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Supplemental Methods 
 
Contact for reagents and resources 
Further information and reasonable requests for resources and reagents should be directed to and 
will be fulfilled by the Lead Contact, Marco Gallo (marco.gallo@ucalgary.ca). Sharing of primary 
samples, based on availability, may be subject to MTAs and will require appropriate research 
ethics board certifications. 
 
Structural variant calling using GROC-SVs. GROC-SVs was run for all samples in each patient 
independently using default parameters.  SVs in patients with parental germlines available were 
further analyzed in order to empirically infer a cutoff for barcode coverage that was sufficient to 
call an SV. For instance, events observed in both parental germlines and the patient tumor samples 
but not in the patient germline must be false negative calls in the patient germline as they are 
inherited. A threshold of 200 barcodes (physical coverage) was sufficient to minimize false 
negative calls across the cohort, without significantly compromising our ability to detect all true 
positive events. For patients 1 and 3, events observed in both parents were excluded from further 
analysis, unless they were somatically altered (i.e. absent in the primary or recurrent tumor). The 
overlap of SV breakpoints and genes was assessed using bedtools intersect, and these breakpoints 
were visualized using the ProteinPaint software (pecan.stjude.cloud/proteinpaint) along with 
known pediatric aberrations from a number of databases. These include PCGP (St. Jude - WashU 
Pediatric Cancer Genome Project), TARGET (Therapeutically Applicable Research To Generate 
Effective Treatments), SCMC (Shanghai Children's Medical Center pediatric ALL project), 
UTSMC (UT Southwestern Medical Center Wilms' tumor study), and DKFZ (German Cancer 
Research Center Wilms' tumor study) (1).  
 
Somatic SNV detection and filtering using varscan2  
Somatic variants were also called genome-wide using varscan2 (v2.4.3). Varscan2 tumor-normal 
variant calling produced variants categorized as somatic, germline or loss of heterozygosity 
(LOH). Briefly, alignments from 10X Genomics LongRanger underwent tumor-normal variant 
calling using samtools mpileup (v1.7), to produce a single tumor-normal mpileup file (2). The 
mpileup files were processed to yield variants using the varscan2 somatic function and high 
confidence variants were isolated using the varscan2 processSomatic function. Bam read counts 
files were created using a combination of tumor or normal bam and the appropriate high confidence 
variant coordinates; one for LOH, one for germline and one for somatic variants. Variants were 
filtered using the fpfilter function under dream-3 settings to produce a high confidence and filtered 
set of variants. 
 
Somatic copy number alteration (CNA) calling, filtration and segmentation  
Somatic copy number alterations were estimated using varscan2. Tumor-normal mpileup files (see 
SNV detection, above) were used to generate raw copy numbers using the copynumber function, 
and further adjusted for GC content using the copycaller function. Adjusted calls underwent 
segmentation using a recursive algorithm, circular binary segmentation as implemented in the 
package DNAcopy (3). Segmented CNA was analyzed and readjusted using copycaller with 
recenter-up or recenter-down, for segments showing a consistent deviation from a baseline (0.0). 
Adjacent segments of similar copy number log ratios (<0.25 difference) were merged using a 
varscan2 affiliated perl script and a custom bash script. 
 
Somatic SNV classification using mclust  
Variants were classified based on their variant allele frequencies (VAFs) into distinct clusters using 
the R package mclust (4). Mclust uses machine-learning model-based estimation based on finite 
normal mixture modelling using Expectation-Maximization (EM) and the Bayesian Information 
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Criterion, essentially allowing for the grouping of variants based on allele frequency into distinct 
distributions. These can be manually assigned into ‘homozygous’, ‘clonal’ or ‘subclonal’. 
 
Cancer cell fractions  
Variant cancer cell fractions (CCF) indicates the prevalence of a mutation throughout the tumor 
sample, with higher CCF values indicating variants clonal in nature. CCFs were calculated as 
follows (5): 
 
CCF = VAF * (1/Purity)(CN*Purity +2(1-Purity)) 
 
Where VAF is the variant allele frequency, CN is the local copy number of the mutation and purity 
is the estimation as calculated by EXPANDS. Both VAF and CN were calculated using varscan2 
(see above).  
 
