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SUMMARY
Cardiomyocytes (CMs) from human induced pluripotent stem cells (hiPSCs) are functionally immature, but
this is improved by incorporation into engineered tissues or forced contraction. Here, we showed that tri-
cellular combinations of hiPSC-derived CMs, cardiac fibroblasts (CFs), and cardiac endothelial cells also
enhance maturation in easily constructed, scaffold-free, three-dimensional microtissues (MTs). hiPSC-
CMs in MTs with CFs showed improved sarcomeric structures with T-tubules, enhanced contractility, and
mitochondrial respiration and were electrophysiologically more mature than MTs without CFs. Interactions
mediating maturation included coupling between hiPSC-CMs and CFs through connexin 43 (CX43) gap junc-
tions and increased intracellular cyclic AMP (cAMP). Scaled production of thousands of hiPSC-MTs was
highly reproducible across lines and differentiated cell batches. MTs containing healthy-control hiPSC-
CMs but hiPSC-CFs from patients with arrhythmogenic cardiomyopathy strikingly recapitulated features
of the disease. Our MT model is thus a simple and versatile platform for modeling multicellular cardiac dis-
eases that will facilitate industry and academic engagement in high-throughput molecular screening.
INTRODUCTION

Dialogue between stromal, vascular, and tissue-specific cells is

essential for maintaining tissue homeostasis. Aside from
862 Cell Stem Cell 26, 862–879, June 4, 2020 ª 2020 The Author(s).
This is an open access article under the CC BY license (http://creative
providing nutrition, growth factors, extracellular matrix (ECM),

and hormones, three-dimensional (3D) biophysical interactions

with stromal cells are also necessary to ensure proper organ

function. Human induced pluripotent stem cells (hiPSCs) can
Published by Elsevier Inc.
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Figure 1. Differentiation, Expansion, and Characterization of hiPSC-Derived Cardiac Fibroblasts

(A) Protocol for hiPSC differentiation into cardiac fibroblasts with bright-field images at indicated times (d, days) for CTRL1-hiPSCs (LUMC0020iCTRL-06). BAC,

BMP4 + activin-A + CHIR99021; BXR, BMP4 + XAV939 + retinoic acid; F, FGF2; S, SB431542. Scale bar: 100 mm.

(legend continued on next page)
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differentiate into all cell types of the body (Takahashi et al., 2007),

capturing the donor genome, but in most cases, differentiated

derivatives are immature. We hypothesized that the absence of

tissue-specific stromal and vascular cells may contribute to

maturation failure and here used the heart as an exemplar to

examine the effect of cardiac stromal cells on hiPSC-cardiomyo-

cytes (hiPSC-CMs).

The adult heart contains 30% contractile CMs, the remaining

non-CM fraction being cardiac endothelial cells (ECs), vascular

stromal cells, and cardiac fibroblasts (CFs) (Pinto et al., 2016).

Human embryonic stem cells (hESCs) (Kehat et al., 2001; Mum-

mery et al., 2003) and hiPSCs (Denning et al., 2016) differentiate

to CMs, which resemble human fetal rather than adult CMs in

their structural, functional, and gene expression profiles (Gupta

et al., 2010; van den Berg et al., 2015; Xu et al., 2009; Yang

et al., 2014). Nevertheless, they can recapitulate phenotypical

traits of many genetic cardiac disorders in vitro (Carvajal-Vergara

et al., 2010; Caspi et al., 2013; Dell’Era et al., 2015; Dudek et al.,

2013; Giacomelli et al., 2017c; Moretti et al., 2010; Te Riele et al.,

2017; Siu et al., 2012; Wang et al., 2014) and to some extent pre-

dict cardiotoxicity of pharmacological compounds and key path-

ways in disease (Cross et al., 2015; Sala et al., 2017; van Meer et

al., 2019). Relatively mature hiPSC-CMs have only been

convincingly observed in 3D scaffold-based cultures or engi-

neered heart tissues (EHTs) in vitro (Lemoine et al., 2017; Man-

nhardt et al., 2016; Ronaldson-Bouchard et al., 2018; Tiburcy

et al., 2017) with escalating forced contraction enhancing matu-

ration such that transverse (T-) tubule-like structures become

evident (Ronaldson-Bouchard et al., 2018; Tiburcy et al., 2017).

T-tubules normally develop postnatally to regulate Ca2+ homeo-

stasis, excitation-contraction coupling, and electrical activity of

the heart (Brette and Orchard, 2007). However, EHTs require

specific expertise, specialized apparatus, gelation substrates,

and analysis tools (Mathur et al., 2015) and are thus complex so-

lutions for most academic laboratories and pharma applications.

Moreover, monotypic cell configurations do not recapitulate how

stromal or vascular cells might affect the behavior of CMs and

mediate disease or drug-induced phenotypes.

Here, we addressed these issues by generating multicell-type

3D cardiac microtissues (MTs) starting with just 5,000 cells. We

demonstrated previously that hiPSC-ECs derived from cardiac

mesoderm affect hiPSC-CMs in 3D MTs (Giacomelli et al.,

2017b) and found here that inclusion of hiPSC-CFs further

enhanced structural, electrical, mechanical, and metabolic

maturation. CFs mainly originate from the epicardium (Tallquist

and Molkentin, 2017), the outer epithelium covering the heart.

They play crucial roles in cardiac physiology and pathophysi-

ology (Furtado et al., 2016; Kofron et al., 2017; Risebro et al.,

2015), contributing to scar tissue formation after myocardial
(B) Representative immunofluorescence images of WT1, TBX18, COL1A1 (red), an

hiPSCs, ACFs, and SFs. Nuclei stained with DAPI (blue). Scale bar: 20 mm.

(C) Heatmap showing qPCR analysis of fibroblast (GJA1, ITGA4, COL1A2, COL1

hiPSC-CFs from hiPSC lines indicated and ACFs and SFs. Values normalized to

(D) Principal-component (PC) analysis of hiPSC-CMs, primary human fetal- (hu

hiPSC-EPIs and primary human adult (ACFs), fetal (huF-CFs) and hiPSC-derived

individual samples; colors different cell types.

(E) Heatmap showing hierarchical clustering of 4,266 DEGs (PFDR % 0.05) across

(F) GO analysis of cell-lineage-specific gene clusters.
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infarction (Rog-Zielinska et al., 2016). Theymaintain and remodel

the ECM, contributing to the integrity and connectivity of the

myocardial architecture (Dostal et al., 2015). Although non-excit-

able themselves, CFs modulate active and passive electrical

properties of CMs (Klesen et al., 2018; Kofron et al., 2017; Maho-

ney et al., 2016; Ongstad and Kohl, 2016). CFs have also been

implicated in contractility of hiPSC-CMs in 3D self-assembled

(scaffold-free) MTs composed of hiPSC-CMs, primary human

cardiac microvasculature ECs, and primary human CFs (Pointon

et al., 2017). MTs have to date only been generated using pri-

mary stromal cells, which impacts reproducibility and supply.

By replacing primary ECs and CFs with hiPSC counterparts,

we generated thousands of scaffold-free miniaturized cardiac

MTs (CMECFs) containing all cellular components in defined ra-

tios and observed enhanced hiPSC-CMmaturation. We demon-

strated that CFs, expressing connexin 43 (CX43) gap junction

protein, were most effective in supporting hiPSC-CM matura-

tion, and this was mediated by cyclic AMP (cAMP). Skin fibro-

blasts (SFs), which do not express CX43, and CFs in which

CX43 was knocked down were unable to couple to hiPSC-

CMs and did not improve maturation. Single-cell (sc) RNA

sequencing (RNA-seq) showed that signals from both cardiac

ECs and CFs likely contributed to increasing intracellular cAMP

in hiPSC-CMs and this was recapitulated by adding dibutyryl

(db) cAMP, a cell-permeable analog of cAMP. MTs in which con-

trol CFs were replaced by hiPSC CFs carrying a mutation in the

desmosomal protein PKP2 that causes arrhythmogenic cardio-

myopathy (ACM) strikingly showed CX43 reduction and cardiac

arrhythmic behavior despite the CMs being healthy. This illus-

trates that CFs are crucial in controlling adjacent CM behavior

and that CFs were integral contributors to the ACM phenotype.

