) Administrative support: J Jin, W
17	Li; (III) Provision of study materials or patients: D Liu; (IV) Collection and assembly
18	of data: J Jin, D Liu; (V) Data analysis and interpretation: D Liu, Lan Y; (VI)

1	Manuscript writing: All authors; (VII) Final approval of manuscript: All authors.
2	Competing interests
3	The authors have no conflicts of interest to declare
4	Funding
5	None
6	Data sharing statement:
7	All data in the current study are available in the published articles
8	Acknowledgments:
9	This work was supported by the Transformation Projects of Sci-Tech Achievements
10	of Sichuan Province (2016CZYD0001), the Sci-Tech Support Program of Science and
11	Technology Department of Sichuan Province (2016SZ0073), the National Major Sci-
12	Tech Project (2017ZX10103004-012) and the National Key Development Plan for
13	Precision Medicine Research (2017YFC0910004).
14	Compliance with Ethical Standards
15	Ethical approval: All procedures performed in the studies involving human
16	participants were in accordance with the ethical standards of the institutional and/or
17	national research committee and with the 1964 Helsinki Declaration and its later
18	amendment.

Page 19 of 35

1		
2 3		
4	1	Reference:
5 6	2	1. Siegel RL, Miller KD, Jemal A. Cancer statistics, 2015. CA Cancer J Clin. 2015;65(1):5-29.
7	3	2. Callahan MK, Postow MA, Wolchok JD. Targeting T Cell Co-receptors for Cancer Therapy. Immunity.
8 9	4	2016;44(5):1069-78.
j 10	5	3. Chen YM. Immune checkpoint inhibitors for nonsmall cell lung cancer treatment. Journal of the
11	6	Chinese Medical Association Jcma. 2016;80(1):7.
12 13	7	4. Yarchoan M, Hopkins A, Jaffee EM. Tumor Mutational Burden and Response Rate to PD-1
14	8	Inhibition. The New England journal of medicine. 2017;377(25):2500-1.
15	9	5. Anagnostou V, Smith KN, Forde PM, Niknafs N, Bhattacharya R, White J, et al. Evolution of
16 17	10	Neoantigen Landscape during Immune Checkpoint Blockade in Non-Small Cell Lung Cancer. Cancer
18	11	discovery. 2017;7(3):264-76.
19 20	12	6. Goswami S, Basu S, Sharma P. A potential biomarker for anti-PD-1 immunotherapy. Nature
20 21	13	medicine. 2018;24(2):123-4.
22	14	7. Marchetti A, Barberis M, Franco R, De Luca G, Pace MV, Staibano S, et al. Multicenter Comparison
23	15	of 22C3 PharmDx (Agilent) and SP263 (Ventana) Assays to Test PD-L1 Expression for NSCLC Patients to
24 25	16	Be Treated with Immune Checkpoint Inhibitors. Journal of thoracic oncology : official publication of the
26	17	International Association for the Study of Lung Cancer. 2017;12(11):1654-63.
27 28	18	8. Hooper CE, Lyburn ID, Searle J, Darby M, Hall T, Hall D, et al. The South West Area Mesothelioma
28 29	19 20	and Pemetrexed trial: a multicentre prospective observational study evaluating novel markers of
30	20	 chemotherapy response and prognostication. British journal of cancer. 2015;112(7):1175-82. 9. Wang X, Teng F, Kong L, Yu J. Pretreatment neutrophil-to-lymphocyte ratio as a survival predictor
31 32	21	for small-cell lung cancer. OncoTargets and therapy. 2016;9:5761-70.
33	22	10. Sanchez-Salcedo P, de-Torres JP, Martinez-Urbistondo D, Gonzalez-Gutierrez J, Berto J, Campo A,
34	23	et al. The neutrophil to lymphocyte and platelet to lymphocyte ratios as biomarkers for lung cancer
35 36	25	development. Lung cancer (Amsterdam, Netherlands). 2016;97:28-34.
37	26	11. Kos M, Hocazade C, Kos FT, Uncu D, Karakas E, Dogan M, et al. Prognostic role of pretreatment
38	27	platelet/lymphocyte ratio in patients with non-small cell lung cancer. Wien Klin Wochenschr.
39 40	28	2016;128(17-18):635-40.
41	29	12. Tierney JF, Stewart LA, Ghersi D, Burdett S, Sydes MR. Practical methods for incorporating
42 43	30	summary time-to-event data into meta-analysis. Trials. 2007;8(1):16.
43 44	31	13. Begg CB, Mazumdar M. Operating characteristics of a rank correlation test for publication bias.
45	32	Biometrics. 1994;50(4):1088.
46 47	33	14. O'Rourke K, Shea B, Wells GA. Meta-Analysis of Clinical Trials: Springer New York; 2001. 397-424
48	34	p.
49	35	15. Ren F, Zhao T, Liu B, Pan L. Neutrophil-lymphocyte ratio (NLR) predicted prognosis for advanced
50 51		
52		
53		
54 55		
56		
57		
58 59		
60		

non-small-cell lung cancer (NSCLC) patients who received immune checkpoint blockade (ICB). OncoTargets and therapy. 2019;12:4235-44. 16. Pavan A, Calvetti L, Dal Maso A, Attili I, Del Bianco P, Pasello G, et al. Peripheral Blood Markers Identify Risk of Immune-Related Toxicity in Advanced Non-Small Cell Lung Cancer Treated with Immune-Checkpoint Inhibitors. The oncologist. 2019. 17. Passiglia F, Galvano A, Castiglia M, Incorvaia L, Calo V, Listi A, et al. Monitoring blood biomarkers to predict nivolumab effectiveness in NSCLC patients. Therapeutic advances in medical oncology. 2019;11:1758835919839928. 18. Minami S, Ihara S, Ikuta S, Komuta K. Gustave Roussy Immune Score and Royal Marsden Hospital Prognostic Score Are Biomarkers of Immune-Checkpoint Inhibitor for Non-Small Cell Lung Cancer. World journal of oncology. 2019;10(2):90-100. 19. Ichiki Y, Taira A, Chikaishi Y, Matsumiya H, Mori M, Kanayama M, et al. Prognostic factors of advanced or postoperative recurrent non-small cell lung cancer targeted with immune check point inhibitors. Journal of thoracic disease. 2019;11(4):1117-23. 20. Fukui T, Okuma Y, Nakahara Y, Otani S, Igawa S, Katagiri M, et al. Activity of Nivolumab and Utility of Neutrophil-to-Lymphocyte Ratio as a Predictive Biomarker for Advanced Non-Small-Cell Lung Cancer: A Prospective Observational Study. Clinical lung cancer. 2019;20(3):208-14.e2. 21. Dusselier M, Deluche E, Delacourt N, Ballouhey J, Egenod T, Melloni B, et al. Neutrophil-to-lymphocyte ratio evolution is an independent predictor of early progression of second-line nivolumab-treated patients with advanced non-small-cell lung cancers. PloS one. 2019;14(7):e0219060. 22. Zer A, Sung MR, Walia P, Khoja L, Maganti M, Labbe C, et al. Correlation of Neutrophil to Lymphocyte Ratio and Absolute Neutrophil Count With Outcomes With PD-1 Axis Inhibitors in Patients With Advanced Non-Small-Cell Lung Cancer. Clinical lung cancer. 2018;19(5):426-+. 23. Takeda T, Takeuchi M, Saitoh M, Takeda S. Neutrophil-to-lymphocyte ratio after four weeks of nivolumab administration as a predictive marker in patients with pretreated non-small-cell lung cancer. Thoracic cancer. 2018;9(10):1291-9. 24. Svaton M, Zemanova M, Skrickova J, Jakubikova L, Kolek V, Kultan J, et al. Chronic Inflammation as a Potential Predictive Factor of Nivolumab Therapy in Non-small Cell Lung Cancer. Anticancer research. 2018;38(12):6771-82. 25. Suh KJ, Kim SH, Kim YJ, Kim M, Keam B, Kim TM, et al. Post-treatment neutrophil-to-lymphocyte ratio at week 6 is prognostic in patients with advanced non-small cell lung cancers treated with anti-PD-1 antibody. Cancer Immunology Immunotherapy. 2018;67(3):459-70. 26. Shiroyama T, Suzuki H, Tamiya M, Tamiya A, Tanaka A, Okamoto N, et al. Pretreatment advanced lung cancer inflammation index (ALI) for predicting early progression in nivolumab-treated patients with advanced non-small cell lung cancer. Cancer medicine. 2018;7(1):13-20. 27. Russo A, Franchina T, Ricciardi GRR, Battaglia A, Scimone A, Berenato R, et al. Baseline neutrophilia,

Page 21 of 35

BMJ Open

1		
2 3		
5 4	1	derived neutrophil-to-lymphocyte ratio (dNLR), platelet-to-lymphocyte ratio (PLR), and outcome in non
5	2	small cell lung cancer (NSCLC) treated with Nivolumab or Docetaxel. Journal of cellular physiology.
6	3	2018;233(10):6337-43.
7 8	4	28. Park W, Kwon D, Saravia D, Desai A, Vargas F, El Dinali M, et al. Developing a Predictive Model for
o 9	5	Clinical Outcomes of Advanced Non-Small Cell Lung Cancer Patients Treated With Nivolumab. Clinical
10	6	lung cancer. 2018;19(3):280-8.e4.
11	7	29. Nakaya A, Kurata T, Yoshioka H, Takeyasu Y, Niki M, Kibata K, et al. Neutrophil-to-lymphocyte ratio
12	8	as an early marker of outcomes in patients with advanced non-small-cell lung cancer treated with
13 14	9	nivolumab. International journal of clinical oncology. 2018;23(4):634-40.
15	10	30. Mezquita L, Auclin E, Ferrara R, Charrier M, Remon J, Planchard D, et al. Association of the Lung
16	11	Immune Prognostic Index With Immune Checkpoint Inhibitor Outcomes in Patients With Advanced
17	12	Non-Small Cell Lung Cancer. JAMA oncology. 2018;4(3):351-7.
18 19	13	31. Maymani H, Hess K, Groisberg R, Hong DS, Naing A, Piha-Paul S, et al. Predicting outcomes in
20	13	patients with advanced non-small cell lung cancer enrolled in early phase immunotherapy trials. Lung
21		
22	15	cancer (Amsterdam, Netherlands). 2018;120:137-41.
23 24	16	32. Kiriu T, Yamamoto M, Nagano T, Hazama D, Sekiya R, Katsurada M, et al. The time-series behavior
24 25	17	of neutrophil-to-lymphocyte ratio is useful as a predictive marker in non-small cell lung cancer. PloS
26	18	one. 2018;13(2):e0193018.
27	19	33. Khunger M, Patil PD, Khunger A, Li M, Hu B, Rakshit S, et al. Post-treatment changes in
28	20	hematological parameters predict response to nivolumab monotherapy in non-small cell lung cancer
29 30	21	patients. PloS one. 2018;13(10):e0197743.
31	22	34. Inomata M, Hirai T, Seto Z, Tokui K, Taka C, Okazawa S, et al. Clinical Parameters for Predicting the
32	23	Survival in Patients with Squamous and Non-squamous-cell NSCLC Receiving PD-1 Inhibitor Therapy.
33	24	Pathology oncology research : POR. 2018.
34 35	25	35. Facchinetti F, Veneziani M, Buti S, Gelsomino F, Squadrilli A, Bordi P, et al. Clinical and hematologic
36	26	parameters address the outcomes of non-small-cell lung cancer patients treated with nivolumab.
37	27	Immunotherapy. 2018;10(8):681-94.
38	28	36. Diem S, Schmid S, Krapf M, Flatz L, Born D, Jochum W, et al. Neutrophil-to-Lymphocyte ratio (NLR)
39 40	29	and Platelet-to-Lymphocyte ratio (PLR) as prognostic markers in patients with non-small cell lung cancer
40 41	30	(NSCLC) treated with nivolumab. Lung cancer (Amsterdam, Netherlands). 2017;111:176-81.
42	31	37. Bagley SJ, Kothari S, Aggarwal C, Bauml JM, Alley EW, Evans TL, et al. Pretreatment neutrophil-to-
43	32	lymphocyte ratio as a marker of outcomes in nivolumab-treated patients with advanced non-small-cell
44 45		lung cancer. Lung cancer (Amsterdam, Netherlands). 2017;106:1-7.
45 46	33	
47	34	38. Ito A, Kondo S, Tada K, Kitano S. Clinical Development of Immune Checkpoint Inhibitors. Biomed
48	35	Res Int. 2015;2015:605478.
49 50	36	39. Carbone DP, Reck M, Paz-Ares L, Creelan B, Horn L, Steins M, et al. First-Line Nivolumab in Stage
50 51		
52		
53		
54		
55 56		
50 57		
58		
59		
60		

2		
3	1	IV or Recurrent Non-Small-Cell Lung Cancer. The New England journal of medicine. 2017;376(25):2415-
4 5	2	26.
6	3	40. Mezquita L, Auclin E, Ferrara R, Charrier M, Remon J, Planchard D, et al. Association of the Lung
7	4	Immune Prognostic Index With Immune Checkpoint Inhibitor Outcomes in Patients With Advanced
8		-
9	5	Non-Small Cell Lung Cancer. JAMA Oncol. 2018;4(3):351-7.
10	6	41. Nakaya A, Kurata T, Yoshioka H, Takeyasu Y, Niki M, Kibata K, et al. Neutrophil-to-lymphocyte ratio
11 12	7	as an early marker of outcomes in patients with advanced non-small-cell lung cancer treated with
13	8	nivolumab. Int J Clin Oncol. 2018.
14	9	42. Zer A, Sung MR, Walia P, Khoja L, Maganti M, Labbe C, et al. Correlation of Neutrophil to
15	10	Lymphocyte Ratio and Absolute Neutrophil Count With Outcomes With PD-1 Axis Inhibitors in Patients
16	11	With Advanced Non-Small-Cell Lung Cancer. Clin Lung Cancer. 2018.
17 18	12	43. Park W, Kwon D, Saravia D, Desai A, Vargas F, El Dinali M, et al. Developing a Predictive Model for
18	13	Clinical Outcomes of Advanced Non-Small Cell Lung Cancer Patients Treated With Nivolumab. Clinical
20	14	Lung Cancer. 2018;19(3):280-8.e4.
21	15	44. Fukui T, Okuma Y, Nakahara Y, Otani S, Igawa S, Katagiri M, et al. Activity of Nivolumab and Utility
22		
23 24	16	of Neutrophil-to-Lymphocyte Ratio as a Predictive Biomarker for Advanced Non–Small-Cell Lung Cancer:
24 25	17	A Prospective Observational Study. Clinical Lung Cancer. 2018.
26	18	45. Russo A, Franchina T, Ricciardi GRR, Battaglia A, Scimone A, Berenato R, et al. Baseline neutrophilia,
27	19	derived neutrophil-to-lymphocyte ratio (dNLR), platelet-to-lymphocyte ratio (PLR), and outcome in non
28	20	small cell lung cancer (NSCLC) treated with Nivolumab or Docetaxel. J Cell Physiol. 2018.
29 30	21	46. Sacdalan DB, Lucero JA, Sacdalan DL. Prognostic utility of baseline neutrophil-to-lymphocyte ratio
31	22	in patients receiving immune checkpoint inhibitors: a review and meta-analysis. OncoTargets and
32	23	therapy. 2018;11:955-65.
33	24	47. Jiang T, Bai Y, Zhou F, Li W, Gao G, Su C, et al. Clinical value of neutrophil-to-lymphocyte ratio in
34	25	patients with non-small-cell lung cancer treated with PD-1/PD-L1 inhibitors. Lung cancer (Amsterdam,
35 36	26	Netherlands). 2019;130:76-83.
37	27	48. Kargl J, Busch SE, Yang GH, Kim KH, Hanke ML, Metz HE, et al. Neutrophils dominate the immune
38	28	
39		cell composition in non-small cell lung cancer. Nature communications. 2017;8:14381.
40	29	49. Mazieres J, Drilon A, Lusque A, Mhanna L, Cortot AB, Mezquita L, et al. Immune checkpoint
41 42	30	inhibitors for patients with advanced lung cancer and oncogenic driver alterations: results from the
43	31	IMMUNOTARGET registry. Ann Oncol. 2019;30(8):1321-8.
44	32	
45	52	
46	22	Figure Legends
47 48	33	rigui e Legenus
49		
50	34	Figure 1 Flow chart of study selection
51		
52 53		
53 54		
55		