Phylogenetic reconstruction from combined SNV and CNA data  
CNA and loss-of-heterozygosity (LOH) data were combined with somatic variants to infer 
subclonal architecture using EXPANDS (6) independently for each sample. EXPANDS (v2.1.1) 
was run using the runExpands function with default settings. As per the default, only 
subpopulations that had a minimum cellular frequency (CF) of 0.1 or greater were taken into 
consideration. Mutations that were not clusterable were excluded from reconstruction. Mutations 
were assigned to all appropriate populations and subpopulations, (ie a mutation can be assigned to 
a parent population (trunk) and a ‘daughter’ subpopulation (branch)).  
Phylogenetic reconstruction of the subpopulations in primary and recurrent tumors was performed 
by calculating the Manhattan distance metric between all subpopulations, followed by hierarchical 
clustering using full linkage. Visualization of the phylogenies was created using the as.phylo 
function from the ape package (7). 
 
Copy number spectrum plots  
CNA data from varscan2 copy number analysis were used to visualize copy number gains and 
losses. The copy number spectrum function for the GenVisR package provides a method of 
visualizing primary and recurrence CNA changes (8). The genome boundaries were created using 
BSgenome.Hsapiens.UCSC.hg38 reference. 
 
Loss of heterozygosity plots  
Germline and loss of heterozygosity (LOH) variants called by varscan2 were used to visualize 
LOH regions of the genome using the lohspec function in the GenVisR package. This enabled 
detection of copy-neutral LOH regions where one parental locus is deleted and the other is 
duplicated. LOH regions were found using a 2.5 Mbp sliding window to calculate differences in 
variant allele frequency of germline and LOH heterozygous variants in tumor and normal samples. 
Within each window the absolute VAF difference is calculated and a mean is obtained. The 
algorithm continues recursively by moving the windows forward 1 Mbp and calculating the mean 
tumor-normal VAF difference of LOH and germline variants genome-wide, until a stable solution 
is found. 
 
Mutational signatures  
To determine if different mutational processes were occurring, we analyzed mutational signatures. 
Sets of somatic variants from distinct subclonal populations in primary or recurrent tumors 
identified by EXPANDS were analyzed separately, and the mutation signatures were determined 
using the deconstructSigs (v1.8.0) package (9). Mutational signatures were generated for each 
subclonal population group, all groups were above 50 variants, with the exception of 3f (patient 
3), 1ef (patient 1) and 2b (patient 2). DeconstructSigs was run using 30 signatures from the 
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Catalogue Of Somatic Mutations In Cancer public repository as the reference signatures (10). 
Default settings were used when generating mutational signatures with the exception of genome 
normalization and weight signature cutoff, which was changed to 0.05. 
 
Allele frequency distribution  
Previously, it has been argued that the dynamics of tumor cells may find a signature in hallmark 
statistical clone size dependences (11,12). Specifically, for systems characterized by a proliferative 
hierarchy in which slow-cycling tumor stem-like cells give rise to rapidly cycling, self-renewing, 
progenitor-like cells that in turn generate short-lived non-cycling cells, the distribution of variant 
allele fractions (VAFs) is predicted to acquire a negative binomial frequency dependence (11,13): 
  

 
  
Here, the leading 1/f dependence, highlighted by Williams et al. 2016 (12), represents a generic 
signature of neutral clone competition. To explore whether the current tumor WGS data can be 
embraced within the same paradigm, we considered the VAF distribution from patient samples. 
To this end, we considered a fit to the first incomplete moment of the VAF distribution, which for 
a negative binomial size dependence takes a pure exponential form (11,13). 
 Due to the sequencing resolution limit (~150x physical coverage) we introduced a lower 
cut-off on the allele frequencies at 𝑓"#$ = 0.12 (14). At the upper end of the scale, we set a cut-
off at 𝑓"*+ = 0.4, noting that, in the absence of copy number variation, mutations with an allele 
fraction of 0.5 and above will include those that are fixed across the population. We therefore 
adapted the expression for the first incomplete moment to account for this limited allele frequency 
interval of [𝑓"#$, 𝑓"*+], defining the measure, 
  