RESULTS

hiPSC-Derived Epicardial Cells Differentiate into CFs
In Vitro

Epicardial cells (EPIs) contribute more than 80% of CFs in the

heart (Tallquist and Molkentin, 2017). To generate CFs, we first

differentiated hiPSC lines into EPIs, as previously described

(Guadix et al., 2017; Figure 1A). EPIs emerged with typical

epithelial cobblestone-like morphology reaching confluence on

day 12 of differentiation (Figure 1A). Immunofluorescence (IF)

confirmed nuclear expression of WT1 and TBX18 (Figure 1B).

To induce CF differentiation, hiPSC-EPIs were dissociated on

day 12 and re-plated in mediumwith basic fibroblast growth fac-

tor (FGF2) (10 ng/mL) for 8 days, refreshing on day 13 and every

2 days thereafter (Figure 1A). Cells became typically mesen-

chymal (Figure 1A). On day 21, hiPSC-CFs were expanded for

an additional 8 days in FGM3 medium. IF confirmed the EPI-
d CX43 (green) of hiPSC-EPIs and hiPSC-CFs from CTRL1, CTRL2, and LQT1

A1, and POSTN) and EPI (GJA1, WT1, and TBX18) genes in hiPSC-EPIs and

RPL37A. n = 3.

F-ECs) and hiPSC-cardiac ECs (hiPSC-ECs), primary human adult SFs, and

CFs (hiPSC-CFs) based on RNA-seq profiles using all genes. Dots represent

different cell types showing cell-lineage-specific gene clusters.



Figure 2. Cardiac Fibroblasts Promote Structural Maturation of hiPSC-CMs in Microtissues

(A) Schematic showing cellular composition of cardiac MT groups. Cell percentages (black) and numbers (gray) are indicated.

(B and C) Representative immunofluorescence images for (B) cardiac sarcomeric proteins TNNI (green) and ACTN2 (red) in MTs (scale bar: 10 mm) and (C) ACTN2

(red) in cells dissociated from MTs (scale bar: 20 mm). Nuclei are stained with DAPI (blue).

(legend continued on next page)
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to-CF transition (Figure 1B), with downregulation of WT1 and

TBX18 and expression of collagen type alpha1 (COL1A1). By

day 29, hiPSC-CFs expressed multiple fibroblast genes (GJA1,

ITGA4, COL1A1, COL1A2, and POSTN) and reduced WT1 and

TBX18 (Figure 1C). The differentiation protocol was robust and

reproducible in three independent hiPSC lines (Figures 1B and

1C); all hiPSC-CFs exhibited similar mRNA and protein marker

expression and were more similar to adult CFs (ACFs) than to

SFs, which were characterized by negligible expression of the

gap junction protein CX43 (GJA1 gene) and high expression of

collagen markers (COL1A1 and COL1A2; Figures 1B and 1C).

Principal-component (PC) analysis of whole-transcriptome

RNA-seq of hiPSC-CMs, primary human fetal-ECs (huF-ECs)

and hiPSC-cardiac ECs (Giacomelli et al., 2017a), SFs, hiPSC-

EPIs, and primary human ACFs, huF-CFs, and hiPSC-CFs

confirmed striking genome-wide expression correspondence

between primary human cardiac cells and their hiPSC-derived

equivalents (Figure 1D). Hierarchical clustering of cell-lineage-

specific signature genes identified gene clusters upregulated in

each of the different cell types (Figure 1E). Gene Ontology (GO)

terms for heart and vasculature development, cell junction orga-

nization, and collagen metabolic process were associated with

hiPSC-CMs, ECs, EPIs, and CFs, respectively (Figure 1F; Table

S1). The data thus showed shared cellular identities between pri-

mary cardiac cells and their hiPSC-derived equivalents and

distinct differences between each cell subtype.

Establishment of 3D Microtissue Model Composed of
hiPSC-CMs, hiPSC-ECs, and CFs or Dermal Fibroblasts
Given their distinct identities, we used hiPSC-derived cardiac

cells to form 3D MTs containing hiPSC-CMs and hiPSC-cardiac

ECs, derived as previously from a common cardiac mesoderm

precursor (MT-CMEC; termed here CMECs; Giacomelli et al.,

2017a, 2017b), hiPSC-CMs and hiPSC-CFs (CMFs), or, addition-

ally, hiPSC-CMs, hiPSC-ECs, and various types of fibroblasts.

These were hiPSC-CFs (CMECFs), ACFs (CMEC ACFs) and

adult SFs (CMEC SFs; Figure 2A). MTs were aggregated as

spheroids from 5,000 cells in V-bottom 96-well microplates, re-

freshed every 3 days with vascular endothelial growth factor

(VEGF) (CMECs), FGF2 (CMFs), or VEGF and FGF2 (CMECFs,

CMEC ACFs, and CMEC SFs) and cultured for 21 days.

We first examined overall morphology and cellular architecture

by IF for CM (cardiac troponin I; TNNI), EC (CD31), and fibroblast

(COL1A1) markers (Figure S1A) using a computational frame-

work developed in house for 3D semi-automated image pro-

cessing and segmentation. MTs containing fibroblasts were

similar in size and total cell number (Figure S1B), whereas

CMECs were smaller, containing fewer cells despite the same

input cell number. The percentages of the different cell types

(Figure S1C) were comparable among MT groups and reflected
(D) Representative transmission electron microscopy (TEM) images showing sar

(E) TEM images showing caveolae (c), T-tubule like structures (t), Z-lines (Z), I-b

arrows) in CMECFs. Scale bar: 0.5 mm.

(F) Sarcomere organization (sarcomere alignment index; n > 45 areas from 3MTs

*p < 0.001) from immunofluorescence analysis in MTs from CTRL1 hiPSCs.

(G) Sarcomere length in hiPSC-CMs dissociated from MTs. n > 28 areas from at

(H) Sarcomere length from TEM in MTs from CTRL1 (n > 41 areas from at least 2

ANOVA with Dunnett’s multiple comparisons test is shown.
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the input used for MT formation. Although relatively more

COL1A1+ cells were found in CMEC SFs (Figure S1C), the per-

centage of proliferating cells over time remained low in all MT

groups with few or no Ki-67+COL1A1+ cells (Figures S1D and

S1E). Time-lapse videos of CMEC and CMECF formation

showed that CMECFs formed faster and were rapidly more

compact than CMECs, suggesting that fibroblasts facilitated ag-

gregation, likely through enhanced cell-cell adhesion (data not

shown). Average distance between nuclei indicated that nuclei

were indeed more densely packed in MTs containing CFs and

ECs than in CMECs (Figure S1F). CM nuclei in CF-containing

MTs were larger than in other MT groups (Figure S1G), suggest-

ing that hypertrophy associated with maturation had been initi-

ated. We next examined salient features of adult CM function,

namely (ultra)structure, electrophysiology, and mechanical

contraction.

CFs Promote Structural Maturation of hiPSC-CMs in
Microtissues
Immunostaining for cardiac sarcomeric proteins TNNI and acti-

nin alpha-2 (ACTN2) in MTs revealed better sarcomere develop-

ment and organization inMTs containing CFs than in CMECs and

CMEC SFs from three independent hiPSC lines, as indicated by

sarcomere alignment index and length (Figures 2B, 2F, and S2A–

S2C). This was confirmed by IF on CMs from dissociated MTs

(Figures 2C and 2G) and transmission electron microscopy

(TEM) (Figures 2D and 2H). TEM also showed more mature

hiPSC-CM ultrastructure in CMECFs, including the presence of

caveolae, elongated and enlarged mitochondria with complex

cristae, and elongated tubular myofibrils consisting of well-orga-

nized sarcomeres with regular Z-lines, I-bands, and H-zones;

M-lines and T-tubule-like structures (Eisner et al., 2017) were

also visible (Figures 2E and S2D).