Page 23 of 35

1

BMJ Open

2		
3		
4	1	Figure 2 Forest plot of the association between the NLR and OS in patients with lung
5		
6	2	cancer receiving immunotherapy
7	2	calleer receiving minimulation apy
8		
9	3	Figure 3 Subgroup analysis of the relationship between the NLR and OS in patients
10		
11 12	4	with lung cancer receiving immunotherapy
12 13	4	with lung cancel receiving minunotierapy
13		
15	5	Abbreviations: ICI: immune checkpoint inhibitor; M/F: male/female; SCC%:
16		
17	6	proportion of patients with squamous cell carcinoma; X: the data here show the
18	0	proportion of patients with squamous cen caremonia, ∞ , the data here show the
19		
20	7	proportion of patients whose baseline NLR exceeded the cutoff value; N: nivolumab;
21		
22	8	P: pembrolizumab; D: durvalumab; E: embrolizumab; A: atezolizumab
23	0	r. penioronzumao, D. durvalumao, E. emoronzumao, A. atezonzumao
24		
25	9	Figure 4 Forest plot of the association between the NLR and PFS in patients with lung
26		
27	10	concer receiving immunotherany
28	10	cancer receiving immunotherapy
29		
30	11	Figure 5 Subgroup analysis of the relationship between the NLR and PFS in patients
31		
32	10	with lung concer receiving immunotherany
33	12	with lung cancer receiving immunotherapy
34		
35	13	Abbreviations: ICI: immune checkpoint inhibitor; M/F: male/female; SCC%:
36		
37	1.4	properties of notionts with squamous call carring mer X: 20 studies provided the data
38	14	proportion of patients with squamous cell carcinoma; X: 20 studies provided the data
39		
40	15	on the pretreatment NLR and PFS, and 5 of them also provided the posttreatment
41 42		
42 43	10	NI D and DEC. M. nivelymeth, D. newbrolingmeth, D. dymoty with E. embrolingmeth
43 44	16	NLR and PFS; N: nivolumab; P: pembrolizumab; D: durvalumab; E: embrolizumab;
44 45		
46	17	A: atezolizumab
47		
48	10	Eigure 6 Sangitivity analysis of $OS(A)$ and $DES(D)$
49	18	Figure 6 Sensitivity analysis of OS (A) and PFS (B)
50		
51		
52		
53		
54		
55		
56		
57		

1(

1 Table

2 Table 1 The basic characteristics of the enrolled studies

7 8	Study	Year	Country	Ethnicity	Sample size	MFP	M/F	NLR at baseline
9	Diem S	2017	Europe	European	52	NM	29/23	5.0(2.7-8.3) *
10 11	Bagley SJ	2017	America	American	175	NM	80/95	NLR≥5:58.0%
11 12	Russo A	2018	Italy	European	28	17	25/3	NM
13	Zer A	2018	America	American	88	5.3	43/45	NLR>4:56.8%
14	Nakaya A	2018	Japan	Asian	101	8.9	77/24	NLR≥3:46.5%
15 16	Maymani H	2018	America	American	74	12.3	36/38	NLR>6:20.3%
17	Mezquita L	2018	Europe	European	161	12	100/61	NLR>3:39.0%
18	Fukui T	2018	Japan	Asian	52	10.9	37/15	NLR≥5:34.6%
19 20	Park W	2018	America	American	159	11.5	82/77	4.3(0.5-24.1) *
21	Takeda T	2018	Japan	Asian	30	NM	19/11	NLR>5:30.0%
22	Svaton M	2018	Czech Republic	European	120	NM	71/49	NLR>3.8:50.0%
23 24	Suh Koung Jin	2018	Korea	Asian	54	26.2	42/12	NLR>5:14.8%
24	Shiroyama Takayuki	2018	Japan	Asian	201	12.4	135/66	NLR>4:39.3%
26	Kiriu T	2018	Japan	Asian	19.00	NM	19	NLR>5:31.6%
27 28	Khunger M	2018	America	American	109	30	56/53	NLR≥5:50.5%
28 _29	Inomata M	2018	Japan	Asian	36	NM	27/9	NLR≥5:44.4%
30	Facchinetti F	2018	Italy	European	54	12.6	45/9	NM
31	Ren F	2019	China	Asian	147	2.6	94/53	NLR>2.5:59.9%
32 33	Pavan A	2019	Italy	European	184	56.3	125/59	NLR≥3:57.5%
34	Passiglia F	2019	Italy	European	45	9.1	32/13	NLR>3.3:51.1%
35	Minami S	2019	Japan	Asian	76	NM	49/27	NLR≥6:14.5%
36 37	Ichiki Y	2019	Japan	Asian	44	4.83	38/6	NM
38	Dusselier M	2019	France	European	59	NM	44/15	NLR>5:62.7%
39	Study	SCC%	Treatment lines	Outcome	Study design	NOS	Cutoff	10
40 41	Diem S	34.6%	including first line therapy	OS/PFS	RO	6	5	Ν
42	Bagley SJ	24.0%	at least second-line therapy	OS/PFS	RO	6	5	Ν
43	Russo A	60.7%	at least second-line therapy	OS/PFS	RO	7	3	Ν
44 45	Zer A	17.1%	at least second-line therapy	OS/PFS/DCR	RO	7	4	NM
45 46	Nakaya A	36.6%	at least second-line therapy	PFS/irAEs	RO	6	3	Ν
47	Maymani H	16.2%	including first line therapy	OS/PFS	RO	7	6	N/P/D
48	Mezquita L	28.6%	at least second line therapy	OS/PFS	RO	9	3	N/E/A/D
49 _50	Fukui T	30.8%	at least second-line therapy	OS/PFS/irAEs	РО	7	5	Ν
- 50								

1									
2	Park W	24.50/	in also din a Cinet line therease	OS/PFS	RO	7	5	N	
4	Takeda T	24.5% 30.0%	including first line therapy at least second-line therapy	PFS	RO	6	5 5	N	
5 6	Svaton M	33.3%	at least second-line therapy	OS/PFS	RO	7	3.8	N	_
7	Svaton W Suh Koung J		including first line therapy	OS/PFS/irAEs	RO	8	5	N/P	
8	Sun Koung J Shiroyama T		at least second-line therapy	PFS/RR	RO	8 7	4	N/r	_
9	Kiriu T	акауикі 30.4% 31.5%	at least second-line therapy	OS/PFS/TTF	RO	7	5	N	
10 11	Khunger M	23.9%	at least second-line therapy	OS/FFS/TIF OS	RO	6	5	N	_
12	Inomata M	44.4%	at least second-line therapy	PFS	RO	6	5	N/P	
13	Facchinetti I		at least second-line therapy	OS/PFS/TTF/DP	PO	8	4	N	
14 15	Ren F	42.2%	at least second-line therapy	OS/PFS	RO	6	2.5	N/P	
16	Pavan A	32.1%	including first line therapy	OS/PFS/irAEs	RO	8	3	N/P/A	
17	Passiglia F	44.4%	at least second-line therapy	OS/TT9/IIALS	RO	8	3.3	N/I/A N	
18 19	Minami S	23.7%	at least second-line therapy	OS/PFS	RO	9	6	N/P/A	_
20	Ichiki Y	65.9%	including first line therapy	OS/PFS/irAEs	RO	9 7	NM	N/P	
21	Dusselier M	20.3%	at least second-line therapy	OS/PFS/IFAES OS	RO	8	5	N/P N	
<u>22</u> 23	Dussener wi	20.370	at least second-line therapy	03	RO	0	5	IN	
23 24	1								
25									
26	2	Abbreviations: N	LR: neutrophil to lymph	ocyte ratio; NM:	not mention	ed; M/	F:		
27 28									
29	3	male/female; MF	P: median follow-up (mo	onths); SCC%: p	proportion of p	patient	s with		
30									
31 32	4	squamous cell ca	rcinoma; IO: immunothe	rapy; N: nivolur	nab; P: pemb	rolizur	nab; D:		
33									
34	5	durvalumab; E: e	mbrolizumab; A: atezoli	zumab; OS: over	rall survival;	PFS:			
35 36									
37	6	progression-free	survival; DCR: disease c	ontrol rate; irAE	ls: immune-re	elated a	dverse		
38									
39	7	events; RR: respo	onse rate; TTF: time to tr	eatment failure;	RO: retrospec	ctive s	tudy;		
40 41									
42	8	PO: prospective study; NOS: Newcastle-Ottawa quality assessment Scale; *: the study							
43									
44 45	9	provided only the	e median NLR and range	at baseline.					
46									
47	10	Supplementary	information						
48									
49 50	11	S1: File. PRISM.	A 2009 checklist.						
51									
52									
53 54									
55									
56									
57									
58 59									
60									

- 1 S2: Search strategy. This file provides the full electronic search strategy for PubMed
- 2 S3: Figure 1.Trim and fill analysis of OS and PFS
- 3 S4: Professional editing certification

to beet terien only

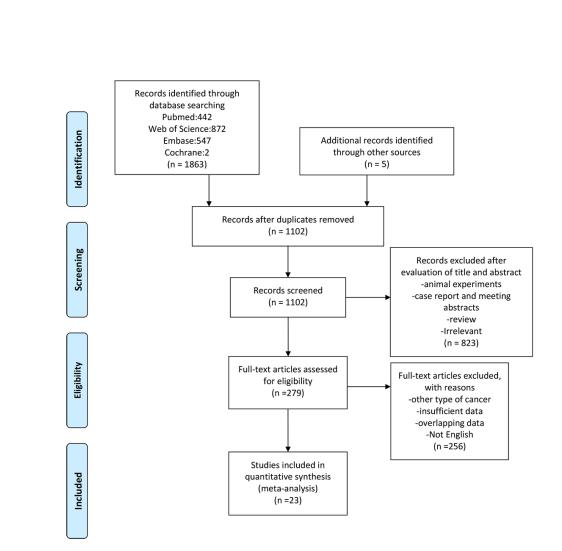


Figure 1 Flow chart of study selection

Study Russo A 2018 Zer A 2018		6 12.5%	Hazard Ratio Fixed + Random, 95% CI 1.14 [0.99; 1.31] 2.22 [1.14; 4.34]	Hazard Ratio IV, Fixed + Random, 95% Cl	
Mayman H 2019 Mozquita L 2018 Diem S 2017 Bagley S J2017 Fisku T 2018 Park W[1] 2016 Park W[2] 2016 Ren. F 2019	0.26 0.3285 0.2% 0.80 0.3015 0.2% 1.19 0.4790 0.1% 1.43 0.5762 0.1% 1.11 0.2933 0.2% 1.24 0.3011 0.2% 0.77 0.3363 0.2%	6 3.5% 6 4.0% 6 1.9% 6 5.4% 6 1.4% 6 4.0% 6 4.0%	2.22 [1.14, -1.34] 1.30 [0.68 [2.48] 2.22 [1.23, 4.01] 3.30 [1.29, 8.44] 2.07 [1.30, 3.30] 4.17 [1.35, 12.90] 3.03 [1.69, 5.45] 3.45 [1.91; 6.22] 2.17 [1.12, 4.18]		
Pavan, A 2019 Passigla, F 2019 Minami, S 2019 Ichiki, Y. 2019 Dusseler, M(2) 2019 Dusseler, M(2) 2019 Svaton, M 2018	0.13 0.0206 47.7% 0.41 0.6883 0.0% 1.59 0.4141 0.1% 1.11 0.3608 0.2% -0.37 0.4597 0.1% -0.89 0.3968 0.1% 0.04 0.0213 44.9%	6 14.1% 6 1.0% 6 2.4% 6 3.0% 6 2.0% 6 2.6% 6 14.0%	1.14 [1.09; 1.18] 1.51 [0.39; 5.82] 4.90 [2.18; 11.04] 3.02 [1.49; 6.13] 0.69 [0.28; 1.70] 0.41 [0.19; 0.89] 1.04 [1.00; 1.09]		
Suh, Koung Jin(1) (2018 Suh, Koung Jin(2) (2018 Kinu, 1)(2) (2018 Khunger, M(1) 2018 Khunger, M(2) 2018 Facchinetti, F.2018 Total (fixed effect, 95% Ci)	1.34 0.4470 0.1% 0.27 0.2776 0.3% 0.37 0.2869 0.2% 0.97 0.3052 0.2% 1.17 0.4632 0.1% 100.0%	6 2.1% 6 4.4% 6 4.2% 6 3.9% 6 2.0%	4.82 [1.16; 19.95] 3.82 [1.59; 9.17] 1.31 [0.76; 2.25] 1.45 [0.83; 2.54] 2.63 [1.45; 4.79] 3.22 [1.30; 7.98] 1.12 [1.09; 1.15]		
Total (random effects, 95% Cl Heterogeneity. Tau ² = 0.0351; Chr		100.0% .01); I ² = 82%	1.62 [1.41; 1.87]	0.1 0.5 1 2 10	

Figure 2 Forest plot of the association between NLR and OS in patients with lung cancer receiving immunotherapy

396x246mm (96 x 96 DPI)

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Subgroup	No. of Patients	No. of Studies	Hazard Ratio(95 %CI)	²	
Overall	1629	23	144	1.62(1.41-1.87)	81.7%	
Cut-off value						
≥5	834	14		2.08(1.42-3.04)	70.2%	
<5	751	8		1.46(1.11-1.93)	75.1%	
Not reported	44	1	·	3.02(1.49-6.13)	-	
Study design						
Retrospective	1523	21	·••	1.81(1.40-2.35)	81.8%	
Prospective	106	2	·	3.56(1.76-7.23)	0.0%	
Time of detection						
Pre-treatment	1610	18		1.87(1.46-2.41)	79.8%	
Post-treatment	19	5	· · · · · · · · · · · · · · · · · · ·	1.80(0.81-4.00)	83.5%	
Ethnicity						
European and American	1232	16		1.63(1.22-2.16)	75.2%	
Asian	397	7		2.76(1.88-4.06)	45.7%	
Gender (M/F)						
<1	337	3	·	1.86(1.34-2.59)	0.0%	
>1	1292	20		1.92(1.44-2.56)	82.6%	
SCC%						
≥50%	131	4		1.02(0.45-2.31)	73.2%	
<50%	1498	19		2.07(1.65-2.58)	82.9%	
NLR at baseline %						
≥50%	851	10	⊢ •i	1.36(0.97-1.92)	77.8%	
<50%	441	7		2.47(1.59-3.84)	56.3%	
Not reported	337	6		2.42(1.61-3.62)	85.7%	
Treatment line						
At least second line therapy	1057	15	H-+	1.67(1.22-2.29)	79.0%	
Including first line therapy	572	8		2.36(1.62-3.44)	85.2%	
Median follow-up						
≥12	669	9	· · · ·	1.78(1.28-2.46)	72.7%	
<12	535	7		2.77(2.11-3.63)	0.0%	
Not reported	425	7		1.42(0.76-2.66)	82.8%	
Sample Size						
≥100	631	9		1.84(1.37-2.45)	86.7%	
< 100	998	14		1.93(1.30-2.86)	75.4%	
ICI						
N	786	14		1.69(1.20-2.38)	81.7%	
N/P	250	4		2.91(1.94-4.31)	0.0%	
N/P/A	260	2		2.23(0.53-9.28)	91.9%	
N/P/D	74	1		1.30(0.68-2.48)	-	
N/E/A/D	161	1		2.22(1.23-4.01)	-	
Not reported	88	1	·····	2.22(1.14-4.34)	-	