  
  
where < 𝑓 > denotes the average allele frequency within the interval and 𝑓2 is the fitting 
parameter. For details on how the VAF distribution is derived, we refer to ref. (11). 
 The NonlinearModelFit function in Mathematica 11.0.1.0 was then used to perform a least-
squares fit of the first incomplete moment to the sample (allele frequencies corrected for the 
modest degree of copy number variation and purity). The results of the fit can be found in Table 
S7, Fig. 6B-E and Fig. S7A-D. Overall, the findings are largely consistent with a negative binomial 
tumor clone size dependence. These results suggest that tumor cells are organized in a conserved 
proliferative hierarchy, with tumor growth characterized by neutral competition between 
constituent tumor subclones. 
 For completeness, we then considered a direct fit of the VAF distribution to a negative 
binomial size dependence (1) over the same interval. Grouping the data into bins of size (𝑓"*+ −
𝑓"#$)/30, the results of a least-squares fit, obtained using the NonlinearModelFit function in 
Mathematica 11.0.1.0, is shown in Fig. S7E-I. For a full description of the model, please refer to 
Supplementary Theory in reference (13). 
  
Evolution of allele fractions across recurrences  
To further challenge the hierarchical model tumor cell dynamics, we took advantage of the 
availability of recurrent tumor samples. Within the framework of the model, competition between 
individual tumor stem cell clones is predicted to be neutral, allowing clones to readily adjust, up 
or down, their fractional tumor contribution. In this case, the ensemble of clones bearing mutations 
that are acquired, or rise above detection threshold, during recurrence provides a pure sample on 
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which to test the model through the predicted negative binomial dependence of the VAF 
distribution. By contrast, mutations that are shared between primary and recurrent tumors are 
expected to depart from this dependence, either because they are clonally fixed within the tumor 
population (with VAFs around 0.5), or because they occupy a significant fraction of the tumor at 
the start of the recurrent period of tumor growth. Notably, for de novo mutations that arise at 
recurrence, using the same least-squares fitting procedure, we find a strikingly good agreement 
with a negative binomial dependence (Fig. S7J-N), while the distribution of shared mutations is 
typically peaked around larger values, as expected (Fig. S7O-R). 
 
Single-cell RNA-seq (Calgary cohort)  
Xenograft tumor tissue was dissociated into single cells using the following protocol: 10 mL of 
ACCUTASETM (catalog # 07920, Sigma-Aldrich) was added to tumor tissue for manual 
dissociation with surgical scissors. The sample was then incubated with sterile glass beads at 37°C, 
rotating continuously for 30 min. The glass beads were removed, and the sample was spun at 1000 
rpm for 5 minutes at 25°C. The cell pellet was resuspended in neural stem cell media (NeuroCultTM 
NS-A Proliferation Kit (Human), catalog # 05751). Mouse cells were removed with the Miltenyi 
Biotec Mouse Cell Depletion Kit (catalog # 130-104-694) and the autoMACSâ Pro Separator and 
columns (catalog # 130-021-101). Protocol was followed as per manufacturer’s instructions. 
Viability and number of the purified human cells were quantified. Cell samples with viability > 
80% were used for subsequent single-cell RNA-sequencing. ~2500 cells were loaded into the 
ChromiumTM console and were used for library preparation. The 10xGenomics ChromiumTM 
Single Cell 3’ Library & Gel Bead Kit v2, 16 reactions (catalog # PN-120237) was used for library 
preparation. Size and distribution of all sequencing libraries were quantified with the Agilent 
Technologies 2200 TapeStation High Sensitivity D1000 Assay. Single-cell RNA-sequencing was 
performed at the Centre for Health Genomics and Informatics at the University of Calgary. All 
libraries were sequenced on mid-output 150 cycle NextSeq500 runs, generating ~130 million reads 
each. Sequencing (BCL) files were processed with the Cell Ranger 2.1.0 package (10xGenomics). 
Reads were aligned to the GRCh38 transcriptome. Data standardization and normalization was 
performed with the Seurat package (15). 
 