Comparison of bulk- and sc-RNA-seq with published datasets

showed that CMs in CMECFs clustered closely to adult human

CMs, whereas CMs in 2D and in CMECs clustered separately

as immature cells (Figure 3A). scRNA-seq analysis of CMs in

2D versus CMECFs confirmed enhanced CM structural matura-

tion in CMECFs, with increased expression of key cardiac sarco-

meric genes TNNT2, MYL2, MYL3, MYL4, TNNI1, TNNI3, DES,

and also TCAP, important for sarcomere assembly and T-tubule

structure and function in the mammalian heart (Ibrahim et al.,

2013; Valle et al., 1997; Figures 3B and S3A–S3D; Table S2).

Furthermore, bulk RNA-seq confirmed that MTs containing

hiPSC-CFs were globally more similar to CMEC ACFs than

CMEC SFs (Figure 3C). Of note, least biological variability was

observed when MTs were entirely hiPSC derived (Figure 3C).

Differentially expressed genes (DEGs) were identified between

hiPSC-CMs, CMECs, CMECFs, CMEC ACFs, and CMEC SFs

(Figure S3E). Unsupervised clustering of DEGs identified genes
comeres in different MTs. Scale bar: 1 mm.

ands (I), H-zones (H), and elongated mitochondria with complex cristae (red

per group; *p < 0.05) and sarcomere length (n > 47 areas from 3MTs per group;

least 3 independent slides per MT group.

independent stitches per group; *p < 0.05). Data are mean ± SEM. One-way



Figure 3. Single-Cell and Bulk Transcriptome Profiling of Microtissues

(A) PC analysis of single-cell (sc) and bulk RNA-seq of hiPSC-CMs at day 20 (single cell CMs; CMs), bulk CMECs (CMECs), and sc and bulk CMECFs (single cell

CMECFs; CMECFs) from this study, with bulk hPSC-CMs (day 20), bulk primary human fetal heart (fetal), bulk hPSC-CMs (1 year), and primary human adult heart

(adult) from RNA-seq in Kuppusamy et al. (2015); CM cluster). Colors represent different samples.

(legend continued on next page)
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most similarly expressed; this resulted in 8 distinct gene clusters

(Figure S3F). CMECFs and CMEC ACFs showed common mo-

lecular signatures characterized by genes upregulated in cluster

5 (Figure 3D; Table S3), which were not upregulated in CMEC

SFs. GO analysis showed enrichment in terms for heart contrac-

tion, cardiac conduction, regulation of membrane potential, car-

diac muscle cell development, regulation of the force of heart

contraction, and regulation of ion transmembrane function (Fig-

ure 3E; Table S3). Kyoto Encyclopedia of Genes and Genomes

(KEGG) analysis showed that the pathway ‘‘adrenergic signaling

in cardiomyocytes’’ was enriched among genes commonly upre-

gulated in CMECFs and CMEC ACFs (cluster 5; Figure 3F; Table

S3). Heatmaps of genes associated with GO terms of heart

contraction and regulation of ion transmembrane transport and

KEGG pathway adrenergic signaling in cardiomyocytes (Figures

3G–3I) showed higher expression of sarcomere proteins, ion

channels, and adrenergic receptors in CMECFs and CMEC

ACFs compared to CMECs and CMEC SFs.

These findings suggested that both adult- and hiPSC-CFs

promote maturation of hiPSC-CMs in MTs such that they display

multiple postnatal features.

CFs Promote Electrical Maturation and Enhance
Mechanical Contraction of hiPSC-CMs in Microtissues
To determine whether structural maturation was accompanied

by electrical maturation, we measured action potentials (APs)

in CMs from dissociated MTs using patch-clamp electrophysi-

ology (Figures 4A–4D and S4A). hiPSC-CMs from CMECFs

and CMEC ACFs clearly showed similar and improved electro-

physiological maturity than hiPSC-CMs from CMECs, CMFs,

and CMEC SFs, with many CMs exhibiting fast transient repolar-

ization after the AP peak (referred to as an AP ‘‘notch’’; Figures

4A and 4B), reflecting expression of the typical transient outward

potassium current (Ito), in agreement with upregulation of Ito
genes KCND3 and KCNA4 (Figure 3H); moreover, they had

more negative resting membrane potentials (RMP), increased

AP amplitudes and prolonged AP duration at 90% of the repolar-

ization (APD90) (Figure 4C), although upstroke velocity was

increased in all fibroblast-containing MTs compared to CMECs

(Figure 4D). These differences between CMECFs and CMECs

were confirmed by sharp electrode electrophysiology on whole

MTs (Figures S4B and S4C). Incidentally, sharp electrodes de-

tected cells with AP profiles similar to those reported previously

as resulting from heterocellular coupling between CMs and CFs

(Klesen et al., 2018) through gap junctions in adult native heart

tissue (Pellman et al., 2016; Stewart, 1978; Figure S4D).

Immature sarcomere structure is often associated with low

contractility. To determine whether sarcomere maturation was

accompanied by mechanical maturation, we investigated spon-
(B) Volcano plot and heatmaps displaying sorted log2 fold-change (FC) and adjuste

based on their scRNA-seq profiles. Log2FC > 0 indicates upregulated genes in t

upregulated genes in the CM cluster of hiPSC-CMs versus CMECFs.

(C) Spearman’s correlation heatmap of hiPSC-CMs, CMECs, CMECFs, CMEC A

(D) Heatmap showing gene expression in eight gene clusters from the consensu

(E) GO Biological Process terms enriched in gene clusters from consensus matri

(F) KEGG pathways enriched in gene clusters from consensus matrix (padj < 0.05

(G–I) Heatmaps showing expression of genes selected fromGO: heart contraction

signaling in cardiomyocytes (I).
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taneous contractile activity of MTs (Sala et al., 2018; Figures 4E–

4H). Representative contraction recordings of MTs are shown in

Figure 4E. The beat-to-beat intervals were similar in CMECFs

and CMEC ACFs and lower than in MTs without ECs or CFs or

with SFs (Figure 4F). Contraction duration normalized to beating

rate was prolonged (Figure 4G), in agreement with the prolonged

APD90, suggesting that both ECs and CFs were necessary to

enhance contractility. Contraction amplitude in CMECs, which

correlates with force of contraction (Sala et al., 2018), was similar

to CMECSFs andCMFs but lower than inMTswith both CFs and

cardiac ECs (Figure 4H). To further analyze contractility, we

quantified contraction and relaxation in paced MTs using vector

flow analysis. Both parameters were significantly faster in

CMECFs than in CMECs, as indicated by the maximum contrac-

tion velocity and accelerationmeasured at increasing pacing fre-

quencies (Figure S4E; Video S1); this suggested greater func-

tional contractility in CMECFs, in line with their improved

sarcomere organization. In addition, line integral analysis of the

MTs allowed the direction of propagation waves to be depicted

(Hayakawa et al., 2012). CMECFs and CMEC ACFs displayed

higher contraction velocities and greater coordination of the

line integral patterns within each tissue compared to the other

MT types (Video S2).

To determine whether improvedmechanical performance was

accompanied by improved Ca2+ handling, we examined Ca2+

transients using a Ca2+-sensitive dye in paced MTs (Figures 4I

and 4J). MTs with CFs showed different transient profiles (Fig-

ure 4I), with increased time to peak and faster decay than

CMECs and CMEC SFs (Figure 4J). To investigate sarcoplasmic

reticulum (SR) Ca2+ content, we examined Ca2+ transients

induced by caffeine puffs in CMECs and CMECFs. The ampli-

tude of caffeine-induced Ca2+ transients was greater in CMECFs

than CMECs (Figures S4F and S4G), indicating higher SR Ca2+

storage, likely linked to higher expression of key Ca2+-handling

protein genes like CASQ2, CALM2, PLN, and TRDN (Figures

3G and 3H).