Figure 3 Subgroup analysis of the relationship between the NLR and OS in patients with lung cancer receiving immunotherapy

1	
2	
3	
4	
5	
6	
7	
8	
9	
10	
11	Weight Hazard Ratio Hazard Ratio Study TE SE (fixed) (random) IV, Fixed + Random, 95% CI IV, Fixed + Random, 95% CI Russo A 2018 0.05 0.059 6.7% 9.2% 1.05 [0.87] 1.44 + i
12	Zer A 2018 0.54 0.2777 0.6% 4.7% 1.72 (100, 2.96)
13	Nakaya A(2) 2019 0.31 0.2996 0.5% 4.3% 1.37 (0.76); 2.46) Mezquta L.2018 0.60 0.2496 0.8% 5.2% 1.83 (1.12, 2.99) Bagley SJ 2017 0.36 0.1718 1.6% 7.0% 1.43 (1.02, 2.00)
14	Fukuii 1 2018 0.72 0.3169 0.5% 4.0% 2.05(1.10, 3.82)
15	Park W[2] 2018 0.60 0.2022 11% 61% 182 [1 21; 274]
16	Minami, 5 2019 0.45 0.354 0.47% 3.5% 1.56 [0.78; 3.13]
17	Takeda, [2] 2018 - 0.63 0.4970 0.2% 0.25% 0.53 [0.20; 1.41] Takeda, [3] 2018 1.79 0.8103 0.1% 0.9% 6.00 [1.22; 29.34]
18	Suh, Koung Jin[12018 0.75 0.5005 0.2% 2.1% 2.110.79, 5.62]
19	Shirioyama, Takayuki 2018 0.38 0.1620 1.8% 7.3% 1.46 [1.06; 2.01] Inomata, M 2018 0.09 0.2357 0.8% 5.5% 1.09 [0.69; 1.73]
20	Total (fixed effect, 95% Cl) 100.0% - 1.09 [1.05; 1.14] Total (random effects, 95% Cl) - 100.0% 1.47 [1.25; 1.72]
21	Heterogeneity: Tau ² = 0.0861; Chi ² = 68.98; df = 19 (P < 0.01); l ² = 72% 0.1 0.5 1 2 10
22	
23	
24	
25	
26	
27	Figure 4 Forest plot of the association between NLR and PFS in patients with lung cancer receiving
28	immunotherapy
29	206×246mm (06 × 06 DDI)
30	396x246mm (96 x 96 DPI)
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
50	
50 51	
50 51 52	
50 51 52 53 54	
50 51 52 53	
50 51 52 53 54 55 56	
50 51 52 53 54 55	

59

Subgroup	No. of Patients	No. of Studies	Hazard F	Ratio(95 %CI)	l ²	P Valu
Overall	1612	20	1**	1.47(1.25-1.72)	72.50%	
Cut-off value						0.165
≥5	582	11		2.08(1.42-3.04)	65.90%	
<5	1030	9	++1	1.46(1.11-1.93)	60.90%	
Study design						0.356
Retrospective	1560	19	H+	1.50(1.20-1.88)	72.30%	
Prospective	52	1	• • •••	2.05(1.10-3.82)	_	
Time of detection *						0.302
Pre-treatment	1612	15	101	1.32(1.18-1.49)	62.50%	
Post-treatment	344	5	+	2.40(0.78-7.35)	81.00%	
Ethnicity						0.434
European and American	915	8	H#H	1.40(1.16-1.68)	77.00%	
Asian	697	12	⊢ →−−−−i	1.65(1.08-2.52)	57.30%	
Gender (M/F)						0.930
<1	263	2		1.50(1.13-2.00)	73.30%	
>1	1349	18	→ →→	1.53(1.19-1.97)	0.00%	
SCC%						0.005
≥50%	28	1		1.05(0.89-1.24)	-	
<50%	1594	19	H+-1	1.56(1.25-1.96)	73.80%	
NLR at baseline						0.607
≥50%	714	5	++-1	1.34(1.09-1.65)	76.20%	
<50%	711	12		1.70(1.12-2.59)	58.30%	
Not reported	187	3		1.41(0.99-2.01)	77.90%	
Treatment line						0.084
At least second line therapy	1215	15	++	1.29(1.12-1.49)	55.40%	
Including first line therapy	397	5		2.50(1.20-5.24)	66.50%	
Median follow-up						0.287
≥12	628	6	• •	2.07(1.05-4.07)	82.50%	
<12	547	7	H++	1.55(1.31-1.84)	0.00%	
Not reported	437	7	++	1.21(0.86-1.71)	47.40%	
Sample Size						0.390
≥100	1248	10		1.38(1.21-1.59)	73.70%	
< 100	364	10		1.77(1.03-3.03)	72.50%	
ICI						0.290
N	902	13	++-	1.31(1.10-1.56)	61.70%	
N/P	201	3	+	3.25(0.79-13.40)	_	
N/P/A	260	2	→ →	1.74(1.24-2.44)	_	
N/E/A/D	161	1	→	1.83(1.12-2.99)	86.10%	
	88	1	—	1.72(1.00-2.96)	0.00%	

Figure 5 Subgroup analysis of the relationship between the NLR and PFS in patients with lung cancer receiving immunotherapy

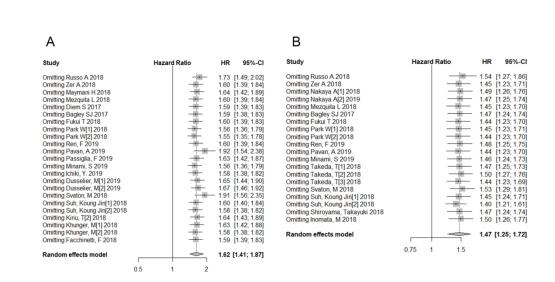
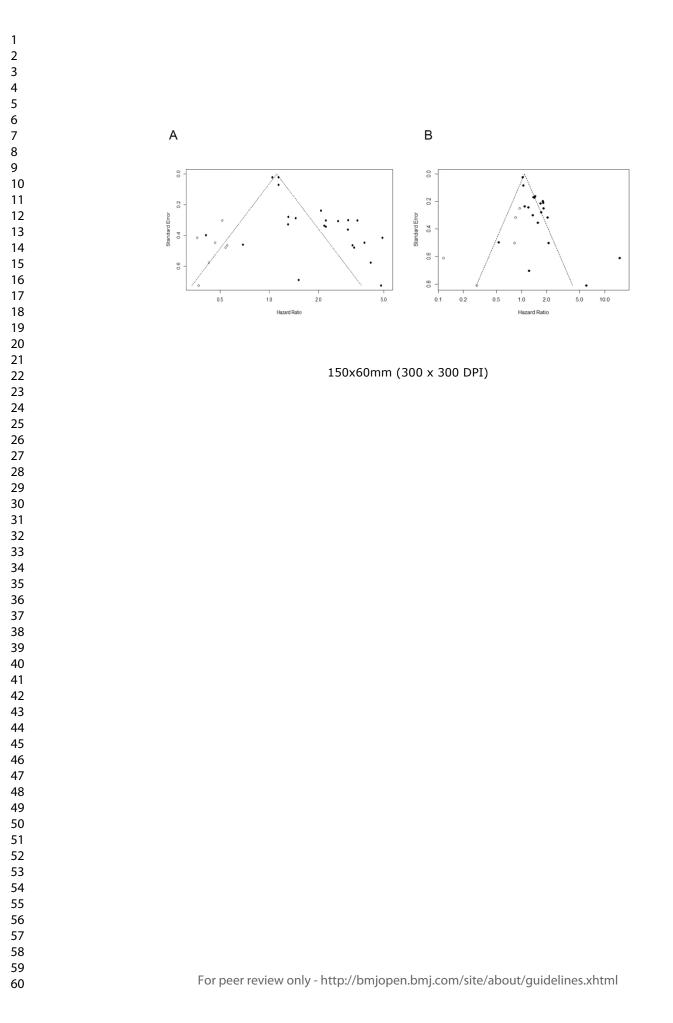


Figure 6 Sensitivity analysis on OS (A) and PFS (B)


143x74mm (300 x 300 DPI)

Supplement Table1 Search strategy for meta-analysis of Correlation of the neutrophil to lymphocyte ratio and clinical outcomes in lung cancer patients receiving immunotherapy: a meta-analysis (PubMed via NLM)

	Search terms: neutrophil to lymphocyte ratio and lung cancer patients with immunotherapy
Pa	pulation: persons with lung cancer receiving immunotherapy
1	(((((Cancer of Lung) OR Pulmonary Neoplasms) OR Neoplasms, Lung) OR Lung Neoplasm) OR
	Neoplasm, Lung) OR Neoplasms, Pulmonary) OR Neoplasm, Pulmonary) OR Pulmonary
	Neoplasm) OR Lung Cancer) OR Cancer, Lung) OR Cancers, Lung) OR Lung Cancers) OR
	Pulmonary Cancer, OR Cancer, Pulmonary) OR Cancers, Pulmonary) OR Pulmonary Cancers)
	OR Cancer of the Lung) OR "Lung Neoplasms"[Mesh]))))) AND (("Immunotherapy"[Mesh])
	AND Immunotherapies)
Inte	ervention (Expose): neutrophil to lymphocyte ratio
2	((NLR) OR (neutrophil to lymphocyte ratio) OR neutrophil lymphocyte ratio))
Con	nbined sets
3	1 and 2
Lim	iits
4	3 AND English [Language]

[Mesh] = Term from the Medline controlled vocabulary, including terms found below this term in the Mesh hierarchy

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

PRISMA 2009 Checklist

Section/topic	#	Checklist item	Reported on page #
TITLE			
Title	1	Identify the report as a systematic review, meta-analysis, or both.	1
ABSTRACT			
Structured summary	2	Provide a structured summary including, as applicable: background; objectives; data sources; study eligibility criteria, participants, and interventions; study appraisal and synthesis methods; results; limitations; conclusions and implications of key findings; systematic review registration number.	2-3
INTRODUCTION			
Rationale	3	Describe the rationale for the review in the context of what is already known.	4
Objectives	4	Provide an explicit statement of questions being addressed with reference to participants, interventions, comparisons, outcomes, and study design (PICOS).	5
METHODS			
Protocol and registration	5	Indicate if a review protocol exists, if and where it can be accessed (e.g., Web address), and, if available, provide registration information including registration number.	5
Eligibility criteria	6	Specify study characteristics (e.g., PICOS, length of follow-up) and report characteristics (e.g., years considered, language, publication status) used as criteria for eligibility, giving rationale.	6
Information sources	7	Describe all information sources (e.g., databases with dates of coverage, contact with study authors to identify additional studies) in the search and date last searched.	5
Search	8	Present full electronic search strategy for at least one database, including any limits used, such that it could be repeated.	5-6 and supplements
Study selection	9	State the process for selecting studies (i.e., screening, eligibility, included in systematic review, and, if applicable, included in the meta-analysis).	5-8
Data collection process	10	Describe method of data extraction from reports (e.g., piloted forms, independently, in duplicate) and any processes for obtaining and confirming data from investigators.	6-7
Data items	11	List and define all variables for which data were sought (e.g., PICOS, funding sources) and any assumptions and simplifications made.	6-7
Risk of bias in individual studies	12	Describe methods used for assessing risk of bias of individual studies (including specification of whether this was done at the study or outcome level), and how this information is to be used in any data synthesis.	8
Summary measures	13	State the principal summary measures (e.g., risk ratio, difference in means).	7-8
Synthesis of results	14	Describe the methods of handling data and combining results of studies, if done, including measures of consistency (e.g., I ²) for each meta-analysis.	7-8

Page 1 of 2

3

4

47

PRISMA 2009 Checklist

5 6 Section/topic	#	Checklist item	Reported on page #
 8 Risk of bias across studies 9 	15	Specify any assessment of risk of bias that may affect the cumulative evidence (e.g., publication bias, selective reporting within studies).	8
10 Additional analyses	16	Describe methods of additional analyses (e.g., sensitivity or subgroup analyses, meta-regression), if done, indicating which were pre-specified.	8
13 RESULTS			
14 Study selection	17	Give numbers of studies screened, assessed for eligibility, and included in the review, with reasons for exclusions at each stage, ideally with a flow diagram.	8-9
17 Study characteristics 18	18	For each study, present characteristics for which data were extracted (e.g., study size, PICOS, follow-up period) and provide the citations.	8-9
¹⁹ Risk of bias within studies	19	Present data on risk of bias of each study and, if available, any outcome level assessment (see item 12).	11-12
20 21 Results of individual studies 22	20	For all outcomes considered (benefits or harms), present, for each study: (a) simple summary data for each intervention group (b) effect estimates and confidence intervals, ideally with a forest plot.	8-11
23 Synthesis of results	21	Present results of each meta-analysis done, including confidence intervals and measures of consistency.	8-11
²⁴ 25 Risk of bias across studies	22	Present results of any assessment of risk of bias across studies (see Item 15).	11-12
26 Additional analysis	23	Give results of additional analyses, if done (e.g., sensitivity or subgroup analyses, meta-regression [see Item 16]).	12
27 28 DISCUSSION		•	
29 Summary of evidence	24	Summarize the main findings including the strength of evidence for each main outcome; consider their relevance to key groups (e.g., healthcare providers, users, and policy makers).	12-13
31 32 Limitations 33	25	Discuss limitations at study and outcome level (e.g., risk of bias), and at review-level (e.g., incomplete retrieval of identified research, reporting bias).	15-16
34 Conclusions	26	Provide a general interpretation of the results in the context of other evidence, and implications for future research.	16
36 FUNDING	1		
37 38 39	27	Describe sources of funding for the systematic review and other support (e.g., supply of data); role of funders for the systematic review.	17
40	J, Altm	han DG, The PRISMA Group (2009). Preferred Reporting Items for Systematic Reviews and Meta-Analyses: The PRISMA Statement. PLoS Med For more information, visit: <u>www.prisma-statement.org</u> . Page 2 of 2	6(7): e1000097.
45 46		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml	

BMJ Open

Association of the neutrophil to lymphocyte ratio and clinical outcomes in lung cancer patients receiving immunotherapy: a meta-analysis

Journal:	BMJ Open
Manuscript ID	bmjopen-2019-035031.R2
Article Type:	Original research
Date Submitted by the Author:	14-Apr-2020
Complete List of Authors:	Jin, Jing; Sichuan University West China Hospital Yang, Lan; Sichuan University West China Hospital Liu, Dan; Sichuan University West China Hospital Li, Weimin; Sichuan University West China Hospital,
Primary Subject Heading :	Oncology
Secondary Subject Heading:	Respiratory medicine
Keywords:	Immunology < BASIC SCIENCES, Epidemiology < ONCOLOGY, Respiratory tract tumours < ONCOLOGY

I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd ("BMJ") its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our <u>licence</u>.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge ("APC") for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which <u>Creative Commons</u> licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author's Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.

reliez oni

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

1	Association of the neutrophil to lymphocyte ratio and clinical
2	outcomes in lung cancer patients receiving immunotherapy: a
3	meta-analysis
4	
5	Jing Jin ¹ , Lan Yang ¹ , Dan Liu ¹ , Wei-Min Li ¹ *
6	1. Department of Pulmonary & Critical Care, West China Hospital, Sichuan
7	University, Chengdu 610041, China.
8	Running title: Neutrophil to lymphocyte ratio and lung cancer
9	Address correspondence to: Dr. Wei-Min Li, Department of Pulmonary & Critical
10	Care, West China Hospital, Sichuan University, Chengdu 610041, China. Tel: +86 (028)
11	85423998; E-mail: weimin003@yahoo.com
12	Article summary
13	Strengths and limitations of this study
14	1. Verification of the prognostic value of the NLR in a large number of lung
15	cancer patients who received immunotherapy
16	2. Different clinical characteristics could affect the prognostic value of the NLR
17	3. High heterogeneity was present in this analysis
18	