Bulk RNA-seq (Toronto cohort)  
RNA from tissue and cells was extracted using Qiagen AllPrep DNA/RNA/miRNA Universal Kit 
(catalog # 80224). Strand-specific RNA-seq (ssRNA-seq) libraries were constructed from total 
RNA samples using plate-based protocols. Libraries were sequenced at 75 bp PET using V4 
chemistry on a HiSeq 2500 instrument (Illumina) at the Genome Sciences Centre (Vancouver, 
BC). Reads were aligned with the STAR aligner (16) v2.4.2a to hg38 human reference genome 
(from iGenome). R Bioconductor DESEq2 package (17) was used for normalization and vst 
transformation of the gene expression matrix 
 
Graphing software  
GraphPad Prism 7.0c was used for graph generation. The Venn diagrams were generated using the 
eulerr R package version 4.0.0 (www.cran.r-project.org/web/packages/eulerr/ index.html). Sankey 
Diagrams were generated using SankeyMATIC (www.sankeymatic.com) and the outputs were 
modified to be of appropriate format for figures.  
 
External datasets  
Identification of genes included in the OMIM database of genetic inheritance was done with 
DAVID bioinformatics resources 6.8 (18,19). Survival analysis of pediatric glioma patients was 
done with R2: Genomics analysis and visualization platform (www.r2.amc.nl)  using a previously 
published dataset by Paugh et al (20). Assessment of allelic fractions for ATRX mutations was 
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done using an independent dataset (21) available at www.pedpancan.com. GTEx data were 
assessed at https://www.gtexportal.org/home (22). The Database of Genomic Variants was 
accessed at http://dgv.tcag.ca/dgv/app/home (23). Developmental human brain gene expression 
data was extracted from BrainSpan (http://www.brainspan.org). 
 
Statistical analysis of enrichment of OMIM genes in the pGBM mutational dataset  
The number X of genes harboring non-synonymous, stop gain/stop loss, frame shift, non-frame 
shift SNVs and indels was identified for primary and recurrent tumors. From these, genes with a 
phenotype in OMIM were selected (Y). The OMIM genes (n = 13,520) with a clinical phenotype 
were identified using the genemap2.txt file (containing gene and phenotype information) 
downloaded from OMIM (https://www.omim.org/downloads/). For p-value analysis, X number of 
random genes were selected from all protein coding genes in Ensemble (n = 20,345) and among 
these the number of genes with related OMIM phenotype were selected (Rand_OMIM). This 
analysis was repeated 100,000 times. The p-value was identified as the number of times 
‘Rand_OMIM’ genes were higher than Y number of genes in the 100,000 iterations. 
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Fig. S1. Heterozygous TP53 deletion in the germline and tumor of patient 1 and expression 
timelines of DSE.  
(A) Whole-genome sequencing with linked-reads shows a heterozygous deletion of the last exon 
of TP53 in the germline of patient 1.  
(B) Linked-read whole-genome sequencing data for the primary tumor of patient 1.  
Linked-reads are clustered based on parental origin (green-orange color scheme for one parental 
chromosome, and blue-purple color scheme for the chromosome derived from the other parent).  
Black boxes highlight the site of the deletion. Haplotypes are arbitrarily assigned, hence the 
attribution of the deletion to haplotypes of different colors in germline and tumor. 
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(C) RNA-seq data for DSE at different developmental time points in the human brain. Data were 
extracted from BrainSpan. 
(D) Summary of expression profiles for DSE in pre-birth and post-birth brain tissue shown in (C). 
Bars represent mean ± SD. P value was calculated with the non-parametric, two-tailed Mann 
Whitney test. 
(E) Permutation tests to assess enrichment of OMIM genes among mutated genes in pGBM 
samples. The analysis was done for each individual sample. 
(F) Permutation tests to assess enrichment of OMIM genes among mutated genes in pGBM 
samples, grouped as "primary" or "recurrent" samples. 
(G) Comparison of short deletions (range: 50-30,000 bp) in the germlines of pGBM patients (n = 
8) or control germlines (n = 4). Controls were the germlines of two sets of parents of two pGBM 
patients. Each column shows the distribution of values in each category, together with mean ± SD. 
P-value was obtained with non-parametric, two-tailed Mann Whitney test. 
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Fig. S2. Mutational signatures in pGBM samples. 
(A) Mutational signatures in the diagnostic sample of patient 1. 
(B) Mutational signatures in the second resection of patient 1. 
(C) Mutational signatures in the primary tumor of patient 2. 
(D) Mutational signatures in the recurrence of patient 2. 
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(E) Mutational signatures in the primary tumor of patient 3. 
(F) Mutational signatures in the recurrence of patient 3. 
(G) Mutational signatures in the primary tumor of patient 4. 
(H) Mutational signatures in the primary tumor of patient 5. 
(I) Mutational signatures in the first recurrence of patient 5. 
(J) Mutational signatures in the second recurrence of patient 5. 
(K) Mutational signatures in the third recurrence of patient 5. 
All signatures were derived from SNVs for each tumor. Each pie chart applies to a specific genetic 
subclone or a group of sub clones, as indicated by the colored labels on top of each diagram.  
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Fig. S3. Deletions at immune-modulatory loci and their effect on gene expression. 
(A) Linked read WGS data displaying a deletion at the BTNL8/3 loci in the germline and in the 
primary tumor of patient 5. 
(B) scRNA-seq for a PDX derived from the recurrence of patient 3. Expression levels for BTNL3 
and BTNL8 are shown. Grey indicates lack of expression. 
(C) scRNA-seq for a PDX derived from the third recurrence of patient 5. Expression levels for 
BTNL3 and BTNL8 are shown. Grey indicates lack of expression. 
(D) Linked read WGS data displaying a deletion at the APOBEC3A/B locus in the second 
recurrence of patient 5. 
(E) Linked read WGS data displaying a deletion at the APOBEC3A/B locus in the germline of 
patient 5. 
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(F) scRNA-seq for a PDX derived from the recurrence of patient 3. Expression levels for 
APOBEC3A and APOBEC3B are shown. Grey indicates lack of expression. 
(G) scRNA-seq for a PDX derived from the second recurrence of patient 5. Expression levels for 
APOBEC3A and APOBEC3B are shown. Grey indicates lack of expression. 
 