We then determined whether CMECFs could capture negative

and positive inotropic responses to known pharmacological

agents, verapamil and Bay K-8644, respectively (Figures S4H–

S4J). Contraction amplitude decreased upon verapamil treat-

ment in a concentration-dependent manner (Figure S4H), as ex-

pected from the block of the L-type calcium channel; this was

paralleled by decreased velocity and acceleration of both

contraction and relaxation (Figure S4J). By contrast, prolonged

relaxation duration was observed upon treatment with the

L-type calcium channel agonist Bay K-8644 (Figure S4I).

We conclude that (adult- and hiPSC-derived) CFs promote

electrical and mechanical maturation of hiPSC-CMs in 3D MTs,

with high reproducibility across lines, batches, and samples
d p values showing expression of selected genes for hiPSC-CMs andCMECFs

he CM cluster of CMECFs versus hiPSC-CMs, whereas log2FC < 0 indicates

CFs, and CMEC SFs based on bulk RNA-seq.

s matrix across CMECs, CMECFs, CMEC ACFs, and CMEC SFs.

x (padj < 0.05).

).

(G); GO: regulation of ion transmembrane transport (H); and KEGG: adrenergic



Figure 4. Cardiac Fibroblasts Promote Electrical Maturation and Enhance Mechanical Contraction of hiPSC-CMs in Microtissues

(A) Representative action potential (AP) traces recorded from single hiPSC-CMs dissociated from MT groups indicated, stimulated at 1 Hz.

(B) Bar graph showing the fraction of APs with the Ito ‘‘notch’’ (red).

(C and D) APs recorded in single hiPSC-CMs from different MT groups (see A). (C) RMP, resting membrane potential; APA, amplitude; APD90, action potential

duration at 90% of repolarization; (D) Vmax, maximum upstroke velocity in APs measured with dynamic clamp (n > 18; single CMs dissociated from 2–5 inde-

pendent MT batches per group; *p < 0.05).

(E) Representative contraction traces in spontaneously beating MTs. For graphical visualization, amplitude was normalized to each respective maximum

amplitude.

(F and G) Inter-beat interval (IBI) (F) and normalized contraction duration (G) in spontaneously beating MTs. n > 26; MTs from 3 independent batches per group;

*p < 0.0001.

(H) Contraction amplitude in spontaneously beating MTs. a.u., arbitrary units. n > 7; MTs; *p < 0.05. One-way ANOVA with Fisher’s least significant difference

(LSD) test is shown.

(I) Representative Ca2+ transients in MTs stimulated at 1.5 Hz.

(J) Ca2+ transient parameters (time to peak, peak to 90% decay time, and peak to half decay time) of MTs stimulated at 1.5 Hz. n > 15; MTs from 3 independent

batches per group. *p < 0.0001. One-way ANOVA with Dunnett’s multiple comparisons test is shown. Data in bar graphs are mean ± SEM.
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(Figure S4K). Furthermore, tri-cellular crosstalk and the presence

of both cardiac ECs and CFs are essential to induce these ef-

fects. Finally, CMECFs show drug responses similar to those in

EHTs (Mannhardt et al., 2016).

Metabolic Maturation of hiPSC-CMs in Microtissues
To determine whether structural, electrical, and contractile

maturation in MTs was accompanied by changes in metabolism,

we first examined metabolic gene signatures using scRNA-seq

analysis of CMs in CMECFs versus 2D culture. scRNA-seq

showed reduction in glycolysis- and increase in beta-oxidation-

and tricarboxylic acid cycle (TCA)-associated genes in CMs in

CMECFs (summarized schematically in Figure 5A and Table

S4). Mitochondrial respiration, glycolytic activity, and the con-

centration of intracellular metabolites in MTs were then analyzed
by Seahorse XF-96 and nuclear magnetic resonance (NMR)

spectroscopy (Figures 5B, 5C, S5A, and S5B). CMECFs and

CMEC ACFs showed comparable mitochondrial respiration

and glycolytic activity that was significantly higher compared

to CMECs (Figures 5B and 5C). Intracellular levels of several me-

tabolites in CMECFs and CMEC ACFs were comparable but

different from CMECs, such as higher ATP and lower lactate,

as well as high uptake of glutamine from the medium, indicating

higher mitochondrial respiration (Figures S5A and S5B). By

contrast, CMECs were less metabolically active and had a

greater preference for glycolysis over mitochondria respiration,

as shown by higher intracellular lactate and lower intracellular

ATP, as well as lower glucose uptake and low net release of

lactate and glutamine (Figure S5A). In addition, a small intracel-

lular pool of lactate (Figure S5A) and high glycolytic activity in
Cell Stem Cell 26, 862–879, June 4, 2020 869



Figure 5. Metabolic Maturation of hiPSC-CMs in Microtissues

(A) Schematic showing metabolic pathways with significantly upregulated (in red) and downregulated (in blue) genes (log2FC; p.adj < 0.05) in the CM cluster of

CMECFs versus hiPSC-CMs based on their scRNA-seq profiles. When applicable, heart andmuscle isoformswere selected, although other organ isoforms were

excluded.

(legend continued on next page)
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CMECFs and CMECACFs (Figure 5C) suggested that the lactate

produced by the ECs and the CFs was shuttled to the CMs for

further oxidation. In line with NMR data, scRNA-seq showed

that LDHA and LDHB genes were down- and upregulated,

respectively, in CMs in CMECFs (Figure 5A).

The enhanced mitochondrial respiratory capacity in CMECFs

and CMCF ACFs indicated that tri-cellular crosstalk between

cardiac-specific cells is needed to enhance metabolic matura-

tion in MTs.

Mechanisms Underlying hiPSC-CM Maturation in
Microtissues with CFs and ECs Involve CX43 Gap
Junctions and cAMP
Because MTs with CFs and ECs most effectively promoted

hiPSC-CM maturation, we investigated underlying mechanisms

in more detail in CMECs with CFs. Bulk RNA-seq revealed that

fibroblast-containing MTs showed common molecular signa-

tures characterized by genes upregulated in cluster 3 and cluster

6 (Figure 3D).

KEGG analysis showed that the cAMP signaling pathway was

enriched in cluster 3 and, as mentioned above, adrenergic

signaling in CMs , which is linked to cAMP signaling, was en-

riched specifically in cluster 5 (upregulated in CMECFs and

CMEC ACFs; Figure 3F). scRNA-seq also revealed enrichment

of the KEGG term for the pathway ‘‘adrenergic signaling in

CMs’’ among genes that were upregulated in CMs in CMECFs

versus 2D CMs (Table S2). Among these, the CM-specific ad-

enylyl cyclase isoform ACDY5 was significantly upregulated in

CMs from CMECFs versus 2D CMs (Log2FC = 1.78; PFDR <

0.05; Table S2). This prompted us to examine whether the up-

stream regulators of ADCY5 were also elevated in CMs in MTs.

CMs in MTs showed higher expression of the endothelin-1

(EDN1) receptor ENDRA, which is responsible for induction of

ATF3 expression that in turn would induce expression of EGR1

(Giraldo et al., 2012), a core transcription factor involved in upre-

gulation of adrenergic receptors (ADRB1 and ADRB2; Iwaki

et al., 1990) and ADCY5 itself (Table S2). Besides adenylyl

cyclase, we also found that the soluble guanylyl cyclase isoform

GUCY1A3 was upregulated in CMs and CFs in MTs and highly

expressed in CFs compared to CMs in MTs (Log2FC = 2.37;

PFDR < 0.05; Table S5). GUCY1A3 is specifically expressed in

CFs and not SFs based on published datasets (Furtado et al.,

2014). We therefore hypothesized the mechanism illustrated in

Figure 6A, proposing that CFs act as a source of cyclic guano-

sine monophosphate (cGMP) that is shuttled to the CMs via

gap junctions and inhibits activity of the phosphodiesterases

(PDEs) that convert cAMP to AMP. This might indirectly regulate

cAMP levels in CMs. In linewith this, MTs showed higher levels of

cAMP in CMECFs and CMEC SFs compared to CMECs (Fig-

ure S6A). Our scRNA-seq data also supported evidence for the

importance of ECs in CM maturation in our MT model, as ECs

are the major source of EDN1 and nitric oxide (NO) (generated

by EC-specific NOS3), which could activate ADNRA and

GUCY1A3 in CMs and CFs (Figure 6B). Importantly, MTs without
(B) Traces (left) and bar graphs (right) for oxidative phosphorylation (oxygen cons

(C) Traces (left) and bar graphs (right) for glycolytic acidification (extracellular aci

**p < 0.01; ***p < 0.001. All data are shown as mean ± SEM. N indicates MTs fro

multiple comparison test is shown.
ECs do not express EDN1 and NOS3 (Figure S6B). Bulk RNA-

seq also suggested that CMECFs had higher expression of

ADCY5 than CMEC SFs and GUCY1A3 was significantly higher

in CMECFs than CMEC SFs (Figure 6C).