Page 3 of 35

BMJ Open

	1	Abstract:
	2	Objectives: To explore the relationship between the pretreatment or posttreatment
)	3	neutrophil to lymphocyte ratio (NLR) and overall survival (OS)/ progression-free
 <u>2</u> 3	4	survival (PFS) in lung cancer patients receiving immunotherapy.
1 5	5	Design: We searched several databases to collect relevant studies conducted until July
5 7 3	6	2019. We carefully reviewed the full text of the included publications and combined
))	7	the hazard ratios (HRs) and 95% confidence intervals (CIs) to assess the association
2 3	8	between the NLR and survival time in lung cancer patients receiving immunotherapy.
1 5 5	9	Data Sources: PubMed, the Cochrane Library, Embase and Web of Science
, 7 3	10	Eligibility Criteria: Studies reporting the prognostic value of the NLR in lung cancer
) 	11	patients receiving immunotherapy were enrolled.
2 2 3	12	Data extraction and synthesis: Basic information on the articles and patients (NLR
1 5 5	13	cutoff value, NLR at baseline, and HRs with 95% CIs for OS and PFS) was extracted
7 3	14	by two authors independently. The pooled HRs of OS and PFS were synthesized
) 	15	using the random effects or fixed effects model.
2 3 1	16	Results: Twenty-three studies with 2068 patients were enrolled. Among all patients,
5	17	1305 (64.0%) were males, and 643 (31.4%) were diagnosed with squamous cell
7 3 9	18	carcinoma. In a pooled analysis of OS and PFS from all studies, an elevated NLR
)		
<u>)</u>		
5 1		
5		

1	predicted poor OS (HR=1.62; 95% CI: 1.41-1.87; P< 0.001) and PFS (HR=1.47; 95%
2	CI: 1.25-1.72; P< 0.0001). Subgroup analyses stratified showed that the posttreatment
3	NLR was not significantly related to OS and that patients in Asia had significantly
4	higher HRs than those in Europe and America. Furthermore, the proportion of
5	squamous cell carcinoma and baseline NLR could affect the prognostic value of the
6	NLR.
7	Conclusions: Our study found that an elevated NLR was associated with poor OS and
8	PFS in lung cancer patients receiving immunotherapy and that several clinical factors
9	might have an impact on the predictive value of the NLR in the survival of lung
10	cancer patients.
11	
12	Keywords: NLR; systemic inflammation; prognostic markers; lung cancer
13	
14	
15	
16	
17	
18	
	3

BMJ Open

2		
3		
4 5	1	Introduction:
6 7	2	Lung cancer is the most prevalent cancer and life-threatening malignancy
8 9 10	3	worldwide.(1) The pathogenesis of lung cancer is complicated, and the primary
11 12 13	4	treatments for lung cancer patients are surgery and chemotherapy. Unfortunately,
14 15	5	most patients with lung cancer are diagnosed at advanced stages, and the benefits
16 17 18	6	achieved from chemotherapy in advanced lung cancer patients are relatively small.
19 20 21	7	Recently, many studies have revealed that tumor cells can evade the antitumor
22 23	8	responses of T cells by controlling the combined responses of programmed cell death
24 25 26	9	protein 1 (PD-1) and programmed cell death ligand-1 (PD-L1).(2) Nivolumab,
27 28 29	10	pembrolizumab, atezolizumab, durvalumab, ipilimumab and tremelimumab have
30 31	11	successfully changed clinical experiences in lung cancer treatment.(3) Tumor
32 33 34	12	mutational burden,(4) neoantigens(5) and classical monocytes in the peripheral
35 36	13	blood(6) and PD-L1 expression on tumor cells in particular, (7) are effective
37 38 39	14	predictive biomarkers for immune checkpoint therapy in lung cancer. Systemic
40 41 42	15	inflammation in cancer patients is believed to influence the growth and migration of
43 44	16	tumors via certain inflammatory factors.(8) An elevated level of systemic
45 46 47	17	inflammation, including Glasgow prognostic score (GPS), neutrophil to lymphocyte
48 49 50 51 52	18	ratio (NLR), platelet to lymphocyte ratio (PLR), and C-reactive protein to albumin

2
3
4
5
6
7
8
•
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
57 58 59

1	ratio (CAR), have been indicated to be associated with poor survival in patients with
2	solid tumors.(9-11) However, data on the prognostic value of the pretreatment NLR in
3	lung cancer patients receiving immunotherapy remain scarce and inconsistent.
4	Therefore, we reviewed available publications and conducted a meta-analysis to
5	explore the prognostic value of the pretreatment NLR for r overall survival (OS) and
6	progression-free survival (PFS) in clinical trials on lung cancer patients receiving
7	immunotherapy.
8	Materials and Methods
9	Patient and Public Involvement: No patient was involved
10	Search strategy
11	The PRISMA guidelines for a systematic review and meta-analysis were strictly
12	followed in this article (registration number PROSPERO: CRD42018104856). An
13	online search was conducted to identify relevant publications in the PubMed,
14	Cochrane Library, Web of Science and Embase databases. The following words were
15	used to search for studies on the associations between the pretreatment NLR and
16	survival time in patients with lung cancer published before July 2019: "pulmonary
17	neoplasms", "neutrophil lymphocyte ratio", "immunotherapy", "programmed death
18	receptor-1", and "immune checkpoint inhibitor". A full electronic search strategy is

Page 7 of 35

1

BMJ Open

2
2
3
4
3 4 5 6 7 8 9 10 11
6
7
/
8
9
10
11
11
12 13
13
14
1
15
16
17
18
10
19
20
14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35
22
~~ >>
23
24
25
26
20
27
28
29
20
50
31
32
33
21
54
35
34 35 36 37
37
37 38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
57
50
59

60

1	provided in the supplementary information (Supplementary Table 1). Additional
2	studies were selected for a full-text review were selected by exploring the references
3	cited in the selected articles and relevant reviews. The articles were limited to the
4	English language, but there were no restrictions on the minimum number of patients.
5	Two authors (J Jin and L Yang) independently reviewed the titles and abstracts of the
6	retrieved articles to select the potentially relevant articles for a careful assessment.
7	Eligibility criteria
8	The inclusion criteria were as follows: 1) retrospective or prospective studies
9	published before July 2019; 2) all patients enrolled in the studies were diagnosed with
10	lung cancer by biopsy and received immunotherapy; 3) the value of the NLR was
11	calculated based on the level of neutrophils and lymphocytes; and 4) HRs and 95%
12	CIs were provided and data necessary to calculate them were reported.
13	The exclusion criteria were as follows: 1) review, meeting abstract, letter, or full text
14	unavailable in English; 2) nonhuman studies; and 3) research that did not provide the
15	value of the NLR.
16	Data extraction
17	From each study, the name of the study, first author, year of publication, study design,

number of patients, sex distribution, age, median follow-up time, histology, NLR

1	
2	
3	
1	
5	
6	
/	
8	
9	
2 3 4 5 6 7 8 9 10 11 12 13 14 15	
11	
12 13 14 15 16 17 18	
13	
14	
15	
16	
17	
10	
10 10	
19	
20	
21	
20 21 22 23 24 25 26 27 28 29 30 31	
23	
24	
25	
26	
27	
28	
20	
29	
30	
31	
32	
33 34 35 36 37	
34	
35	
36	
37	
38	
39	
40	
41	
42	
42 43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
54 55	
56	
57	
58	
59	

60

1	cutoff value, NLR at baseline, line of therapy, drugs and HRs with 95% CIs for OS
2	and PFS were extracted by two authors (D Liu and L Yang). If univariate and
3	multivariate analysis results were simultaneously reported, only the multivariate
4	analysis results were extracted. Any disagreements between the authors were resolved
5	by a discussion and consensus. The most recent study was chosen when duplicate
6	studies occurred.
7	Quality assessment
8	The primary studies were assessed by the Newcastle-Ottawa quality assessment Scale
9	(NOS). The quality assessment was conducted by two independent researchers (J Jin
10	and D Liu). The studies in which the mark was between 6 and 9 points were regarded
11	as high-quality studies.
12	(http://www.ohri.ca/programs/clinical_epidemiology/oxford.asp)
13	Statistical analysis
14	The primary endpoints were the OS and PFS of lung cancer patients receiving
15	immunotherapy. PFS was defined as the time from the initial date of immunotherapy
16	to the date of progression or death. OS was calculated from the date of inclusion to
17	the time of death from any cause. HRs with 95% CIs were directly obtained from the
18	articles or estimated from the Kaplan-Meier curves according to the methods reported

Page 9 of 35

BMJ Open

1	by Tierney et al.(12) We calculated the pooled HRs of OS and PFS using random
2	effects or fixed effects model. We performed the Q-test to assess between-study
3	heterogeneity and calculated the I ² statistic, which expresses the percentage of the
4	total observed variability due to study heterogeneity. The heterogeneity between
5	studies was considered small if the I^2 statistic was less than 50% and the P value for
6	the Q-test was less than 0.05. We performed a subgroup analysis to detect the source
7	of heterogeneity. In addition, we considered only subgroups that included more than
8	two studies. Publication bias was assessed by Egger's and Begg's test, and
9	significant publication bias was defined as a P<0.10.(13) The trim and fill method was
10	applied when significant publication bias was found to confirm the pooled results.
11	Sensitivity analyses were carried out by excluding each study individually from the
12	meta-analysis.(14) All statistical analyses were performed with R (Version: 3.5.2).
13	Result
14	The characteristics of the included studies
15	A total of 1102 studies were retrieved in this meta-analysis, and 279 studies were
16	selected for full-text review. In total, 23 studies with 2068 patients fulfilled the
17	inclusion and exclusion criteria, with publication dates ranging from 2017 to
18	2018.(15-37) The flow diagram of this study is shown in Figure 1. The sample size

1
1 ว
2
4
5
6
7
8
9
10
11
12
13
14
15
16 17
17
19
20
21
22
23
24
25
26
27
28
29
30
31
32 33
33 34
35
36
37
38
39
40
41
42
43
44
45
46
47
48 40
49 50
50 51
52
53
54
55
56
57
58
59
60

60

1	was between 19 and 201. Of these studies, 9 were conducted in Europe, (16, 17, 21,
2	24, 27, 30, 35, 36) 5 were conducted in America, (22, 28, 31, 33, 37) and the
3	remaining studies were conducted in Asia. Among all patients included, 1305 (64.0%)
4	were males, and 643 (31.4%) were diagnosed with squamous cell carcinoma. Twenty
5	studies explored the association between the NLR and OS; fifteen studies investigated
6	the relationship between the NLR and PFS. Additionally, 7 of 23 studies provided
7	data on the posttreatment NLR. (21, 23, 25, 28, 29, 32, 33) If the study provided data
8	about posttreatment NLR and OS, we treated it as an independent study in the
9	subsequent analysis. Six trials performed first-line therapy, (16, 19, 25, 28, 31, 36)
10	and the other trails performed second or additional-lines of therapy. Most patients
11	received nivolumab, a PD-1 inhibitor, as immunotherapy. The cutoff value of the
12	NLR was not the same in all studies; a value of 5 was used frequently, and the median
13	cutoff value for all enrolled publications was also 5. The NOS scores of the enrolled
14	studies ranged from 6-9. Detailed information on these studies is presented in Table 1.
15	Relationship between the NLR and OS in lung cancer patients receiving
16	immunotherapy
17	Twenty studies on a total of 1629 patients treated with immunotherapy provided the

18

NLR value or data that could be used to calculate the NLR and OS. Five of these

Page 11 of 35

BMJ Open

35	BMJ Open
1	studies provided data on the posttreatment NLR and OS. Data from a total of 23
2	studies were used to combine HRs and 95% CIs. In the pooled analysis of the NLR
3	and OS, we found that a higher NLR was associated with poorer OS, with high
4	heterogeneity (HR=1.62; 95% CI: 1.41-1.87; P< 0.001) (I ² =81.7%, P< 0.001) (Figure
5	2). To detect the source of heterogeneity, we conducted a subgroup analysis on certain
6	clinical factors that may influence the final results, such as study design, the time at
7	which the NLR was determined, ethnicity, sex ratio, the proportion of patients with
8	squamous cell carcinoma (SCC%), the NLR at baseline, the treatment line, the
9	median follow-up time, sample size and the drug given for immunotherapy (Figure 3).
10	Interestingly, the association between the pretreatment NLR and OS showed a similar
11	trend to the pooled result (HR=1.87; 95% CI: 1.46-2.39; $P < 0.001$). However, the
12	posttreatment NLR was not significantly related to the OS in lung cancer patients
13	(HR=1.80; 95% CI: 0.81-4.00; P=0.111). However, these results were still highly
14	heterogeneous (pretreatment: I ² =79.80%, P< 0.001; posttreatment: I ² =83.5%, P<
15	0.001). Furthermore, the NLR was significantly unrelated to the OS in studies in
16	which the proportion of patients with squamous cell carcinoma or whose baseline
17	NLR exceeded the cutoff value was greater than 50% (Figure 3). The subgroup
18	analysis stratified by ethnicity found that patients in Asia had significantly higher HR
	10

1	(HR=2.76; 95% CI: 1.88- 4.06) and less heterogeneity (I ² =45.7%, P=0.091) than
2	those in Europe and America (P _{interaction} =0.030) (Figure 3).
3	Relationship between the NLR and PFS in lung cancer patients receiving
4	immunotherapy
5	Data on the NLR and PFS of 1612 patients treated with immunotherapy in 20 studies
6	were extracted to obtain the pooled HR and 95% CI. Four of these studies provided
7	the posttreatment NLR and its relationship with PFS. The random effects model
8	revealed a significant association between an elevated NLR and PFS in lung cancer
9	patients receiving immunotherapy (HR=1.47; 95% CI: 1.25-1.72; P< 0.001) with high
10	heterogeneity (I ² =72.5%, P< 0.001) (Figure 4). To detect the potential source of
11	heterogeneity in studies reporting PFS data, a subgroup analysis stratified by the
12	factors that affect the NLR was performed as previously described (Figure 5). Similar
13	to the relationship between the NLR and OS, the NLR was significantly unrelated to
14	the PFS in studies in which the proportion of patients with squamous cell carcinoma
15	was greater than 50% ($P_{interaction}=0.005$). However, the pooled results for subgroups
16	based on other factors were not markedly changed with a low level of heterogeneity.
17	Sensitivity analysis and Publication bias

18 We found high heterogeneity among studies in which the relationship between the

Page 13 of 35

BMJ Open

1	pretreatment NLR, OS and PFS was analyzed. Therefore, we performed a sensitivity
2	analysis on all enrolled studies. The effect of each study set on the combined HRs was
3	evaluated by excluding each study individually from the meta-analysis. The results of
4	the sensitivity analysis showed that the pooled HRs for OS and PFS were robust in
5	our meta-analysis (Figure 6A and 6B). We also conducted a subgroup analysis
6	stratified by various factors to detect the source of heterogeneity. Begg's test
7	presented no evidence of obvious publication bias in studies reporting the association
8	between the NLR and OS (P=0.673) or in those reporting the association between the
9	NLR and PFS (P= 0.074), but Egger's test showed significant publication bias in
10	which both were reported (P<0.001 for both). Therefore, we performed a trim and fill
11	analysis on studies reporting the relationship between the NLR and OS/PFS.
12	However, the result was unchanged after eliminating the influence of publication bias
13	(OS: HR=1.40; 95% CI:1.22-1.60; P< 0.001, PFS: HR=1.33; 95% CI:1.14-1.56; P<
14	0.001, Supplementary Figure 1).
15	Discussion:
16	The results of our meta-analysis revealed the prognostic effect of both the
17	pretreatment and posttreatment NLR on OS and PFS in lung cancer patients receiving
18	immunotherapy. Twenty-three studies showed that an increased NLR was

Page 14 of 35

2
3
1
4
5
6
7
8
9
10
11
12
13
14
15
16
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39 40
40
41
42
43
44
45
46
40 47
48
49
50
51
52
53
55 54
56
57
58
59
60

60

1 2

significantly associated with poor OS and PFS. Interestingly, the posttreatment NLR
 was not significantly associated with OS, and patients in Asia had significantly higher
 HRs than those in Europe and America.