 14 

 
 



 15 

Fig. S4. Dynamics of germlines SVs during tumor evolution. 
 (A) Allelic frequencies for large SVs that have a germline allelic frequency > 0.4 and < 0.7 in the 
germline of patient 1. 
(B) Allelic frequencies for large SVs that have a germline allelic frequency > 0.4 and < 0.7 in the 
germline of patient 2 
(C) Allelic frequencies for large SVs that have a germline allelic frequency > 0.4 and < 0.7 in the 
germline of patient 4. 
(D) Allelic frequencies for large SVs that have a germline allelic frequency > 0.4 and < 0.7 in the 
germline of patient 5. 
(E) Allelic frequencies for large SVs that have a germline allelic frequency > 0.7 in the germline 
of patient 1. 
(F) Allelic frequencies for large SVs that have a germline allelic frequency > 0.7 in the germline 
of patient 2 
(G) Allelic frequencies for large SVs that have a germline allelic frequency > 0.7 in the germline 
of patient 3. 
(H) Allelic frequencies for large SVs that have a germline allelic frequency > 0.7 in the germline 
of patient 5. 
The germline of patient 3 had no large SVs with germline allelic frequencies between 0.4 and 0.7. 
The germline of patient 4 had no large SVs with germline allelic frequencies > 0.7. 
All SVs in these figures were called with the longranger package. 
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Fig. S5. Copy number assays using TaqMan probes confirm the deletion at the ATRX locus.  
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(A) TaqMan probes were assessed for their sensitivity with decreasing amount of genomic DNA 
as a template. All probes responded comparably to changes in amounts of DNA.  
(B) Copy number TaqMan assay for patient 1.  
(C) Copy number TaqMan assay for patient 2.  
(D) Copy number TaqMan assay for patient 3.  
(E) Copy number TaqMan assay for patient 5.  
Bars represent average ± SD. For all assays, multiple t test statistics was used to derive q values. 
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Fig. S6. Genetic heterogeneity at the ATRX locus.  
(A) An example of putative deletion at the ATRX locus detected in the germline of patient 6 
(Toronto cohort).  
(B) Expression levels for H3F3A in a xenograft derived from the recurrence of patient 3 (left panel) 
and in a xenograft derived from recurrence 3 of patient 5 (right panel).  
(C) Expression levels for H3F3B in a xenograft derived from the recurrence of patient 3 (left panel) 
and in a xenograft derived from recurrence 3 of patient 5 (right panel).  
(D) Allelic frequency for ATRX mutations in pediatric GBM patients in the DKFZ pediatric pan-
cancer study (Gröbner et al., 2018). 
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Fig. S7. Distribution of allelic frequencies and clonal sizes in pGBM samples. 
(A-D) Fit of the first incomplete moment of the VAF distribution based on a neutral hierarchical 
model of tumor cell dynamics (red line) to data obtained from patients 1-4 (black points). The grey 
lines indicate allele frequency cut-offs due to sequencing resolution (lower) and ploidy (upper).  
(E-H) Fit of the raw VAF distribution based on a neutral hierarchical model of tumor cell dynamics 
(red line) to data obtained from patients 1-5 (colored bars). The grey lines indicate allele frequency 
cut-offs due to sequencing resolution (lower) and ploidy (upper). The filling of the histogram 
indicates the origin of the mutations (i.e. first detection). Y axis represents the number of mutations 
that occurred at a specified VAF. 
(I-N) Fit of the raw VAF distribution based on a neutral hierarchical model of tumor cell dynamics 
(red line) to data obtained from patients 1-5 (colored bars). In this case, the data for recurrences 
has been filtered to include only de novo mutations defined as those that reach detection threshold 
only during recurrence. The grey lines indicate allele frequency cut-offs due to sequencing 
resolution (lower) and ploidy (upper).  
(O-R) Histograms showing VAF distributions for mutations that are shared between recurrent 
samples as indicated. The red line indicates the median of the distribution.  
For details on the model and fits, see main text and Methods. 
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patient # sample 1 
(diagnostic 
sample) 