In clusters 3 and 6, GO analysis showed enrichment for the

terms ‘‘extracellular matrix organization’’ and ‘‘cell junction as-

sembly’’ (Figure 3E). Importantly, expression of CX43 (GJA1)

was highly upregulated in scRNA-seq in CMs from CMECFs

versus 2D CMs (Log2FC = 1.9; PFDR < 0.05; Table S2). CFs

dissociated from CMECFs had well-formed CX43 gap junctions

with CMs although, by contrast, SFs even in close contact with

CMs did not interact via gap junctions (Figure 6D). We therefore

hypothesized that CFs coupling to CMs via CX43-mediated gap

junctions could promote CM maturation, possibly also via

cGMP-cAMP pathways, as described above, further enhancing

gap junctions in CMs (Figure 6A).

To test the effect of cAMP levels in CMs, we added its soluble

form, dibutyryl cAMP (dbcAMP), to hiPSC-CMs. The resting

membrane potential became more negative, the AP amplitude

and upstroke velocity higher, and contraction velocity and accel-

eration faster (Figure 6E), suggesting that persistent activation of

the cAMP pathway could contribute to hiPSC-CM maturation.

We investigated this further as follows: (1) we tested whether

CMEC SFs could be ‘‘rescued’’ by adding dbcAMP to elevate

cAMP levels. This showed hiPSC-CMs in CMEC SFs had better

organized and longer sarcomeres, much like those in CMECFs,

but there was no further structural maturation in CMECFs with

dbcAMP (Figures 6F, 6H, 6I, S6F, and S6G); (2) we tested

whether maturation in CMEC SFs could be rescued by ectopic

overexpression of CX43 in SFs prior to incorporation in MTs

with control hiPSC-CMs and hiPSC-ECs (CMEC SFs CX43 LV;

Figures 6G and S6C). Although CX43 was upregulated (Figures

S6E and S6H), sarcomeres in CMEC SFs CX43 LV were less

organized and shorter than either CMECFs or CMEC SFs with

dbcAMP (Figures 6H, 6I, S6F, and S6G). Of note, although

CX43 was mainly localized at the cell-cell contacts in CMECFs,

it was largely confined to the cytoplasm in CMEC SFs and

CMECSFsCX43 LV. This suggests that proper CX43 localization

is important to enhance sarcomere organization (Figures 6F, 6G,

S6D, and S6E). Furthermore, overexpression of CX43 in SFs did

not rescue contraction in CMEC SFs (Figure S6I); (3) we silenced

CX43 in hiPSC-CFs using short hairpin RNA (shRNA) (Figures

S6J and S6K) and incorporated these into MTs with control

hiPSC-CMs and hiPSC-ECs (siCX43-CMECFs; Figure 6J). Sar-

comeres in siCX43-CMECFs were less organized and shorter

than CMECFs based on IF (Figures 6L and 6M) and TEM (Figures

6K–6N). Contraction duration was also reduced in siCX43-

CMECFs compared to CMECFs, although inter-beat intervals

were unaltered (Figure 6O).

Taken together, this demonstrated roles for the cAMP

pathway and CX43 in the tri-cellular interactions inducing

CM maturation in MTs. These experiments also suggested that

there may also be additional mechanistic components missing

in SFs, including, for example, GUCY1A3; despite CX43
umption rate, OCR) from Seahorse measurements in MTs. n > 52; ***p < 0.001.

dification rate, ECAR) from Seahorse measurements in MTs. n > 44; *p < 0.05;

m 3–5 independent batches per group. One-way ANOVA with Games-Howell
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Figure 6. Mechanisms Underlying hiPSC-CM Maturation in Microtissues with CFs and ECs

(A) Proposed mechanism underlying hiPSC-CM maturation in MTs with CFs and ECs: ECs (green) secrete EDN1 that activates b-adrenergic signaling and

adenylyl cyclase in CMs (red), increasing intracellular cAMP levels, which can enhance CX43 gap junction formation. ECs also secrete NO that activates cGMP

pathway in CFs (blue). cGMP can shuttle to CMs via gap junctions (dotted blue arrow), sustaining cAMP in CMs.

(legend continued on next page)
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overexpression, SFs are inferior to CFs as an integral functional

component of MTs.

Microtissues Enable Multilineage Cardiac Disease
Modeling
CMs are the only affected cells in channelopathies, but other in-

herited cardiac disorders may not be CM autonomous, with non-

myocyte cells in the heart playing active etiological roles in the dis-

ease (Blazeski et al., 2019; Sommariva et al., 2017). Arrhythmo-

genic cardiomyopathy (ACM) is one such rare genetic disorder,

predominantly associated with mutations in desmosomal genes

and characterized by arrhythmias and fibro-fatty replacement of

the myocardium (Lazzarini et al., 2015; Sommariva et al., 2017).

A role forCFs inACMpathophysiologyhasbeen recently indicated

using primary cells from patients (Sommariva et al., 2016). Here,

we used ACM hiPSCs from a patient carrying the heterozygous

c.2013delC PKP2 mutation, which results in a premature stop

codon (Figure 7A). We generated CTRL- and ACM-MTs by

combining CTRL hiPSC-CMs and ECs with either CTRL hiPSC-

CFs or SFs or with ACM hiPSC-CFs or SFs (Figure 7B). Although

no differences in morphology (Figure 7C) or epicardial (ZO-1,

WT1, and TBX18) and fibroblast (COL1A1) marker expression

were detected in hiPSC-ACM-EPIs and ACM-CFs compared

with controls (Figures S7A–S7C), ACM-EPIs showed lower PKP2

levels by western blot (Figure 7D) and reduced PKP2 at cell junc-

tions by IF (Figures S7DandS7E), likely due to thePKP2mutation.

Interestingly, thiswas paralleled by reduced junctional localization

of CX43 in ACM-EPIs (Figures S7D and S7E), in agreement with a

role of PKP2 in regulating CX43 trafficking (Agullo-Pascual et al.,

2013; Oxford et al., 2007; Sato et al., 2011; Zhang and Shaw,

2014). PKP2 protein expression in hiPSC-CFs was much lower

than in hiPSC-EPIs, in agreement with absence of desmosomes

in CFs and differences between ACM- and CTRL-CFs were less

clearly detected (Figure 7D). Nevertheless, in MTs, we found that

CTRL CFs, but not ACM CFs, sustained CX43 expression

throughout the microtissue (Figures 7E, 7F, and S7J), although

sarcomere organization was not affected in CMs (Figure S7K).

Furthermore,MTswith CTRL or ACMSFs did not show any differ-

ences in CX43 expression (Figures 7E–7G).
(B) Violin plots showing (log-transformed) expression of NOS3, EDN1, EDNRA, E

(C) Heatmap showing selected gene expression from bulk RNA-seq of CMECFs

(D) Immunofluorescence analysis of CX43 (green) and ACTN2 (red) in hiPSC-CMs

indicate coupling between hiPSC-CFs and hiPSC-CMs. SFs do not couple with

(E) Representative AP traces of untreated (CTRL, black) and 72-h-dbcAMP-treat

contraction velocity, and acceleration. n > 10; dissociated cells per group; *p < 0

(F and G) Representative immunofluorescence images of CX43 (green) and ACTN

treated for 7 days with dbcAMP (CMECFs +dbcAMP, CMEC SFs +dbcAMP; F

lentivirus (LV) (CMEC SFs empty LV) or lentivirus containing CX43 LV (CMEC SFs

magnifications of framed areas to show CX43 distribution.

