

Supplementary File 1

Mobilization and cellular distribution of phosphate in the diatom *Phaeodactylum tricornutum*

Gianluca Dell'Aquila ¹, Stefan Zauner¹, Thomas Heimerl², Jörg Kahnt³, Vera Samel-Gondesen¹, Simon Runge¹, Franziska Hempel², Uwe G. Maier^{1,2,*}

* Correspondence: Prof Dr. Uwe G Maier: <u>maier@biologie.uni-marburg.de</u>

eGFP/PAF

2

Supplementary figure S1: confocal scanner lase microscopy *in vivo* eGFP expression of different promoter/terminator cassette strains (denoted in the left side), incubated under different P_i concentrations for 48h. Figures are shown as merged pictures with eGFP (green) and autofluorescence (red). For each cell line, pictures were acquired using the same setting.

Supplementary figure S2: putative phosphorylation sites prediction using DISPHOS2 (<u>http://www.dabi.temple.edu/disphos/)</u>. Predicted phosphorylation sites are shown with red triangle (serine) or blue circle (threonine).

Supplementary figure S3: scans of all the blots and gels shown in this work. After protein transfer and blocking, membranes were cut at 40 kDa level and incubated separately with α -tubulin (upper part) and α -eGFP (lower part), as described in the material and methods section.

Supplementary figure S4: 50 nm ultrathin section showing PtVtc3-eGFP (black arrows). P: plastid; N: nucleus; V: vacuole. Scale bar 1 µm.

Running name	Forward	Reverse
PtPhos3	<u>GAATTC</u> ATGGAGAGTCAGGGGAAGGAATGT	TCTAGAAAAGCTGTGAACTTGTGATGATAAAATT
	CC	GTTCCCG
PtPhos5	<u>GAATTC</u> ATGGCGGGTCCATCGAAACGGCCT	TCTAGACTTTTTGTTCTGCTCATTCC
	TG	
PtPhos6	<u>GAATTC</u> ATGAACGATGACCGGATAAGTGAC	TCTAGACATCAATAATTTGGTGGACGGAACCG
	CG	
PtPhos6-Nterm	CAGGTCTAGAATGAA CGATGACCGGATAAG	CTAGTCTTAAAGTAAATTGAAGCTTTTACATCAAT
GFP		AATTTGGTGGAC
PtPhos7	GTCACCACTTGTGCGAACG <u>GAATTC</u> ATGAG	CCTCGCCCTTGCTCACCAT <u>TCTAGA</u> GTCGATTTTG
	CCGTGCGCCAACG	AGTTGACGCTTGTTGG
PtPhos8	GTCACCACTTGTGCGAACG <u>GAATTC</u> ATGAC	CCTCGCCCTTGCTCACCAT <u>TCTAGA</u> AGCTA
	GCAAATCTTGATCTTG	GACCATCTACGGTC
PtPho4	GAATTCATGAGCGTTGACATGAG	TCTAGAGGCAGAGGGGGAAAAAG
PtHpi1	GTCACCACTTGTGCGAACGGAATTC ATGGA	CCTCGCCCTTGCTCACCATTCTAGAAACAGTATCT
1	ACCATCGGACAAATTG	GCGAGAAC
PtNapi1	<u>GAATTC</u> ATGGTAAGTTGCCGTCTTCATATTG	TCTAGACGCCTCGACTTCGTTGTCGTC
	AGTGTG	
PtNapi2	GAATTCATGTCTGCAGAAAATCCTGAGG	GGATCCAGCTGCAACCTCATCTGAGTCCG
PtNapi3	GTCACCACTTGTGCGAACG <u>GAATTC</u> ATGGA	CCTCGCCCTTGCTCACCAT <u>TCTAGA</u> TGTTATTCTC
	GATCAACAACGCC	AAACAGTATCTGC
PtNapi4	<u>GAATTC</u> ATGTCCAACGCACAATTCTTCTGTG	TCTAGAGGCATCAACCTCAGCATCCGAAGTATC
PtNapi5	GAATTCATGAATGTCATCCACGAGACCG	<u>TCTAGA</u> GGATTTTCAACGGTAT
PtVpt1	GAATTCATGGTGAACTTTGGCAATAAG	TCTAGAGTCATCATTGTCTAAAGGCTC
PtVtc1	<u>GAATTC</u> ATGAGCCATTCTGAAACGACGCCG	TCTAGACGCTTCAATCATCGAATAC
PtVtc3	GAATTCATGCCGCCGCAACAGTCCCGAG	TCTAGA TACAGTCGCCGCAGCGCATTCG
PtVtc4	GAGCTCATGAAGTACGGTGAACACC	TCTAGACATTAGGTCCATTTTCGAAATGG

Supplementary table S1: primers used to amplify the genes for localization studies. Restriction sites sequences are underlined and sequences marked in yellow indicate the overlap generated to use the Gibson assembly reaction to generate the constructs.

Supplementary Material

Gel slice	Description	Coverage [%]	# Peptides	# PSMs	# Unique Peptides
~100 kDA	Predicted protein OS=Phaeodactylum tricornutum (strain CCAP 1055/1) OX=556484 GN=PHATRDRAFT_49678 PE=4 SV=1	24	15	50	15
~130 kDA	Predicted protein OS=Phaeodactylum tricornutum (strain CCAP 1055/1) OX=556484 GN=PHATRDRAFT_47612 PE=4 SV=1	12	7	22	7

Supplementary table S2: summary of the Mass Spectrometry analyses performed on the bands showed in figure 1. These results are relative to experiment ran using the Orbitrap Velos Pro mass spectrometer (Thermo Fisher Scientific) and analyzed using Proteome Discoverer 2.2 (Thermo Fisher Scientific).

P _i concentration	Cell concentration										
	PtPhos1	PtPhos2	PtPhos3	PtPhos5	PtPhos6	PtPhos8	PtPho4	PtHp _i 1	PtNaP _i 2	PtNaP _i 4	PtVpt1
- P _i	3,7	2,4	3,0	3,1	3,7	3,4	3,2	3	3,6	3,1	3
36 µM	3,4	2,8	3,0	3,8	3,8	3,8	3,3	3,1	3,3	3,4	3,1
72 μM	3,5	2,8	2,5	3,0	3,3	3,7	3,2	3	3,4	3,3	3,3
90 µM	3,5	2,7	2,7	3,8	3,4	3,6	3,1	2,8	3,8	3,3	3
108 µM	3,3	2,6	2,5	3,4	3,3	3,4	3,2	3,2	3,6	3	3,3

Supplementary table S3: cell concentrations of strains used in the expression studies two days after inoculation in media having different P_i-concentrations (first column). 2×10^6 cells/ml cells were initially inoculated. The values are expressed as multiple of 10^6 cells/ml.