sample 2 sample 3 sample 4 blood 
(germline) 

1 ✓* ✓*   ✓ 
2 ✓ ✓   ✓ 
3 ✓ ✓   ✓ 
4 ✓    ✓ 
5 ✓ ✓ ✓ ✓ ✓ 
 
Supplemental Table S1. Calgary pediatric GBM cohort. Red asterisk indicates that for patient 
1, two resections were performed with no treatment in between. The sample obtained at the first 
resection is referred to as "diagnostic sample," and the sample obtained at the second surgery is 
referred to as "second resection." 
 
 
patient # sex age (years) radiation chemotherapy OS (days) 
1 M 12 none none > 1434 
2 F 9 local temozolomide 281 
3 F < 1 none carboplatin, 

etoposide 
325 

4 M < 1 none none 16 
5 M 15 cerebrospinal, 

boost 
cisplatin, 
vincristine, 
cyclophosphamide 

192 

 
Supplemental Table S2. Therapeutic approach taken for each pediatric GBM patient in the 
Calgary cohort. We have treatment and outcome information for each patient. OS: Overall 
survival. 
 
 

patient # sex age (years) used for 
6 M 14 WGS 
7 F 14 WGS 
8 F 11 WGS 
G477 F 15 RNA-seq 
G626r F 14 RNA-seq 
G752r M 1 RNA-seq 

 
Supplemental Table S3. Toronto pediatric GBM cohort used for WGS with linked reads and 
bulk RNA-seq. For patient 6, 7 and 8, germline and primary tumor tissue were available. For 
G477, G626r and G752r, RNA-seq was performed on bulk tumor and on their primary cultures. 
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sample longest 
phase block 
(Mbp) 

large 
SVs 
(> 30 
kbp) 

short 
deletions 
(50-30,000 
bp) 

Average 
sequencing 
coverage 
(X) 

Average 
physical 
coverage 
(X) 

patient 1 (Calgary) – sample 
1 

9 49 4239 36.3 181.5 

patient 1 (Calgary) - sample 2 1 26 6838 30.5 152.5 
patient 1 (Calgary) - germline 11 20 4153 32.9 164.5 
patient 2 (Calgary) - sample 1 12 23 4596 35.9 179.5 
patient 2 (Calgary) - sample 2 12 25 4849 37.9 189.5 
patient 2 (Calgary) - germline 21 19 4165 33.8 169.0 
patient 3 (Calgary) - sample 1 4 15 4481 32.0 160.0 
patient 3 (Calgary) - sample 2 9 20 4367 34.1 170.5 
patient 3 (Calgary) - germline 12 20 4141 33.7 168.5 
patient 4 (Calgary) - sample 1 12 35 4086 33.8 169.0 
patient 4 (Calgary) - germline 24 31 3977 34.4 172.0 
patient 5 (Calgary) - sample 1 9 30 3953 36.8 184.0 
patient 5 (Calgary) - sample 2 9 23 3945 35.3 176.5 
patient 5 (Calgary) - sample 3 11 25 3876 34.8 174.0 
patient 5 (Calgary) - sample 4 10 20 3877 36.9 184.5 
patient 5 (Calgary) - germline 18 27 4116 33.7 168.5 
patient 6 (Toronto) - primary 71 20 3755 38.5 192.5 
patient 6 (Toronto) - 
germline 