The immune checkpoint is a kind of mechanism that plays a protective role in the 4 human immune system and acts as a brake to prevent inflammatory damage caused by 5 the excessive activation of T cells.(38) Human anti-PD-1 IgG4 mAb is now widely 6 used and shows higher efficacy than standard therapies in lung cancer therapies. (39) 7 Despite a wide consensus on testing tumor tissues for PD-L1 expression, the human 8 9 anti-PD-1 IgG4 mAb is limited by its "unperfected dichotomy" across studies and molecules; patients with low levels of PD-L1 expression have response rates of up to 10 17%, and roughly half of patients are "not-responders" despite having high tumor 11 12 levels of PD-L1. Several factors could affect the response and survival of patients receiving immunotherapy.(39) In addition to tumor mutation loads and the expression 13 of tumor antigens, the status of systemic inflammation also plays an important role in 14 15 lung cancer patients receiving immunotherapy. Tumor-associated cytokines and the relevant signaling pathways could be reflected by the level of systemic inflammation, 16 which has been proven to be associated with poor survival in patients with solid 17 tumors.(8) Biomarkers such as NLR, PLR, GPS and modified GPS(mGPS) have been 18

Page 15 of 35

BMJ Open

1	used as prognostic factors in lung cancer.(9-11) In addition, the role of systemic
2	inflammation in patients receiving immunotherapy is particularly important for their
3	survival. Several studies have explored the effect of the pretreatment NLR on lung
4	cancer patients receiving immunotherapy.(31, 40-45) There are also two meta-
5	analyses concerning the pretreatment NLR and survival in patients with advanced
6	cancer. (46) (47) In summary, the NLR is a reliable prognostic factor for patients with
7	various cancer types.

Sacdalan D. B reported that a high NLR resulted in poor PFS in patients with several kinds of cancers, such as melanoma, non-small-cell lung cancer (NSCLC) and genitourinary cancer, (46) which was consistent with our results. However, only three publications on lung cancer were enrolled in the previous meta-analysis, and a nonsignificant association was discovered between the pretreatment NLR and OS was discovered. In addition, two of the three studies included in the meta-analysis previously mentioned only provided only abstracts, and we cloud not obtain more details about those cohorts or study designs. Another meta-analysis conducted by Jiang T also revealed a trend similar to ours, but the results of the subgroup analysis showed that posttreatment NLR was significantly associated with poor OS and PFS, which is inconsistent with our result. Different with the study mentioned before, we enrolled

1 2 3	
4 5 6	
7 8 9 10	
11 12	
14 15	
17 18 19	
20 21 22	
17 18 19 20 21 22 23 24 25 26 27 28 29 30	
27 28 29	
31 32	
33 34 35 36 37	
37 38 39	
40 41 42	
43 44 45 46	
40 47 48 49	
50 51 52	
53 54 55 56	
57 58 59	
60	

1	more research articles andperformed subgroup analyses stratified by additional clinical
2	factors. Furthermore, our results showed that the ethnicity, the NLR at baseline and the
3	proportion of patients with squamous cell carcinoma may affect the prognostic value of
4	the NLR. However, due to the high heterogeneity, the results must be interpreted with
5	caution. We also found that patients in Asia had a significant higher HR than those in
6	Europe and America in the subgroup analysis of the relationship between the NLR and
7	OS. Some studies showed that neutrophils were the most abundant immune cell type
8	identified in NSCLC patients and accounted for nearly 20% of all CD45+ cells in
9	patients from America.(48) However, this result was not found in patients from Asia or
10	Europe. The systemic inflammatory response in different ethnicities might differ.
11	Furthermore, we collected baseline patient information, including the proportion of
12	patients with squamous cell carcinoma, from all studies, and our results showed that
13	the histology of lung cancer might have an impact on the prognostic value of the NLR.
14	Many factors including tumor mutation load and the expression of tumor antigens,
15	affect patient response and survival. (39) Patients with lung adenocarcinoma have a
16	high EGFR mutation rate and some studies revealed that patients with targetable
17	oncogenes were associated with a poor response to immunotherapy. (49) This may
18	account for the results of our article.

BMJ Open

1	The current study had several limitations. First, high heterogeneity was present in this
2	analysis although we conducted sensitivity analyses on all studies. The results were
3	robust after eliminating each study from the analysis. In addition, we performed
4	subgroup analyses on certain possible impact factors to detect the source of
5	heterogeneity. Second, Egger's test showed that obvious publication bias in the
6	current study. The pooled results should be treated with caution, although trim and fill
7	analysis testing indicated credibility for this study. Additionally, considering the high
8	heterogeneity after subgroup analysis, other factors might be responsible for the high
9	heterogeneity in this meta-analysis.
10	Conclusion:
11	Generally, our meta-analysis focused on the clinical prognostic agreement of the NLR
12	and OS and PFS in lung cancer patients. Importantly, given the limitations mentioned
13	above, these findings should be treated with caution in clinical practice. More
14	prospective cohort studies are needed to confirm our results.
15	Contributorship statement:
16	(I) Conception and design: W Li, J Jin and Lan Y; II) Administrative support: J Jin, W
17	Li; (III) Provision of study materials or patients: D Liu; (IV) Collection and assembly
18	of data: J Jin, D Liu; (V) Data analysis and interpretation: D Liu, Lan Y; (VI)

1	Manuscript writing: All authors; (VII) Final approval of manuscript: All authors.
2	Competing interests
3	The authors have no conflicts of interest to declare
4	Funding
5	None
6	Data sharing statement:
7	All data in the current study are available in the published articles
8	Acknowledgments:
9	This work was supported by the Transformation Projects of Sci-Tech Achievements
10	of Sichuan Province (2016CZYD0001), the Sci-Tech Support Program of Science and
11	Technology Department of Sichuan Province (2016SZ0073), the National Major Sci-
12	Tech Project (2017ZX10103004-012) and the National Key Development Plan for
13	Precision Medicine Research (2017YFC0910004).
14	Compliance with Ethical Standards
15	Ethical approval: All procedures performed in the studies involving human
16	participants were in accordance with the ethical standards of the institutional and/or
17	national research committee and with the 1964 Helsinki Declaration and its later
18	amendment.

Page 19 of 35

1		
2 3		
4	1	Reference:
5 6	2	1. Siegel RL, Miller KD, Jemal A. Cancer statistics, 2015. CA Cancer J Clin. 2015;65(1):5-29.
7	3	2. Callahan MK, Postow MA, Wolchok JD. Targeting T Cell Co-receptors for Cancer Therapy. Immunity.
8 9	4	2016;44(5):1069-78.
j 10	5	3. Chen YM. Immune checkpoint inhibitors for nonsmall cell lung cancer treatment. Journal of the
11	6	Chinese Medical Association Jcma. 2016;80(1):7.
12 13	7	4. Yarchoan M, Hopkins A, Jaffee EM. Tumor Mutational Burden and Response Rate to PD-1
14	8	Inhibition. The New England journal of medicine. 2017;377(25):2500-1.
15	9	5. Anagnostou V, Smith KN, Forde PM, Niknafs N, Bhattacharya R, White J, et al. Evolution of
16 17	10	Neoantigen Landscape during Immune Checkpoint Blockade in Non-Small Cell Lung Cancer. Cancer
18	11	discovery. 2017;7(3):264-76.
19 20	12	6. Goswami S, Basu S, Sharma P. A potential biomarker for anti-PD-1 immunotherapy. Nature
20 21	13	medicine. 2018;24(2):123-4.
22	14	7. Marchetti A, Barberis M, Franco R, De Luca G, Pace MV, Staibano S, et al. Multicenter Comparison
23	15	of 22C3 PharmDx (Agilent) and SP263 (Ventana) Assays to Test PD-L1 Expression for NSCLC Patients to
24 25	16	Be Treated with Immune Checkpoint Inhibitors. Journal of thoracic oncology : official publication of the
26	17	International Association for the Study of Lung Cancer. 2017;12(11):1654-63.
27 28	18	8. Hooper CE, Lyburn ID, Searle J, Darby M, Hall T, Hall D, et al. The South West Area Mesothelioma
28 29	19 20	and Pemetrexed trial: a multicentre prospective observational study evaluating novel markers of
30	20	 chemotherapy response and prognostication. British journal of cancer. 2015;112(7):1175-82. 9. Wang X, Teng F, Kong L, Yu J. Pretreatment neutrophil-to-lymphocyte ratio as a survival predictor
31 32	21	for small-cell lung cancer. OncoTargets and therapy. 2016;9:5761-70.
33	22	10. Sanchez-Salcedo P, de-Torres JP, Martinez-Urbistondo D, Gonzalez-Gutierrez J, Berto J, Campo A,
34	23	et al. The neutrophil to lymphocyte and platelet to lymphocyte ratios as biomarkers for lung cancer
35 36	25	development. Lung cancer (Amsterdam, Netherlands). 2016;97:28-34.
37	26	11. Kos M, Hocazade C, Kos FT, Uncu D, Karakas E, Dogan M, et al. Prognostic role of pretreatment
38	27	platelet/lymphocyte ratio in patients with non-small cell lung cancer. Wien Klin Wochenschr.
39 40	28	2016;128(17-18):635-40.
41	29	12. Tierney JF, Stewart LA, Ghersi D, Burdett S, Sydes MR. Practical methods for incorporating
42 43	30	summary time-to-event data into meta-analysis. Trials. 2007;8(1):16.
43 44	31	13. Begg CB, Mazumdar M. Operating characteristics of a rank correlation test for publication bias.
45	32	Biometrics. 1994;50(4):1088.
46 47	33	14. O'Rourke K, Shea B, Wells GA. Meta-Analysis of Clinical Trials: Springer New York; 2001. 397-424
48	34	p.
49	35	15. Ren F, Zhao T, Liu B, Pan L. Neutrophil-lymphocyte ratio (NLR) predicted prognosis for advanced
50 51		
52		
53		
54 55		
56		
57		
58 59		
60		

non-small-cell lung cancer (NSCLC) patients who received immune checkpoint blockade (ICB). OncoTargets and therapy. 2019;12:4235-44. 16. Pavan A, Calvetti L, Dal Maso A, Attili I, Del Bianco P, Pasello G, et al. Peripheral Blood Markers Identify Risk of Immune-Related Toxicity in Advanced Non-Small Cell Lung Cancer Treated with Immune-Checkpoint Inhibitors. The oncologist. 2019. 17. Passiglia F, Galvano A, Castiglia M, Incorvaia L, Calo V, Listi A, et al. Monitoring blood biomarkers to predict nivolumab effectiveness in NSCLC patients. Therapeutic advances in medical oncology. 2019;11:1758835919839928. 18. Minami S, Ihara S, Ikuta S, Komuta K. Gustave Roussy Immune Score and Royal Marsden Hospital Prognostic Score Are Biomarkers of Immune-Checkpoint Inhibitor for Non-Small Cell Lung Cancer. World journal of oncology. 2019;10(2):90-100. 19. Ichiki Y, Taira A, Chikaishi Y, Matsumiya H, Mori M, Kanayama M, et al. Prognostic factors of advanced or postoperative recurrent non-small cell lung cancer targeted with immune check point inhibitors. Journal of thoracic disease. 2019;11(4):1117-23. 20. Fukui T, Okuma Y, Nakahara Y, Otani S, Igawa S, Katagiri M, et al. Activity of Nivolumab and Utility of Neutrophil-to-Lymphocyte Ratio as a Predictive Biomarker for Advanced Non-Small-Cell Lung Cancer: A Prospective Observational Study. Clinical lung cancer. 2019;20(3):208-14.e2. 21. Dusselier M, Deluche E, Delacourt N, Ballouhey J, Egenod T, Melloni B, et al. Neutrophil-to-lymphocyte ratio evolution is an independent predictor of early progression of second-line nivolumab-treated patients with advanced non-small-cell lung cancers. PloS one. 2019;14(7):e0219060. 22. Zer A, Sung MR, Walia P, Khoja L, Maganti M, Labbe C, et al. Correlation of Neutrophil to Lymphocyte Ratio and Absolute Neutrophil Count With Outcomes With PD-1 Axis Inhibitors in Patients With Advanced Non-Small-Cell Lung Cancer. Clinical lung cancer. 2018;19(5):426-+. 23. Takeda T, Takeuchi M, Saitoh M, Takeda S. Neutrophil-to-lymphocyte ratio after four weeks of nivolumab administration as a predictive marker in patients with pretreated non-small-cell lung cancer. Thoracic cancer. 2018;9(10):1291-9. 24. Svaton M, Zemanova M, Skrickova J, Jakubikova L, Kolek V, Kultan J, et al. Chronic Inflammation as a Potential Predictive Factor of Nivolumab Therapy in Non-small Cell Lung Cancer. Anticancer research. 2018;38(12):6771-82. 25. Suh KJ, Kim SH, Kim YJ, Kim M, Keam B, Kim TM, et al. Post-treatment neutrophil-to-lymphocyte ratio at week 6 is prognostic in patients with advanced non-small cell lung cancers treated with anti-PD-1 antibody. Cancer Immunology Immunotherapy. 2018;67(3):459-70. 26. Shiroyama T, Suzuki H, Tamiya M, Tamiya A, Tanaka A, Okamoto N, et al. Pretreatment advanced lung cancer inflammation index (ALI) for predicting early progression in nivolumab-treated patients with advanced non-small cell lung cancer. Cancer medicine. 2018;7(1):13-20. 27. Russo A, Franchina T, Ricciardi GRR, Battaglia A, Scimone A, Berenato R, et al. Baseline neutrophilia,