(H and I) Sarcomere organization (sarcomere alignment index; H) and sarcomere le

areas from 3 MTs per group; **p < 0.05; ***p < 0.005; ****p < 0.0001. Data are me

(J) Representative immunofluorescence images of cardiac sarcomeric proteins

containing either untreated hiPSC-CFs (CMECFs) or hiPSC-CFs transduced wit

bar: 10 mm.

(K) TEM showing sarcomeres in CMECFs and siCX43-CMECFs. Scale bar: 0.5 m

(L–N) Quantification of sarcomere organization (sarcomere alignment index; L) and

from 4MTs per group; *p < 0.05) and of sarcomere length inMTs from TEM (-n; n >

as mean ± SEM. Student’s t test is shown.

(O) Contraction duration (left) and IBI (right) measured in spontaneously beating M

test is shown. Data are shown as mean ± SEM.
Wenext characterized the electrical properties ofMTs by stim-

ulating them at increasing pacing frequencies. Inclusion of ACM

hiPSC-CFs significantly reduced the ability of MTs to respond to

high stimulation frequencies (R2 Hz), which resulted in

arrhythmic behavior (Figures 7H and 7I). Arrhythmic behavior

can be linked to failure of CMs to properly couple, possibly

because of reduced CX43 expression. Of note, this arrhythmic

ACM phenotype was not captured in MTs with SFs.

Finally, we noted a higher proportion of cells positive for alpha-

smooth muscle actin (SMA) in ACM-EPIs (Figures S7F and S7G)

and CFs compared to controls (Figures S7H and S7I). This sug-

gested that (1) ACM EPIs had a higher propensity to undergo

epithelial-to-mesenchymal transition (EMT), supporting the

concept that epicardial cells are a source of fibro-fatty substitu-

tion in the hearts of ACM patients with PKP2 mutations (Lom-

bardi et al., 2009; Matthes et al., 2011) and (2) some ACM-CFs

display a myo-fibroblast-like phenotype, which may impact con-

duction of CMs in MTs (Thompson et al., 2011).

Taken together, these findings provide evidence of non-myo-

cyte contributions to ACM pathogenesis and demonstrate the

utility of MTs that are completely hiPSC derived in modeling dis-

eases not autonomous to CMs.

DISCUSSION

In this study, we described a 3D MT system composed of CMs ,

cardiac ECs , and CFs, the three major cell types of the heart,

derived entirely from hiPSCs. MTs were formed from just 5,000

cells by self-aggregation in controlled ratios that remained con-

stant over time. Tri-cellular crosstalk promoted hiPSC-CMmatu-

ration specific to CFs. This required close cellular contacts and

CX43 gap junctions. In contrast to other 3D systems, such as

EHTs (Lemoine et al., 2017; Mannhardt et al., 2016; Ronald-

son-Bouchard et al., 2018; Tiburcy et al., 2017), MTs enhanced

CM maturation without requiring specialized devices and anal-

ysis tools, technical tissue engineering expertise, mechanical

load, scaffolds, or complex substrates. The three cardiac cell

types for MTs can be derived isogenically from the same

hiPSC-derived cardiac mesoderm, in a highly reproducible way
GR1, ADCY5, and GUCY1A3 in CMECFs based on scRNA-seq.

and CMEC SFs.

and fibroblasts dissociated from CMECFs and CMEC SFs MTs. White arrows

hiPSC-CMs. Nuclei are stained with DAPI (blue). Scale bar: 50 mm.

ed (dbcAMP, gray) CTRL1 hiPSC-CMs, with quantification of RMP, APA, Vmax,

.001. Data are mean ± SEM. Student’s t test is shown.

2 (red) in MTs from CTRL1 hiPSCs, either untreated (CMECFs, CMEC SFs) or

) and MTs from CTRL1 hiPSC containing either SFs transduced with control

CX43 LV; G). Nuclei are stained with DAPI (blue). Scale bar: 10 mm. Insets are

ngth (I) from immunofluorescence analysis of MTs fromCTRL1 hiPSCs. n = 30;

an ± SEM. One-way ANOVA with Tukey’s multiple comparisons test is shown.

ACTN2 (red) and TNNI (green) in CMECFs generated from CTRL1 CMECFs

h CX43-shRNA (siCX43-CMECFs). Nuclei are stained with DAPI (blue). Scale

m.

sarcomere length (M) from immunofluorescence analysis in MTs (n = 60; areas

117; areas from 3 independent stitches per group; *p < 0.0001). Data are shown

Ts. n > 40; MTs from 3 independent batches per group; *p < 0.05. Student’s t
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Figure 7. Microtissues as a Model of Arrhythmogenic Cardiomyopathy (ACM)

(A) Sequencing ofPKP2 gene showing heterozygous c.2013delC (p.K672RfsX12) mutation in exon 10 in ACMhiPSCs.PKP2 sequence of CTRL1 hiPSCs is shown

as reference.

(legend continued on next page)
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among different hiPSC lines, and can be stock frozen without

altering their properties. MT construction was robust and highly

reproducible with low sample-to-sample, batch-to-batch, and

line-to-line variability across multiple parameters. The results

demonstrated our in vitro cardiac tissue model is low cost

(±0.22V per MT); amenable to high-throughput production for

structural, functional, and electrophysiological analysis; and

illustrated the utility of MTs in disease modeling.

Postnatal CMs have longer and more organized sarcomeric

structures than fetal and hiPSC-CMs, and these ensure

proper force generation. After birth, T-tubules mediate rapid

excitation-contraction coupling, electrophysiological properties

change due to expression of distinct ion channels, conduction

velocities are higher due to subcellular redistribution of CX43

gap junction protein, there are greater intracellular Ca2+ stores,

ryanodine receptors mediate Ca2+ release, and metabolism is

dependent on fatty acid oxidation rather than glycolysis (Yang

et al., 2014). Here, we showed that many of these features

were evident hiPSC-CMs in tri-cellular MTs and CFs outper-

formed primary SFs. Specifically CMECFs showed improve-

ments in (1) structure: sarcomere length and organization were

increased, with ultrastructure characteristics of mature CMs (H

zones, I-bands, M-lines, T-tubule-like structures, and elongated

mitochondria adjacent to sarcomeres); (2) function: mechanical

contraction (increased duration and amplitude) and Ca2+

handling were improved and electrophysiology showed more

mature AP profiles (hyperpolarized RMP and higher upstroke ve-

locity); and (3) metabolism: mitochondrial respiration capacity

was increased although dependence on glycolysis was

decreased. Importantly, this broad spectrum of maturation fea-

tures was only achieved in MTs containing both hiPSC-ECs

and CFs (either adult or hiPSC derived), indicating that the tri-

cellular crosstalk is essential.

RNA-seq analysis showed that cAMP/b-adrenergic and cell

junction assembly pathways were specifically upregulated in

CMECFs, but not in MTs with non-cardiac fibroblasts, suggest-

ing their involvement in enhancing maturation. Notably, cAMP

levels were higher in CMECFs and dbcAMP increased electri-

cal maturation in hiPSC-CMs even in 2D. Based on our results

and published data on signaling in the heart, we propose that

one mechanism underlying enhanced maturation in MTs (Fig-

ure 6A) involves both ECs and CFs, with increased cAMP levels

in CMs positively affecting the assembly of CX43 gap junctions.

This notion is supported by our data showing sustained cAMP

signaling through exogenous dbcAMP also improved sarco-

meric organization in CMEC SFs to the level of CMECFs.
(B) Generation of CTRL and ACM MTs using CTRL hiPSC-CMs and CTRL hiPSC

SFs. Cell percentages (black) and numbers (gray) are indicated at the top.