9 23 4114 37.1 185.5 

patient 7 (Toronto) - primary 15 58 4055 38.9 194.5 
patient 7 (Toronto) - 
germline 

3 28 4376 36.3 181.5 

patient 8 (Toronto) - primary 15 83 4566 39.1 195.5 
patient 8 (Toronto) - 
germline 

10 22 4191 36.4 182 

patient 1 - parent 1 24 14 3884 35.1 175.5 
patient 1 - parent 2 26 14 3762 36.2 181 
patient 3 - parent 1 38 15 3897 36.6 183 
patient 3 - parent 2 37 25 3705 38.4 192 

 
Supplemental Table S4. Features of each sample analyzed by whole-genome sequencing with 
linked reads. 
 
 
 

genes number of pGBMs with mutations 
EBF4 2 
FAM160A2 2 
RNF169 2 
VWF 2 

 
Supplemental Table S5. Genes mutated in diagnostic pGBM samples in more than one 
patient. 
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genes number of pGBMs with mutations 
ASXL1 2 
HTR1E 2 
NBEAL1 2 
POC5 2 
PRUNE2 2 
SZT2 2 

 
Supplemental Table S6. Genes mutated in follow-up resections in more than one patient. 
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Sample f0  
(inc 
momen
t) 

R-squared 
(inc 
moment) 

f0  
(neg bin 
dist) 

N0  
(neg bin 
dist) 

R-squared 
(neg bin 
dist) 

patient 1, sample 1 (p1s1) 0.1597 0.9997 0.1363 0.0148 0.9786 

patient 1, sample 2 (p1s2) 0.1963 0.9977 0.2808 0.0063 0.9376 

patient 2, sample 1 (p2s1) 0.1316 0.9926 0.0776 0.0022 0.9785 

patient 2, sample 2 (p2s2) 0.2709 0.9997 0.2834 0.0137 0.9869 

patient 3, sample 1 (p3s1) 0.0608 0.9978 0.0748 0.0015 0.9630 

patient 3, sample 2 (p3s2)  0.0731 0.9983 0.0701 0.0028 0.9856 

patient 4, sample 1 (p4s1) 0.0737 0.9993 0.0776 0.0022 0.9796 

patient 5, sample 1 (p5s1) 0.1472 0.9883 0.0779 0.0070 0.9710 

patient 5, sample 2 (p5s2) 0.1529 0.9990 0.1183 0.0130 0.9767 

patient 5, sample 3 (p5s3) 0.1132 0.9982 0.1077 0.0084 0.9764 

patient 5, sample 4 (p5s4) 0.1401 0.9994 0.1383 0.0117 0.9823 

p1s1 (de novo) 0.1597 0.9997 0.1363 0.0148 0.9786 

p1s2 (de novo) 0.1815 0.9974 0.2622 0.0061 0.9360 

p2s1 (de novo) 0.1316 0.9925 0.0776 0.0022 0.9785 

p2s2 (de novo) 0.2223 0.9995 0.2432 0.0129 0.9863 

p3s1 (de novo) 0.0608 0.9978 0.0748 0.0015 0.9630 

p3s2 (de novo) 0.0696 0.9986 0.0691 0.0027 0.9859 

p4s1 (de novo) 0.0737 0.9993 0.0776 0.0022 0.9796 

p5s1 (de novo) 0.1472 0.9883 0.0779 0.0070 0.9710 

p5s2 (de novo) 0.0738 0.9994 0.0768 0.0071 0.9790 

p5s3 (de novo) 0.0811 0.9984 0.0966 0.0075 0.9731 

p5s4 (de novo) 0.0965 0.9979 0.1156 0.0099 0.9802 

 
Supplemental Table S7. Results of the fits of the first incomplete moment and the negative 
binomial like distribution to the samples. For details on the models and fits, see main text and 
Supplemental Materials and Methods. 