Page 21 of 35

BMJ Open

1		
2 3		
5 4	1	derived neutrophil-to-lymphocyte ratio (dNLR), platelet-to-lymphocyte ratio (PLR), and outcome in non
5	2	small cell lung cancer (NSCLC) treated with Nivolumab or Docetaxel. Journal of cellular physiology.
6	3	2018;233(10):6337-43.
7 8	4	28. Park W, Kwon D, Saravia D, Desai A, Vargas F, El Dinali M, et al. Developing a Predictive Model for
o 9	5	Clinical Outcomes of Advanced Non-Small Cell Lung Cancer Patients Treated With Nivolumab. Clinical
10	6	lung cancer. 2018;19(3):280-8.e4.
11	7	29. Nakaya A, Kurata T, Yoshioka H, Takeyasu Y, Niki M, Kibata K, et al. Neutrophil-to-lymphocyte ratio
12	8	as an early marker of outcomes in patients with advanced non-small-cell lung cancer treated with
13 14	9	nivolumab. International journal of clinical oncology. 2018;23(4):634-40.
15	10	30. Mezquita L, Auclin E, Ferrara R, Charrier M, Remon J, Planchard D, et al. Association of the Lung
16	11	Immune Prognostic Index With Immune Checkpoint Inhibitor Outcomes in Patients With Advanced
17	12	Non-Small Cell Lung Cancer. JAMA oncology. 2018;4(3):351-7.
18 19	13	31. Maymani H, Hess K, Groisberg R, Hong DS, Naing A, Piha-Paul S, et al. Predicting outcomes in
20	13	patients with advanced non-small cell lung cancer enrolled in early phase immunotherapy trials. Lung
21		
22	15	cancer (Amsterdam, Netherlands). 2018;120:137-41.
23 24	16	32. Kiriu T, Yamamoto M, Nagano T, Hazama D, Sekiya R, Katsurada M, et al. The time-series behavior
24 25	17	of neutrophil-to-lymphocyte ratio is useful as a predictive marker in non-small cell lung cancer. PloS
26	18	one. 2018;13(2):e0193018.
27	19	33. Khunger M, Patil PD, Khunger A, Li M, Hu B, Rakshit S, et al. Post-treatment changes in
28	20	hematological parameters predict response to nivolumab monotherapy in non-small cell lung cancer
29 30	21	patients. PloS one. 2018;13(10):e0197743.
31	22	34. Inomata M, Hirai T, Seto Z, Tokui K, Taka C, Okazawa S, et al. Clinical Parameters for Predicting the
32	23	Survival in Patients with Squamous and Non-squamous-cell NSCLC Receiving PD-1 Inhibitor Therapy.
33	24	Pathology oncology research : POR. 2018.
34 35	25	35. Facchinetti F, Veneziani M, Buti S, Gelsomino F, Squadrilli A, Bordi P, et al. Clinical and hematologic
36	26	parameters address the outcomes of non-small-cell lung cancer patients treated with nivolumab.
37	27	Immunotherapy. 2018;10(8):681-94.
38	28	36. Diem S, Schmid S, Krapf M, Flatz L, Born D, Jochum W, et al. Neutrophil-to-Lymphocyte ratio (NLR)
39 40	29	and Platelet-to-Lymphocyte ratio (PLR) as prognostic markers in patients with non-small cell lung cancer
40 41	30	(NSCLC) treated with nivolumab. Lung cancer (Amsterdam, Netherlands). 2017;111:176-81.
42	31	37. Bagley SJ, Kothari S, Aggarwal C, Bauml JM, Alley EW, Evans TL, et al. Pretreatment neutrophil-to-
43	32	lymphocyte ratio as a marker of outcomes in nivolumab-treated patients with advanced non-small-cell
44 45		lung cancer. Lung cancer (Amsterdam, Netherlands). 2017;106:1-7.
45 46	33	
47	34	38. Ito A, Kondo S, Tada K, Kitano S. Clinical Development of Immune Checkpoint Inhibitors. Biomed
48	35	Res Int. 2015;2015:605478.
49 50	36	39. Carbone DP, Reck M, Paz-Ares L, Creelan B, Horn L, Steins M, et al. First-Line Nivolumab in Stage
50 51		
52		
53		
54		
55 56		
50 57		
58		
59		
60		

2		
3	1	IV or Recurrent Non-Small-Cell Lung Cancer. The New England journal of medicine. 2017;376(25):2415-
4 5	2	26.
6	3	40. Mezquita L, Auclin E, Ferrara R, Charrier M, Remon J, Planchard D, et al. Association of the Lung
7	4	Immune Prognostic Index With Immune Checkpoint Inhibitor Outcomes in Patients With Advanced
8		-
9	5	Non-Small Cell Lung Cancer. JAMA Oncol. 2018;4(3):351-7.
10	6	41. Nakaya A, Kurata T, Yoshioka H, Takeyasu Y, Niki M, Kibata K, et al. Neutrophil-to-lymphocyte ratio
11 12	7	as an early marker of outcomes in patients with advanced non-small-cell lung cancer treated with
13	8	nivolumab. Int J Clin Oncol. 2018.
14	9	42. Zer A, Sung MR, Walia P, Khoja L, Maganti M, Labbe C, et al. Correlation of Neutrophil to
15	10	Lymphocyte Ratio and Absolute Neutrophil Count With Outcomes With PD-1 Axis Inhibitors in Patients
16	11	With Advanced Non-Small-Cell Lung Cancer. Clin Lung Cancer. 2018.
17 18	12	43. Park W, Kwon D, Saravia D, Desai A, Vargas F, El Dinali M, et al. Developing a Predictive Model for
18	13	Clinical Outcomes of Advanced Non-Small Cell Lung Cancer Patients Treated With Nivolumab. Clinical
20	14	Lung Cancer. 2018;19(3):280-8.e4.
21	15	44. Fukui T, Okuma Y, Nakahara Y, Otani S, Igawa S, Katagiri M, et al. Activity of Nivolumab and Utility
22		
23 24	16	of Neutrophil-to-Lymphocyte Ratio as a Predictive Biomarker for Advanced Non–Small-Cell Lung Cancer:
24 25	17	A Prospective Observational Study. Clinical Lung Cancer. 2018.
26	18	45. Russo A, Franchina T, Ricciardi GRR, Battaglia A, Scimone A, Berenato R, et al. Baseline neutrophilia,
27	19	derived neutrophil-to-lymphocyte ratio (dNLR), platelet-to-lymphocyte ratio (PLR), and outcome in non
28	20	small cell lung cancer (NSCLC) treated with Nivolumab or Docetaxel. J Cell Physiol. 2018.
29 30	21	46. Sacdalan DB, Lucero JA, Sacdalan DL. Prognostic utility of baseline neutrophil-to-lymphocyte ratio
31	22	in patients receiving immune checkpoint inhibitors: a review and meta-analysis. OncoTargets and
32	23	therapy. 2018;11:955-65.
33	24	47. Jiang T, Bai Y, Zhou F, Li W, Gao G, Su C, et al. Clinical value of neutrophil-to-lymphocyte ratio in
34	25	patients with non-small-cell lung cancer treated with PD-1/PD-L1 inhibitors. Lung cancer (Amsterdam,
35 36	26	Netherlands). 2019;130:76-83.
37	27	48. Kargl J, Busch SE, Yang GH, Kim KH, Hanke ML, Metz HE, et al. Neutrophils dominate the immune
38	28	
39		cell composition in non-small cell lung cancer. Nature communications. 2017;8:14381.
40	29	49. Mazieres J, Drilon A, Lusque A, Mhanna L, Cortot AB, Mezquita L, et al. Immune checkpoint
41 42	30	inhibitors for patients with advanced lung cancer and oncogenic driver alterations: results from the
43	31	IMMUNOTARGET registry. Ann Oncol. 2019;30(8):1321-8.
44	32	
45	52	
46	22	Figure Legends
47 48	33	rigui e Legenus
49		
50	34	Figure 1 Flow chart of study selection
51		
52 53		
53 54		
55		

Page 23 of 35

1

BMJ Open

2		
3		
4	1	Figure 2 Forest plot of the association between the NLR and OS in patients with lung
5		
6	2	cancer receiving immunotherapy
7	2	calleer receiving minimulation apy
8		
9	3	Figure 3 Subgroup analysis of the relationship between the NLR and OS in patients
10		
11 12	4	with lung cancer receiving immunotherapy
12 13	4	with lung cancel receiving minunotierapy
13		
15	5	Abbreviations: ICI: immune checkpoint inhibitor; M/F: male/female; SCC%:
16		
17	6	proportion of patients with squamous cell carcinoma; X: the data here show the
18	0	proportion of patients with squamous cen caremonia, ∞ , the data here show the
19		
20	7	proportion of patients whose baseline NLR exceeded the cutoff value; N: nivolumab;
21		
22	8	P: pembrolizumab; D: durvalumab; E: embrolizumab; A: atezolizumab
23	0	r. penioronzumao, D. durvalumao, E. emoronzumao, A. atezonzumao
24		
25	9	Figure 4 Forest plot of the association between the NLR and PFS in patients with lung
26		
27	10	concer receiving immunotherany
28	10	cancer receiving immunotherapy
29		
30	11	Figure 5 Subgroup analysis of the relationship between the NLR and PFS in patients
31		
32	10	with lung concer receiving immunotherany
33	12	with lung cancer receiving immunotherapy
34		
35	13	Abbreviations: ICI: immune checkpoint inhibitor; M/F: male/female; SCC%:
36		
37	1.4	properties of notionts with squamous call carring mer X: 20 studies provided the data
38	14	proportion of patients with squamous cell carcinoma; X: 20 studies provided the data
39		
40	15	on the pretreatment NLR and PFS, and 5 of them also provided the posttreatment
41 42		
42 43	10	NI D and DEC. M. nivelymeth, D. newbrolingmeth, D. dymoty with E. embrolingmeth
43 44	16	NLR and PFS; N: nivolumab; P: pembrolizumab; D: durvalumab; E: embrolizumab;
44 45		
46	17	A: atezolizumab
47		
48	10	Eigure 6 Sangitivity analysis of $OS(A)$ and $DES(D)$
49	18	Figure 6 Sensitivity analysis of OS (A) and PFS (B)
50		
51		
52		
53		
54		
55		
56		
57		

1(

1 Table

2 Table 1 The basic characteristics of the enrolled studies

7 8	Study	Year	Country	Ethnicity	Sample size	MFP	M/F	NLR at baseline
9	Diem S	2017	Europe	European	52	NM	29/23	5.0(2.7-8.3) *
10 11	Bagley SJ	2017	America	American	175	NM	80/95	NLR≥5:58.0%
11 12	Russo A	2018	Italy	European	28	17	25/3	NM
13	Zer A	2018	America	American	88	5.3	43/45	NLR>4:56.8%
14	Nakaya A	2018	Japan	Asian	101	8.9	77/24	NLR≥3:46.5%
15 16	Maymani H	2018	America	American	74	12.3	36/38	NLR>6:20.3%
17	Mezquita L	2018	Europe	European	161	12	100/61	NLR>3:39.0%
18	Fukui T	2018	Japan	Asian	52	10.9	37/15	NLR≥5:34.6%
19 20	Park W	2018	America	American	159	11.5	82/77	4.3(0.5-24.1) *
21	Takeda T	2018	Japan	Asian	30	NM	19/11	NLR>5:30.0%
22	Svaton M	2018	Czech Republic	European	120	NM	71/49	NLR>3.8:50.0%
23 24	Suh Koung Jin	2018	Korea	Asian	54	26.2	42/12	NLR>5:14.8%
24	Shiroyama Takayuki	2018	Japan	Asian	201	12.4	135/66	NLR>4:39.3%
26	Kiriu T	2018	Japan	Asian	19.00	NM	19	NLR>5:31.6%
27 28	Khunger M	2018	America	American	109	30	56/53	NLR≥5:50.5%
28 _29	Inomata M	2018	Japan	Asian	36	NM	27/9	NLR≥5:44.4%
30	Facchinetti F	2018	Italy	European	54	12.6	45/9	NM
31	Ren F	2019	China	Asian	147	2.6	94/53	NLR>2.5:59.9%
32 33	Pavan A	2019	Italy	European	184	56.3	125/59	NLR≥3:57.5%
34	Passiglia F	2019	Italy	European	45	9.1	32/13	NLR>3.3:51.1%
35	Minami S	2019	Japan	Asian	76	NM	49/27	NLR≥6:14.5%
36 37	Ichiki Y	2019	Japan	Asian	44	4.83	38/6	NM
38	Dusselier M	2019	France	European	59	NM	44/15	NLR>5:62.7%
39	Study	SCC%	Treatment lines	Outcome	Study design	NOS	Cutoff	10
40 41	Diem S	34.6%	including first line therapy	OS/PFS	RO	6	5	Ν
42	Bagley SJ	24.0%	at least second-line therapy	OS/PFS	RO	6	5	Ν
43	Russo A	60.7%	at least second-line therapy	OS/PFS	RO	7	3	Ν
44 45	Zer A	17.1%	at least second-line therapy	OS/PFS/DCR	RO	7	4	NM
45 46	Nakaya A	36.6%	at least second-line therapy	PFS/irAEs	RO	6	3	Ν
47	Maymani H	16.2%	including first line therapy	OS/PFS	RO	7	6	N/P/D
48	Mezquita L	28.6%	at least second line therapy	OS/PFS	RO	9	3	N/E/A/D
49 _50	Fukui T	30.8%	at least second-line therapy	OS/PFS/irAEs	РО	7	5	Ν
- 50								

