Environmental variability, reliability of information and the timing of migration

Silke Bauer, John M. McNamara and Zoltan Barta

Supplementary Material S1: Dynamic programming equations

Terminal reward

Set V(i, k, N) = 0 for all $i = -Q, -(Q - 1), \dots, 0, 1, 2, \dots, Q$ and all $k = 0, 1, \dots, K - 1$.

Set $V(i, K, n) = R(i\Delta, n\Delta)$ for all $i = -Q, -(Q - 1), \dots, 0, 1, 2, \dots, Q$ and all $n = 0, 1, \dots, N$.

Backwards step

Let $0 \le n \le N - 1$. Suppose that V(i, k, n + 1) is given for all $i = -Q, -(Q - 1), \dots, 0, 1, 2, \dots, Q$ and all $k = 0, 1, \dots, K$

for each $i = -Q, -(Q - 1), \dots, 0, 1, 2, \dots, Q$ and each $k = 0, 1, \dots, K - 1$:

Let
$$H_{stay} = [1 - M((n+i)\Delta, k)\Delta]V(i, k, n+1)$$
.
 $H_{leave} = \sum_{j=-Q}^{Q} a_{i,j}(k+1)V(j, k+1, n+1)$
Let . (***)

Set $V(i,k,n) = \max\{H_{stay}, H_{leave}\}$.

Set Action(i, k, n) = 1 if $H_{\text{stay}} \ge H_{\text{leave}}$, else set Action(i, k, n) = 0.

[Note migration takes one time-unit in the above, but delta is small.]

The leaving strategy

If the optimal strategy is of the obvious simple form, then

$$L(i\Delta, k) = \Delta \sum_{n=0}^{N} \operatorname{action}(i, k, n).$$

Numerical implementation

We draw a distinction between grid time and real time. Specifically, the time-grid step is Δ , which will typically be small. The time grid takes integer values of n = 0, 1, 2, ..., N. These values correspond to

calendar times t = 0, Δ , 2 Δ , ..., N Δ . The advancement of spring relative to the mean is assumed to lie on a grid *i* = -Q, -(Q-1), ..., 0, 1, 2, ..., Q. Grid time q corresponds to real time $q\Delta$.

The transition matrices

Define the function *fnorm* by

$$fnorm(x, m, v) = \exp\{-(x - m)^2 / 2v\}.$$

For each k in the range k = 1, 2, ... K,

Set
$$v = \sigma^2(k) (1 - (\rho(k))^2)$$
.

For each i in the range $i = -Q, -(Q-1), \dots, 0, 1, 2, \dots, Q$ set $m = i\Delta\rho(k)\sigma(k)/\sigma(k-1)$

{ For each j are in the range $j = -Q, -(Q - 1), \dots, 0, 1, 2, \dots, Q$ set $x = j\Delta$.

Set
$$\widetilde{a}_{i,j}(k) = fnorm(x,m,v)$$
.

Set
$$sum = \sum_{j=-Q}^{Q} \widetilde{a}_{i,j}(k)$$
.

For each j in the range $j = -Q, -(Q-1), \dots, 0, 1, 2, \dots, Q$ set $a_{i,j}(k) = \widetilde{a}_{i,j}(k) / sum$.

[We can interpret these variables as follows:

$$a_{i,j}(k) = P(Y(k) = \Delta j \lor Y(k-1) = \Delta i),$$

and $A(k) \equiv (a_{i,j}(k))$ is the transition matrix related the (grid values of) advancement of spring at location *k*-1 to that at *k*.]

Fig. S1. As the landscape ρ is the product of all $\rho(k)$'s, changing the number of sites, *K*, while keeping the landscape ρ constant, changes the correlation between successive sites, $\rho(k)$. If the landscape ρ is either very high or very low, the correlations between successive sites, $\rho(k)$, hardly differ from landscape ρ , while the greatest differences appear for low to intermediate ρ and these differences increase further with more sites (darker lines).

Figure S2 – Reproductive values for varying number of sites and sigma

Fig. S2. Reproductive values over a gradient of overall predictability (landscape ρ) and environmental variability (upper panel) and varying number of sites (lower panel), respectively.

Adding intermediate sites does not yield any fitness-benefit in almost constant environment (d) while it clearly increases reproductive values when environments become more variable (e-f).