(C) Representative bright-field images of CTRL- and ACM-CFs. Scale bar: 100 m

(D) Western blot for PKP2 in CTRL and ACM hiPSC-EPIs and CFs. CTRL-EPIs we

samples are two independent differentiations from ACM hiPSCs. CTRL and ACM

ACM hiPSCs, respectively. GAPDH was used as loading control. Densitometric

(E) Immunofluorescence analysis of CX43 (green) in CTRL CMECFs, ACM CMEC

(blue). Scale bar: 25 mm.

(F and G) Quantification of CX43 per cell in CTRL and ACM CMECFs (F) and in C

0.005). Data are shown as mean ± SEM, normalized to the respective CTRL. Stu

(H) Representative contraction traces from CTRL and ACM CMECFs and CTRL

(I) Percentages of MTs that could be paced at different stimulation frequencies in

shown as mean ± SEM. Chi-square test is shown. All data shown were from CTR
Involvement of gap junctions was demonstrated by silencing

CX43 in CMECFs using shRNA, which reduced structural orga-

nization of sarcomeres. Lack of CX43 in CMECFs also reduced

contraction duration but did not affect the beating rate, sug-

gesting that the faster beating rate in CMECFs was not neces-

sary or sufficient for structural maturation but also that CX43

was not required for maintaining the beating rate. CX43 expres-

sion as such did not appear to be the sole mechanism for

maturation, however, because CX43 overexpression in CMEC

SFs only partially rescued structural organization compared

to CMECFs or dbcAMP treatment. Of note, CX43 overexpres-

sion in SFs resulted mostly in cytoplasmic rather than cell junc-

tion CX43 localization. Thus, we identified some key mecha-

nisms in the tri-cellular interactions that enhance CM

maturation, but other mechanisms, such as cell-extracellular

matrix interactions or paracrine effects, may also play roles.

These will likely all be necessary ultimately to obtain fully

mature hiPSC-CMs.

One important advantage of our tri-cellular MT system based

entirely on hiPSC-derived cells is the opportunity to create pa-

tient-specific models of disease that may have multicell-type

causes. This was illustrated by our use of hiPSC-CFs derived

from an ACM patient carrying a PKP2 mutation. When incorpo-

rated into MTs as the only diseased cellular component, ACM-

CFs induced arrhythmic behavior in wild-type (WT) CMs. Of

note, ACM-CFs were characterized by a higher tendency to as-

sume a myofibroblast-like identity and ACM-MTs showed

reduced CX43 expression. Both features could impact electrical

conduction of CMs. Arrhythmia is one of the earliest events in

ACM patients, preceding fibro-fatty deposition (Gomes et al.,

2012); thus, our data showed another role of CFs in ACM patho-

genesis. This experiment demonstrates the utility of the MT sys-

tem in modeling multicellular cardiac disease, as it enabled

investigation of interactions among cell types, specifically iden-

tification of cellular ‘‘culprits’’ versus ‘‘victims’’ in diseases non-

autonomous to CMs.

In conclusion, 3D models of the heart based on hiPSCs are

already excellent resources to study differentiation of human

heart cells in development and the consequences of heart

disease or drugs in vitro. The incorporation of multiple cardiac

cell types as here serves as an exemplar for MTs of other

organs for which either biopsies are not feasible or there is a

stromal component to the disease not captured by only

including one cell type in a bioassay in vitro. We have illustrated

the power of being able to create cells from patient-specific

lines. As large-scale studies on genetics and corresponding
-ECs combined with either CTRL or ACM hiPSC-CFs or primary CTRL or ACM

m.

re differentiated from two hiPSC lines (CTRL1 and CTRL2), although ACM EPI

CF samples are two and three independent differentiations from CTRL1 and

analysis is shown in the lower panel.

Fs, CTRL CMEC SFs, and ACM CMEC SFs MTs. Nuclei are stained with DAPI

TRL and ACM CMEC SFs (G; n = 3; independent MT batches per group; **p <

dent’s t test is shown.

and ACM CMEC SFs stimulated at 1 Hz, 2 Hz, and 3 Hz.

different MT groups (see legend). n > 10; MTs per group; *p < 0.05. Data are

L1 and/or CTRL2 hiPSC as a source of hiPSC-CMs, CFs, and primary SFs.
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hiPSCs become available (e.g. NIBSC, UK; EBiSC, EU; CIRM,

US; and CiRA, Japan), this will yield more ‘‘variants of unknown

significance,’’ many of which will not only be expressed by

CMs. Environmental diseases, such as fibrosis following

myocardial infarction and microvascular disease leading to

heart failure with preserved ejection fraction, are also

multicellular.

Controlled formation of hiPSC-derived MTs with the major cell

types of the heart thus represents a valuable platform that regu-

latory authorities, pharmaceutical companies, and academia

can use to understand multicellular heart conditions, identify

therapeutic targets, and predict drug efficacy in humans.
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Antibodies

Anti-Troponin I antibody (H-170) (TNNI) for

immunofluorescence (1:500)

Santa Cruz Biotechnology Cat# sc-15368; RRID:AB_793465

Anti-alpha-Actinin (Sarcomeric) antibody

(ACTN2) for immunofluorescence (1:800)

Sigma–Aldrich Cat# A7811; RRID:AB_476766

Anti-CD31/PECAM-1 antibody for

immunofluorescence (1:200)

R&D Systems Cat# AF806; RRID:AB_355617

Anti-Collagen Type I, clone 5D8-G9 antibody

(COL1A1) for immunofluorescence (1:200)

Millipore Cat# MAB3391; RRID:AB_94839

Anti-Wilm’s Tumor Protein antibody (WT1) for

immunofluorescence (1:200)

Millipore Cat# CA1026-50UL; RRID:AB_437848

Anti-TBX18 antibody (TBX18(for

immunofluorescence (1:200)

Sigma-Aldrich Cat# HPA029014; RRID:AB_10601597

Anti-ZO-1 antibody (ZO-1) for

immunofluorescence (1:200)

Thermo Fisher Scientific Cat# 61-7300; RRID:AB_2533938

Anti-Ki67 Antibody (Ki67) for

immunofluorescence (1:200)

Abcam Cat# ab833; RRID:AB_306483

Anti-Connexin 43/GJA1 antibody (CX43) for

immunofluorescence (1:200)

Abcam Cat# ab11370; RRID:AB_297976

Anti-alpha-Smooth Muscle Actin, Clone 1A4

antibody (aSMA) for

immunofluorescence (1:200)

Sigma-Aldrich Cat# A2547; RRID:AB_476701

Anti-Plakophilin 2, clone 518 antibody (PKP2)

for immunofluorescence (1:25)

Progen Cat# 651157

Cy3-AffiniPure Donkey Anti-Mouse IgG (H+L)

antibody for immunofluorescence (1:100)

Jackson ImmunoResearch Labs Cat# 715-165-150; RRID:AB_2340813

Donkey anti-Rabbit IgG (H+L) Highly Cross-

Adsorbed Secondary Antibody, Alexa Fluor 488

for immunofluorescence (1:200)

Thermo Fisher Scientific Cat# A-21206; RRID:AB_2535792

Donkey anti-Mouse IgG (H+L) Highly Cross-

Adsorbed Secondary Antibody, Alexa Fluor 594

for immunofluorescence (1:200)

Thermo Fisher Scientific Cat# A-21203; RRID:AB_2535789

Donkey Anti-Sheep IgG (H+L) Antibody, Alexa

Fluor 647 for immunofluorescence (1:200)

Thermo Fisher Scientific Cat# A21448; RRID:AB_10374882

Anti-Plakophilin 2, Clone 28 antibody (PKP2) for

western blot (1:1000)

BD Biosciences Cat# 610788; RRID:AB_398109

Anti-Glyceraldehyde-3-PDH antibody (GAPDH)

for western blot (1:2000)

Millipore Cat# MAB374; RRID:AB_2107445

Anti-mouse IgG, HRP-linked antibody for

western blot (1:2000)