Park W	24.5%	including first line therapy	OS/PFS	RO	7	5	Ν
Takeda T	30.0%	at least second-line therapy	PFS	RO	6	5	Ν
Svaton M	33.3%	at least second-line therapy	OS/PFS	RO	7	3.8	Ν
Suh Koung J	Sin 31.5%	including first line therapy	OS/PFS/irAEs	RO	8	5	N/P
Shiroyama T	akayuki 30.4%	at least second-line therapy	PFS/RR	RO	7	4	Ν
Kiriu T	31.5%	at least second-line therapy	OS/PFS/TTF	RO	7	5	Ν
Khunger M	23.9%	at least second-line therapy	OS	RO	6	5	Ν
Inomata M	44.4%	at least second-line therapy	PFS	RO	6	5	N/P
Facchinetti F	48.2%	at least second-line therapy	OS/PFS/TTF/DP	РО	8	4	Ν
Ren F	42.2%	at least second-line therapy	OS/PFS	RO	6	2.5	N/P
Pavan A	32.1%	including first line therapy	OS/PFS/irAEs	RO	8	3	N/P/A
Passiglia F	44.4%	at least second-line therapy	OS/TTP	RO	8	3.3	Ν
Minami S	23.7%	at least second-line therapy	OS/PFS	RO	9	6	N/P/A
Ichiki Y	65.9%	including first line therapy	OS/PFS/irAEs	RO	7	NM	N/P
Dusselier M	20.3%	at least second-line therapy	OS	RO	8	5	Ν
1							
T							
2	Abbreviations: N	I R · neutronhil to lymph	ocyte ratio [.] NM [.]	not mentione	d∙ M/I	.	
2		ER. neutrophil to lymph		not mentione	a, 101/1	•	
2	male/female: MB	P: median follow-un (m	(1, 1)			•.4	
5	male/female; MFP: median follow-up (months); SCC%: proportion of patients with						
		1. median follow-up (inc	onths); SCC%: p	roportion of p	atients	s with	
Л	-						
4	-	rcinoma; IO: immunothe					
	squamous cell ca	rcinoma; IO: immunothe	erapy; N: nivolun	nab; P: pembr	olizum		
4 5	squamous cell ca		erapy; N: nivolun	nab; P: pembr	olizum		
5	squamous cell ca durvalumab; E: e	rcinoma; IO: immunothe embrolizumab; A: atezoliz	erapy; N: nivolun zumab; OS: over	nab; P: pembr all survival; F	olizun PFS:	nab; D:	
	squamous cell ca durvalumab; E: e	rcinoma; IO: immunothe	erapy; N: nivolun zumab; OS: over	nab; P: pembr all survival; F	olizun PFS:	nab; D:	
5	squamous cell ca durvalumab; E: e progression-free	rcinoma; IO: immunothe embrolizumab; A: atezoliz survival; DCR: disease c	erapy; N: nivolun zumab; OS: over ontrol rate; irAE	nab; P: pembr all survival; F s: immune-re	olizum PFS: lated a	nab; D: dverse	
5	squamous cell ca durvalumab; E: e progression-free	rcinoma; IO: immunothe embrolizumab; A: atezoliz	erapy; N: nivolun zumab; OS: over ontrol rate; irAE	nab; P: pembr all survival; F s: immune-re	olizum PFS: lated a	nab; D: dverse	
5 6 7	squamous cell ca durvalumab; E: e progression-free events; RR: respo	rcinoma; IO: immunothe embrolizumab; A: atezoliz survival; DCR: disease c onse rate; TTF: time to tr	erapy; N: nivolun zumab; OS: over ontrol rate; irAE eatment failure;	nab; P: pembr rall survival; F s: immune-re RO: retrospec	rolizum PFS: lated a ctive st	nab; D: dverse udy;	
5	squamous cell ca durvalumab; E: e progression-free events; RR: respo	rcinoma; IO: immunothe embrolizumab; A: atezoliz survival; DCR: disease c	erapy; N: nivolun zumab; OS: over ontrol rate; irAE eatment failure;	nab; P: pembr rall survival; F s: immune-re RO: retrospec	rolizum PFS: lated a ctive st	nab; D: dverse udy;	
5 6 7 8	squamous cell ca durvalumab; E: e progression-free events; RR: respo PO: prospective s	rcinoma; IO: immunothe embrolizumab; A: atezoliz survival; DCR: disease c onse rate; TTF: time to tr study; NOS: Newcastle-C	orapy; N: nivolun zumab; OS: over ontrol rate; irAE eatment failure; Dttawa quality as	nab; P: pembr rall survival; F s: immune-re RO: retrospec	rolizum PFS: lated a ctive st	nab; D: dverse udy;	
5 6 7	squamous cell ca durvalumab; E: e progression-free events; RR: respo PO: prospective s	rcinoma; IO: immunothe embrolizumab; A: atezoliz survival; DCR: disease c onse rate; TTF: time to tr	orapy; N: nivolun zumab; OS: over ontrol rate; irAE eatment failure; Dttawa quality as	nab; P: pembr rall survival; F s: immune-re RO: retrospec	rolizum PFS: lated a ctive st	nab; D: dverse udy;	
5 6 7 8 9	squamous cell ca durvalumab; E: e progression-free events; RR: respo PO: prospective s provided only the	rcinoma; IO: immunothe embrolizumab; A: atezoliz survival; DCR: disease c onse rate; TTF: time to tr study; NOS: Newcastle-C e median NLR and range	orapy; N: nivolun zumab; OS: over ontrol rate; irAE eatment failure; Dttawa quality as	nab; P: pembr rall survival; F s: immune-re RO: retrospec	rolizum PFS: lated a ctive st	nab; D: dverse udy;	
5 6 7 8	squamous cell ca durvalumab; E: e progression-free events; RR: respo PO: prospective s	rcinoma; IO: immunothe embrolizumab; A: atezoliz survival; DCR: disease c onse rate; TTF: time to tr study; NOS: Newcastle-C e median NLR and range	orapy; N: nivolun zumab; OS: over ontrol rate; irAE eatment failure; Dttawa quality as	nab; P: pembr rall survival; F s: immune-re RO: retrospec	rolizum PFS: lated a ctive st	nab; D: dverse udy;	
5 6 7 8 9 10	squamous cell ca durvalumab; E: e progression-free events; RR: respo PO: prospective s provided only the Supplementary	rcinoma; IO: immunothe embrolizumab; A: atezoliz survival; DCR: disease c onse rate; TTF: time to tr study; NOS: Newcastle-C e median NLR and range information	orapy; N: nivolun zumab; OS: over ontrol rate; irAE eatment failure; Dttawa quality as at baseline.	nab; P: pembr all survival; F s: immune-re RO: retrospec sessment Sca	PFS: lated a ctive st le; *: t	ab; D: dverse udy; he study	
5 6 7 8 9	squamous cell ca durvalumab; E: e progression-free events; RR: respo PO: prospective s provided only the Supplementary	rcinoma; IO: immunothe embrolizumab; A: atezoliz survival; DCR: disease c onse rate; TTF: time to tr study; NOS: Newcastle-C e median NLR and range	orapy; N: nivolun zumab; OS: over ontrol rate; irAE eatment failure; Dttawa quality as at baseline.	nab; P: pembr all survival; F s: immune-re RO: retrospec sessment Sca	PFS: lated a ctive st le; *: t	ab; D: dverse udy; he study	
5 6 7 8 9 10	squamous cell ca durvalumab; E: e progression-free events; RR: respo PO: prospective s provided only the Supplementary	rcinoma; IO: immunothe embrolizumab; A: atezoliz survival; DCR: disease c onse rate; TTF: time to tr study; NOS: Newcastle-C e median NLR and range information	orapy; N: nivolun zumab; OS: over ontrol rate; irAE eatment failure; Dttawa quality as at baseline.	nab; P: pembr all survival; F s: immune-re RO: retrospec sessment Sca	PFS: lated a ctive st le; *: t	ab; D: dverse udy; he study	
5 6 7 8 9 10	squamous cell ca durvalumab; E: e progression-free events; RR: respo PO: prospective s provided only the Supplementary	rcinoma; IO: immunothe embrolizumab; A: atezoliz survival; DCR: disease c onse rate; TTF: time to tr study; NOS: Newcastle-C e median NLR and range information	orapy; N: nivolun zumab; OS: over ontrol rate; irAE eatment failure; Dttawa quality as at baseline.	nab; P: pembr all survival; F s: immune-re RO: retrospec sessment Sca	PFS: lated a ctive st le; *: t	ab; D: dverse udy; he study	
5 6 7 8 9 10	squamous cell ca durvalumab; E: e progression-free events; RR: respo PO: prospective s provided only the Supplementary	rcinoma; IO: immunothe embrolizumab; A: atezoliz survival; DCR: disease c onse rate; TTF: time to tr study; NOS: Newcastle-C e median NLR and range information	orapy; N: nivolun zumab; OS: over ontrol rate; irAE eatment failure; Dttawa quality as at baseline.	nab; P: pembr all survival; F s: immune-re RO: retrospec sessment Sca	PFS: lated a ctive st le; *: t	ab; D: dverse udy; he study	
5 6 7 8 9 10	squamous cell ca durvalumab; E: e progression-free events; RR: respo PO: prospective s provided only the Supplementary	rcinoma; IO: immunothe embrolizumab; A: atezoliz survival; DCR: disease c onse rate; TTF: time to tr study; NOS: Newcastle-C e median NLR and range information	orapy; N: nivolun zumab; OS: over ontrol rate; irAE eatment failure; Dttawa quality as at baseline.	nab; P: pembr all survival; F s: immune-re RO: retrospec sessment Sca	PFS: lated a ctive st le; *: t	ab; D: dverse udy; he study	
5 6 7 8 9 10	squamous cell ca durvalumab; E: e progression-free events; RR: respo PO: prospective s provided only the Supplementary	rcinoma; IO: immunothe embrolizumab; A: atezoliz survival; DCR: disease c onse rate; TTF: time to tr study; NOS: Newcastle-C e median NLR and range information	orapy; N: nivolun zumab; OS: over ontrol rate; irAE eatment failure; Dttawa quality as at baseline.	nab; P: pembr all survival; F s: immune-re RO: retrospec sessment Sca	PFS: lated a ctive st le; *: t	ab; D: dverse udy; he study	
	Takeda T Svaton M Suh Koung J Shiroyama T Kiriu T Khunger M Inomata M Facchinetti H Ren F Pavan A Passiglia F Minami S Ichiki Y	Takeda T 30.0% Svaton M 33.3% Suh Koung Jin 31.5% Shiroyama Takayuki 30.4% Kiriu T 31.5% Khunger M 23.9% Inomata M 44.4% Facchinetti F 48.2% Ren F 42.2% Pavan A 32.1% Minami S 23.7% Ichiki Y 65.9% Dusselier M 20.3% 1 2 2 Abbreviations: N	Takeda T30.0%at least second-line therapySvaton M33.3%at least second-line therapySuh Koung Jin31.5%including first line therapyShiroyama Takayuki30.4%at least second-line therapyKiriu T31.5%at least second-line therapyKiriu T31.5%at least second-line therapyKhunger M23.9%at least second-line therapyInomata M44.4%at least second-line therapyFacchinetti F48.2%at least second-line therapyRen F42.2%at least second-line therapyPavan A32.1%including first line therapyPassiglia F44.4%at least second-line therapyIchiki Y65.9%including first line therapy12Abbreviations: NLR: neutrophil to lymph	Takeda T30.0%at least second-line therapyPFSSvaton M33.3%at least second-line therapyOS/PFSSuh Koung Jin31.5%including first line therapyOS/PFS/irAEsShiroyama Takayuki30.4%at least second-line therapyPFS/RRKiriu T31.5%at least second-line therapyOS/PFS/TTFKhunger M23.9%at least second-line therapyOSInomata M44.4%at least second-line therapyPFSFacchinetti F48.2%at least second-line therapyOS/PFS/TTF/DPRen F42.2%at least second-line therapyOS/PFS/irAEsPavan A32.1%including first line therapyOS/PFS/irAEsPassiglia F44.4%at least second-line therapyOS/PFS/irAEsIchiki Y65.9%including first line therapyOS/PFS/irAEsDusselier M20.3%at least second-line therapyOS12Abbreviations: NLR: neutrophil to lymphocyte ratio; NM:	Takeda T30.0%at least second-line therapyPFSROSvaton M33.3%at least second-line therapyOS/PFSROSuh Koung Jin31.5%including first line therapyOS/PFS/irAEsROShiroyama Takayuki30.4%at least second-line therapyPFS/RRROShiroyama Takayuki30.4%at least second-line therapyOS/PFS/irAEsROKiriu T31.5%at least second-line therapyOS/PFS/TTFROKhunger M23.9%at least second-line therapyOSROInomata M44.4%at least second-line therapyOS/PFS/TTF/DPPORen F42.2%at least second-line therapyOS/PFSROPavan A32.1%including first line therapyOS/PFS/irAEsROPassiglia F44.4%at least second-line therapyOS/PFSROMinami S23.7%at least second-line therapyOS/PFSROIchiki Y65.9%including first line therapyOS/PFS/irAEsRO12Abbreviations: NLR: neutrophil to lymphocyte ratio; NM: not mentioned	Takeda T30.0%at least second-line therapyPFSRO6Svaton M33.3%at least second-line therapyOS/PFSRO7Suh Koung Jin31.5%including first line therapyOS/PFS/irAEsRO8Shiroyama Takayuki30.4%at least second-line therapyOS/PFS/irAEsRO7Kiriu T31.5%at least second-line therapyPFS/RRRO7Kiriu T31.5%at least second-line therapyOS/PFS/TTFRO7Khunger M23.9%at least second-line therapyOS/PFS/TTFRO6Inomata M44.4%at least second-line therapyOS/PFS/TTF/DPPO8Ren F42.2%at least second-line therapyOS/PFSRO6Pavan A32.1%including first line therapyOS/PFSRO8Passiglia F44.4%at least second-line therapyOS/PFS/irAEsRO9Ichiki Y65.9%including first line therapyOS/PFS/irAEsRO7Dusselier M20.3%at least second-line therapyOS/PFS/irAEsRO812Abbreviations: NLR: neutrophil to lymphocyte ratio; NM: not mentioned; M/F	Takeda T30.0%at least second-line therapyPFSRO65Svaton M33.3%at least second-line therapyOS/PFSRO73.8Suh Koung Jin31.5%including first line therapyOS/PFS/irAEsRO85Shiroyama Takayuki30.4%at least second-line therapyOS/PFS/IrAEsRO74Kiriu T31.5%at least second-line therapyOS/PFS/TFFRO75Khunger M23.9%at least second-line therapyOSRO65Inomata M44.4%at least second-line therapyOS/PFS/TTF/DPPO84Ren F42.2%at least second-line therapyOS/PFS/TTF/DPPO84Ren F42.2%at least second-line therapyOS/PFS/IrAEsRO62.5Pavan A32.1%including first line therapyOS/PFS/IrAEsRO83Passiglia F44.4%at least second-line therapyOS/PFS/RAEsRO96Ichiki Y65.9%including first line therapyOS/PFS/IrAEsRO7NMDusselier M20.3%at least second-line therapyOSRO8512Abbreviations: NLR: neutrophil to lymphocyte ratio; NM: not mentioned; M/F:

S2: Figure 1. Trim and fill analysis of OS and PFS

3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
23 24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
47 48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
58	
58 59	
リプ	

60

1 2

1

2

For beer teriew only

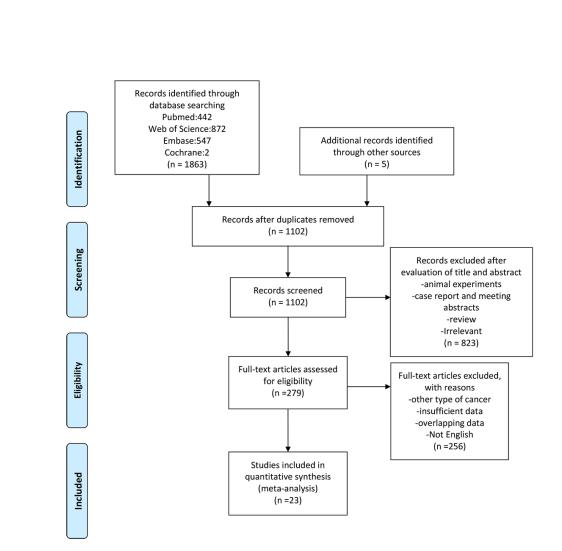


Figure 1 Flow chart of study selection

Study Russo A 2018 Zer A 2018		6 12.5%	Hazard Ratio Fixed + Random, 95% CI 1.14 [0.99; 1.31] 2.22 [1.14; 4.34]	Hazard Ratio IV, Fixed + Random, 95% Cl	
Mayman H 2019 Mozquita L 2018 Diem S 2017 Bagley S J2017 Fisku T 2018 Park W[1] 2016 Park W[2] 2016 Ren. F 2019	0.26 0.3285 0.2% 0.80 0.3015 0.2% 1.19 0.4790 0.1% 1.43 0.5762 0.1% 1.11 0.2933 0.2% 1.24 0.3011 0.2% 0.77 0.3363 0.2%	6 3.5% 6 4.0% 6 1.9% 6 5.4% 6 1.4% 6 4.0% 6 4.0%	2.22 [1.14, -1.34] 1.30 [0.68 [2.48] 2.22 [1.23, 4.01] 3.30 [1.29, 8.44] 2.07 [1.30, 3.30] 4.17 [1.35, 12.90] 3.03 [1.69, 5.45] 3.45 [1.91; 6.22] 2.17 [1.12, 4.18]		
Pavan, A 2019 Passigla, F 2019 Minami, S 2019 Ichiki, Y. 2019 Dusseler, M(2) 2019 Dusseler, M(2) 2019 Svaton, M 2018	0.13 0.0206 47.7% 0.41 0.6883 0.0% 1.59 0.4141 0.1% 1.11 0.3608 0.2% -0.37 0.4597 0.1% -0.89 0.3968 0.1% 0.04 0.0213 44.9%	6 14.1% 6 1.0% 6 2.4% 6 3.0% 6 2.0% 6 2.6% 6 14.0%	1.14 [1.09; 1.18] 1.51 [0.39; 5.82] 4.90 [2.18; 11.04] 3.02 [1.49; 6.13] 0.69 [0.28; 1.70] 0.41 [0.19; 0.89] 1.04 [1.00; 1.09]		
Suh, Koung Jin(1) (2018 Suh, Koung Jin(2) (2018 Kinu, 1)(2) (2018 Khunger, M(1) 2018 Khunger, M(2) 2018 Facchinetti, F.2018 Total (fixed effect, 95% Ci)	1.34 0.4470 0.1% 0.27 0.2776 0.3% 0.37 0.2869 0.2% 0.97 0.3052 0.2% 1.17 0.4632 0.1% 100.0%	6 2.1% 6 4.4% 6 4.2% 6 3.9% 6 2.0%	4.82 [1.16; 19.95] 3.82 [1.59; 9.17] 1.31 [0.76; 2.25] 1.45 [0.83; 2.54] 2.63 [1.45; 4.79] 3.22 [1.30; 7.98] 1.12 [1.09; 1.15]		
Total (random effects, 95% Cl Heterogeneity. Tau ² = 0.0351; Chr		100.0% .01); I ² = 82%	1.62 [1.41; 1.87]	0.1 0.5 1 2 10	

Figure 2 Forest plot of the association between NLR and OS in patients with lung cancer receiving immunotherapy

396x246mm (96 x 96 DPI)

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Subgroup	No. of Patients	No. of Studies	Hazard Ratio(95 %CI)	²	
Overall	1629	23	144	1.62(1.41-1.87)	81.7%	
Cut-off value						
≥5	834	14		2.08(1.42-3.04)	70.2%	
<5	751	8		1.46(1.11-1.93)	75.1%	
Not reported	44	1	·	3.02(1.49-6.13)	-	
Study design						
Retrospective	1523	21	·••	1.81(1.40-2.35)	81.8%	
Prospective	106	2	·	3.56(1.76-7.23)	0.0%	
Time of detection						
Pre-treatment	1610	18		1.87(1.46-2.41)	79.8%	
Post-treatment	19	5	· · · · · · · · · · · · · · · · · · ·	1.80(0.81-4.00)	83.5%	
Ethnicity						
European and American	1232	16		1.63(1.22-2.16)	75.2%	
Asian	397	7		2.76(1.88-4.06)	45.7%	
Gender (M/F)						
<1	337	3	·-•i	1.86(1.34-2.59)	0.0%	
>1	1292	20		1.92(1.44-2.56)	82.6%	
SCC%						
≥50%	131	4		1.02(0.45-2.31)	73.2%	
<50%	1498	19		2.07(1.65-2.58)	82.9%	
NLR at baseline %						
≥50%	851	10	⊢ •−-	1.36(0.97-1.92)	77.8%	
<50%	441	7		2.47(1.59-3.84)	56.3%	
Not reported	337	6		2.42(1.61-3.62)	85.7%	
Treatment line						
At least second line therapy	1057	15	H-+	1.67(1.22-2.29)	79.0%	
Including first line therapy	572	8		2.36(1.62-3.44)	85.2%	
Median follow-up						
≥12	669	9	· · · ·	1.78(1.28-2.46)	72.7%	
<12	535	7		2.77(2.11-3.63)	0.0%	
Not reported	425	7		1.42(0.76-2.66)	82.8%	
Sample Size						
≥100	631	9		1.84(1.37-2.45)	86.7%	
< 100	998	14		1.93(1.30-2.86)	75.4%	
ICI						
N	786	14		1.69(1.20-2.38)	81.7%	
N/P	250	4		2.91(1.94-4.31)	0.0%	
N/P/A	260	2		2.23(0.53-9.28)	91.9%	
N/P/D	74	1		1.30(0.68-2.48)	-	
N/E/A/D	161	1		2.22(1.23-4.01)	-	
Not reported	88	1	·····	2.22(1.14-4.34)	-	

Figure 3 Subgroup analysis of the relationship between the NLR and OS in patients with lung cancer receiving immunotherapy

1	
2	
3	
4	
5	
6	
7	
8	
9	
10	
11	Weight Hazard Ratio Hazard Ratio Study TE SE (fixed) (random) IV, Fixed + Random, 95% CI IV, Fixed + Random, 95% CI Russo A 2018 0.05 0.059 6.7% 9.2% 1.05 [0.87] 1.44 + i
12	Zer A 2018 0.54 0.2777 0.6% 4.7% 1.72 (100, 2.96)
13	Nakaya A(2) 2019 0.31 0.2996 0.5% 4.3% 1.37 (0.76); 2.46) Mezquta L.2018 0.60 0.2496 0.8% 5.2% 1.83 (1.12, 2.99) Bagley SJ 2017 0.36 0.1718 1.6% 7.0% 1.43 (1.02, 2.00)
14	Fukuii 1 2018 0.72 0.3169 0.5% 4.0% 2.05(1.10, 3.82)
15	Park W[2] 2018 0.60 0.2022 11% 61% 182 [1 21; 274]
16	Minami, 5 2019 0.45 0.354 0.47% 3.5% 1.56 [0.78; 3.13]
17	Takeda, [2] 2018 - 0.63 0.4970 0.2% 0.25% 0.53 [0.20; 1.41] Takeda, [3] 2018 1.79 0.8103 0.1% 0.9% 6.00 [1.22; 29.34]
18	Suh, Koung Jin[12018 0.75 0.5005 0.2% 2.1% 2.110.79, 5.62]
19	Shirioyama, Takayuki 2018 0.38 0.1620 1.8% 7.3% 1.46 [1.06; 2.01] Inomata, M 2018 0.09 0.2357 0.8% 5.5% 1.09 [0.69; 1.73]
20	Total (fixed effect, 95% Cl) 100.0% - 1.09 [1.05; 1.14] Total (random effects, 95% Cl) - 100.0% 1.47 [1.25; 1.72]
21	Heterogeneity: Tau ² = 0.0861; Chi ² = 68.98; df = 19 (P < 0.01); l ² = 72% 0.1 0.5 1 2 10
22	
23	
24	
25	
26	
27	Figure 4 Forest plot of the association between NLR and PFS in patients with lung cancer receiving
28	immunotherapy
29	206×246mm (06 × 06 DDI)
30	396x246mm (96 x 96 DPI)
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
50	
50 51	
50 51 52	
50 51 52 53 54	
50 51 52 53	
50 51 52 53 54 55 56	
50 51 52 53 54 55	

59

Subgroup	No. of Patients	No. of Studies	Hazard F	Ratio(95 %CI)	l ²	P Valu
Overall	1612	20	1**	1.47(1.25-1.72)	72.50%	
Cut-off value						0.165
≥5	582	11		2.08(1.42-3.04)	65.90%	
<5	1030	9	++1	1.46(1.11-1.93)	60.90%	
Study design						0.356
Retrospective	1560	19	H+	1.50(1.20-1.88)	72.30%	
Prospective	52	1	• • •••	2.05(1.10-3.82)	_	
Time of detection *						0.302
Pre-treatment	1612	15	101	1.32(1.18-1.49)	62.50%	
Post-treatment	344	5	+	2.40(0.78-7.35)	81.00%	
Ethnicity						0.434
European and American	915	8	H#H	1.40(1.16-1.68)	77.00%	
Asian	697	12	⊢ →−−−−i	1.65(1.08-2.52)	57.30%	
Gender (M/F)						0.930
<1	263	2		1.50(1.13-2.00)	73.30%	
>1	1349	18	→ →→	1.53(1.19-1.97)	0.00%	
SCC%						0.005
≥50%	28	1		1.05(0.89-1.24)	-	
<50%	1594	19	H+-1	1.56(1.25-1.96)	73.80%	
NLR at baseline						0.607
≥50%	714	5	++-1	1.34(1.09-1.65)	76.20%	
<50%	711	12		1.70(1.12-2.59)	58.30%	
Not reported	187	3		1.41(0.99-2.01)	77.90%	
Treatment line						0.084
At least second line therapy	1215	15	++	1.29(1.12-1.49)	55.40%	
Including first line therapy	397	5		2.50(1.20-5.24)	66.50%	
Median follow-up						0.287
≥12	628	6	• •	2.07(1.05-4.07)	82.50%	
<12	547	7	H++	1.55(1.31-1.84)	0.00%	
Not reported	437	7	++	1.21(0.86-1.71)	47.40%	
Sample Size						0.390
≥100	1248	10		1.38(1.21-1.59)	73.70%	
< 100	364	10		1.77(1.03-3.03)	72.50%	
ICI						0.290
N	902	13	++-	1.31(1.10-1.56)	61.70%	
N/P	201	3	+	3.25(0.79-13.40)	_	
N/P/A	260	2	→ →	1.74(1.24-2.44)	_	
N/E/A/D	161	1	→	1.83(1.12-2.99)	86.10%	
	88	1	—	1.72(1.00-2.96)	0.00%	

Figure 5 Subgroup analysis of the relationship between the NLR and PFS in patients with lung cancer receiving immunotherapy

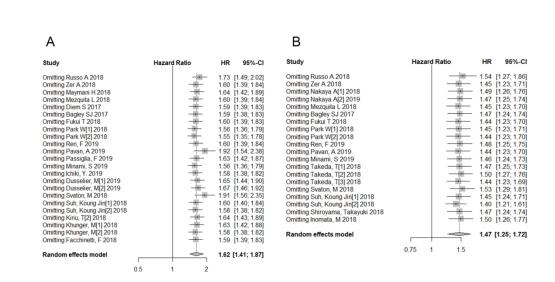
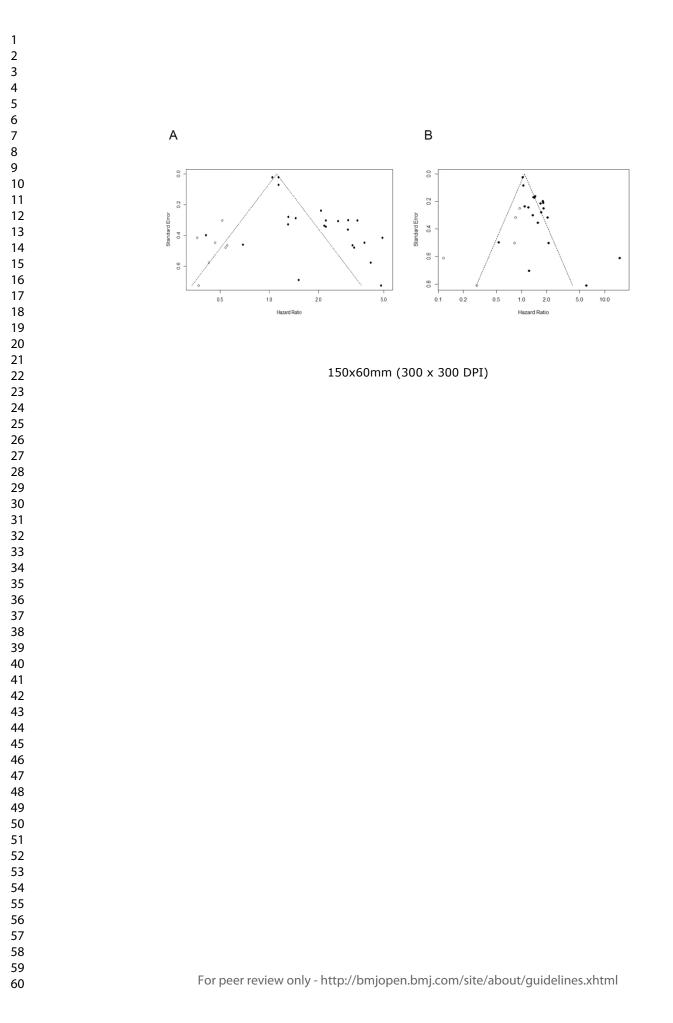


Figure 6 Sensitivity analysis on OS (A) and PFS (B)


143x74mm (300 x 300 DPI)

Supplement Table1 Search strategy for meta-analysis of Correlation of the neutrophil to lymphocyte ratio and clinical outcomes in lung cancer patients receiving immunotherapy: a meta-analysis (PubMed via NLM)

	Search terms: neutrophil to lymphocyte ratio and lung cancer patients with immunotherapy
Pa	pulation: persons with lung cancer receiving immunotherapy
1	(((((Cancer of Lung) OR Pulmonary Neoplasms) OR Neoplasms, Lung) OR Lung Neoplasm) OR
	Neoplasm, Lung) OR Neoplasms, Pulmonary) OR Neoplasm, Pulmonary) OR Pulmonary
	Neoplasm) OR Lung Cancer) OR Cancer, Lung) OR Cancers, Lung) OR Lung Cancers) OR
	Pulmonary Cancer, OR Cancer, Pulmonary) OR Cancers, Pulmonary) OR Pulmonary Cancers)
	OR Cancer of the Lung) OR "Lung Neoplasms"[Mesh]))))) AND (("Immunotherapy"[Mesh])
	AND Immunotherapies)
Inte	ervention (Expose): neutrophil to lymphocyte ratio
2	((NLR) OR (neutrophil to lymphocyte ratio) OR neutrophil lymphocyte ratio))
Con	nbined sets
3	1 and 2
Lim	iits
4	3 AND English [Language]

[Mesh] = Term from the Medline controlled vocabulary, including terms found below this term in the Mesh hierarchy

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

PRISMA 2009 Checklist

Section/topic	#	Checklist item	Reported on page #
TITLE			
Title	1	Identify the report as a systematic review, meta-analysis, or both.	1
ABSTRACT			
Structured summary	2	Provide a structured summary including, as applicable: background; objectives; data sources; study eligibility criteria, participants, and interventions; study appraisal and synthesis methods; results; limitations; conclusions and implications of key findings; systematic review registration number.	2-3
INTRODUCTION			
Rationale	3	Describe the rationale for the review in the context of what is already known.	4
Objectives	4	Provide an explicit statement of questions being addressed with reference to participants, interventions, comparisons, outcomes, and study design (PICOS).	5
METHODS			
Protocol and registration	5	Indicate if a review protocol exists, if and where it can be accessed (e.g., Web address), and, if available, provide registration information including registration number.	5
Eligibility criteria	6	Specify study characteristics (e.g., PICOS, length of follow-up) and report characteristics (e.g., years considered, language, publication status) used as criteria for eligibility, giving rationale.	6
Information sources	7	Describe all information sources (e.g., databases with dates of coverage, contact with study authors to identify additional studies) in the search and date last searched.	5
Search	8	Present full electronic search strategy for at least one database, including any limits used, such that it could be repeated.	5-6 and supplements
Study selection	9	State the process for selecting studies (i.e., screening, eligibility, included in systematic review, and, if applicable, included in the meta-analysis).	5-8
Data collection process	10	Describe method of data extraction from reports (e.g., piloted forms, independently, in duplicate) and any processes for obtaining and confirming data from investigators.	6-7
Data items	11	List and define all variables for which data were sought (e.g., PICOS, funding sources) and any assumptions and simplifications made.	6-7
Risk of bias in individual studies	12	Describe methods used for assessing risk of bias of individual studies (including specification of whether this was done at the study or outcome level), and how this information is to be used in any data synthesis.	8
Summary measures	13	State the principal summary measures (e.g., risk ratio, difference in means).	7-8
Synthesis of results	14	Describe the methods of handling data and combining results of studies, if done, including measures of consistency (e.g., I ²) for each meta-analysis.	7-8

Page 1 of 2

3

4

47

PRISMA 2009 Checklist

5 6 7 7 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	#	Checklist item	Reported on page #	
 8 Risk of bias across studies 9 	15	Specify any assessment of risk of bias that may affect the cumulative evidence (e.g., publication bias, selective reporting within studies).	8	
10 Additional analyses	16	Describe methods of additional analyses (e.g., sensitivity or subgroup analyses, meta-regression), if done, indicating which were pre-specified.	8	
13 RESULTS				
14 Study selection	17	Give numbers of studies screened, assessed for eligibility, and included in the review, with reasons for exclusions at each stage, ideally with a flow diagram.	8-9	
17 17 Study characteristics 18	18	For each study, present characteristics for which data were extracted (e.g., study size, PICOS, follow-up period) and provide the citations.	8-9	
¹⁹ Risk of bias within studies	19	Present data on risk of bias of each study and, if available, any outcome level assessment (see item 12).	11-12	
20 21 22 22	20	For all outcomes considered (benefits or harms), present, for each study: (a) simple summary data for each intervention group (b) effect estimates and confidence intervals, ideally with a forest plot.	8-11	
23 Synthesis of results	21	Present results of each meta-analysis done, including confidence intervals and measures of consistency.	8-11	
²⁴ 25 Risk of bias across studies	22	Present results of any assessment of risk of bias across studies (see Item 15).	11-12	
26 Additional analysis	23	Give results of additional analyses, if done (e.g., sensitivity or subgroup analyses, meta-regression [see Item 16]).	12	
7				
29 Summary of evidence	24	Summarize the main findings including the strength of evidence for each main outcome; consider their relevance to key groups (e.g., healthcare providers, users, and policy makers).	12-13	
3 32 Limitations 33	25	Discuss limitations at study and outcome level (e.g., risk of bias), and at review-level (e.g., incomplete retrieval of identified research, reporting bias).	15-16	
34 Conclusions	26	Provide a general interpretation of the results in the context of other evidence, and implications for future research.	16	
36 FUNDING	1			
37 38 30	27	Describe sources of funding for the systematic review and other support (e.g., supply of data); role of funders for the systematic review.	17	
42 doi:10.1371/journal.pmed1000097 43 44	f J, Altm	nan DG, The PRISMA Group (2009). Preferred Reporting Items for Systematic Reviews and Meta-Analyses: The PRISMA Statement. PLoS Med For more information, visit: <u>www.prisma-statement.org</u> . Page 2 of 2 For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml	6(7): e1000097.	
45 46		r or peer review only intep.//onljopen.onlj.com/site/about/guidennes.xittini		