Cell Signaling Technology Cat# 7076; RRID:AB_330924

Bacterial and Virus Strains

Lentivirus expressing short hairpin RNA

(shRNA) targeting Cx43

Sigma Aldrich TRCN0000059773

Lentivirus expressing Cx43 (LV.hCMV-

IE.HsGJA1.IRES.PurR.hHBVPRE)

Liu et al., 2018 PMID: 29917042 N/A

Empty vector (LV.hCMV-

IE.IRES.PurR.hHBVPRE)

Liu et al., 2018 PMID: 29917042 N/A

Chemicals, Peptides, and Recombinant Proteins

Essential 8 Medium Thermo Fisher Scientific A1517001

Matrigel hESC-Qualified Matrix Corning 354277
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Vitronectin, truncated recombinant human

(VTN-N)

Thermo Fisher Scientific A14700

Fibronectin bovine plasma Sigma Aldrich F1141

RevitaCell Supplement (100X) Thermo Fisher Scientific A2644501

UltraPure 0.5 M EDTA, pH 8.0 Thermo Fisher Scientific 15575020

TrypLE Select, 10x Thermo Fisher Scientific A1217701

Recombinant Human BMP-4 Protein R&D Systems 314-BP

Human Activin A, premium grade Miltenyi Biotec 130-115-010

CHIR 99021 Axon Medchem Axon1386

XAV939 Tocris 3748/10

Human VEGF, premium grade Miltenyi Biotec 130-109-386

Retinoic Acid Sigma Aldrich R2625

TGFb inhibitor, SB431542 Tocris 1614/10

Human FGF-2, premium grade Miltenyi Biotec 130-093-842

Fibroblast Growth Medium 3 PromoCell C-23025

CryoStor CS10 medium Stem Cell Technologies 07930

Puromycin dihydrochloride Sigma Aldrich P7255

Polybrene Sigma Aldrich H9268

Collagenase type II Worthington LS004176

Fluo-4, AM, cell permeant Thermo Fisher Scientific F14201

Tissue-Tek� OCT Sakura� Finetek 4583

Verapamil hydrochloride Tocris 0654

Bay-K8644 Tocris 1544

Caffeine Sigma Aldrich C0750

Dibutyryl cyclic-AMP (dbcAMP) Sigma Aldrich D0627

Oligomycin Sigma Aldrich O4876

Carbonyl cyanide 4-(trifluoromethoxy)

phenylhydrazone (FCCP)

Sigma Aldrich C2920

Antimycin A Sigma Aldrich A8674

Rotenone Sigma Aldrich R8875

2-Deoxy-D-glucose (2-DG) Sigma Aldrich D8375

Critical Commercial Assays

EasySep Human CD34 Positive Selection Kit II Stem Cell Technologies 17856

Multi Tissue Dissociation Kit 3 Miltenyi Biotec 130-110-204

Quant-iT PicoGreen dsDNA Assay Kit Thermo Fisher Scientific P7589

Direct cAMP ELISA kit Enzo Life Sciences ADI-900-066

NucleoSpin RNA Kit Macherey- Nagel 740955

iScript-cDNA Synthesis kit Bio-Rad 170-8889

iTaq Universal SYBR� Green Supermix Bio-Rad 1725124

BCA Protein Assay Kit Thermo Fisher Scientific 23227

SupersignalWest Dura Extended Duration

Substrate

Thermo Fisher Scientific 37071

Deposited Data

Gene expression (bulk RNA-sequencing) This paper GEO: GSE116464

Gene expression (single-cell RNA-sequencing) This paper GEO: GSE147694

Experimental Models: Cell Lines

CTRL1 hiPSC line LUMC hiPSC core facility LUMC0020iCTRL-06 https://hpscreg.

eu/cell-line/LUMCi028-A Zhang et al.,

2014 PMID: 25453094
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CTRL2 hiPSC line LUMC hiPSC core facility LUMC0099iCTRL04 https://hpscreg.

eu/cell-line/LUMCi004-A

CTRL3 hiPSC line LUMC hiPSC core facility LUMC0059iCTRL03

CTRL hiPSC line NCRM1 NIH Center for Regenerative Medicine NIH

CRM, obtained from RUDCR Infinite Biologics

at Rutgers University

(Guadix et al., 2017) PMID: 29173898

LQT1 hiPSC line Zhang et al., 2014 PMID: 25453094 LUMC0021iKCNQ-30 Zhang et al.,

2014 PMID: 25453094

ACM hiPSC line This study LUMC0153iPKP

CTRL1 SFs LUMC hiPSC core facility WK12220

CTRL2 SFs LUMC hiPSC core facility WK12022

ACM SFs Monzino Hospital, Milan WK13262

Human adult cardiac fibroblasts PromoCell C-12375

Software and Algorithms

Fiji-ImageJ Schindelin et al., 2012 PMID: 22743772 https://imagej.net/Fiji/Downloads

CellProfiler Carpenter et al., 2006 PMID: 17076895 https://cellprofiler.org

IMARIS Oxfornd Instruments N/A

MATLAB Mathworks Inc N/A

Aperio ImageScope Leica N/A

GraphPad Prism 8.2.0 GraphPad N/A

MUSCLEMOTION Sala et al., 2018 PMID: 29282212 https://www.ahajournals.org/doi/

suppl/10.1161/CIRCRESAHA.117.

312067

RStudio RStudio https://rstudio.com/products/rstudio

Origin 2016 OriginLab N/A

Clampex 10.0 Molecular Devices Axon Instruments N/A

LabVIEW National Instruments N/A

LUMC BIOPET Gentrap LUMC Sequencing Analysis Support Core https://github.com/biopet/biopet

Python Python Software Foundation https://www.python.org

Image Lab Bio-Rad N/A
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Lead Contact
Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact, Prof.

Christine L. Mummery (C.L.Mummery@lumc.nl).

Materials Availability
hiPSC lines are available upon MTA.

Data and Code Availability
The accession numbers for the bulk and single cell RNA sequencing datasets reported in this paper are https://www.ncbi.nlm.nih.

gov/geo/ GEO: GSE116464 (bulk) and GEO: GSE147694 (single cell). Software used to analyze the data are either freely or commer-

cially available. Motion Flow analysis software can be requested by contacting L.G.J.Tertoolen@lumc.nl.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Ethics statement
Protocols for research involving human subjects and stem cell research were approved by the medical ethical committee at Leiden

University Medical Center, the Netherlands and Centro Cardiologico Monzino, Milan, Italy. Written informed consent was received

from participants prior to inclusion in the study.
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hiPSC lines culture
CTRL1 hiPSC line LUMC0020iCTRL-06 (female, Giacomelli et al., 2017a, 2017b; Zhang et al., 2014), CTRL2 hiPSC line LUM-

C0099iCTRL04 (female), CTRL3 hiPSC line LUMC0059iCTRL03 (female), LQT1 hiPSC line LUMC0021iKCNQ-30 (female, Zhang

et al., 2014) and ACMhiPSC line LUMC0153iPKP (female, see below formutation) were generated from primary skin fibroblasts using

Sendai virus by the LUMC hiPSC core facility. CTRL hiPSC line NCRM1 (NIH Center for Regenerative Medicine NIH CRM) was ob-

tained from RUDCR Infinite Biologics at Rutgers University. All the hiPSC lines used in this study were assessed for pluripotency and

routinely tested for mycoplasma and genomic integrity by karyotyping. All hiPSC lines were seeded on vitronectin recombinant hu-

man protein and cultured in E8 medium as described previously (Giacomelli et al., 2017a, 2017b). Cells were passaged twice a week

using PBS containing EDTA 0.5 mM. RevitaCell Supplement (1:200) was added during passaging (all from Thermo Fisher Scientific).

Clinical history and genetic phenotype of ACM patient
A 37 years old woman presented with inverted T waves V1-V2 on the ECG but was without dysfunctional and structural alterations at

echocardiography and magnetic resonance imaging (MRI). Family history indicated sudden cardiac death in the family (mother and

maternal uncle died suddenly in their thirties) and a brother was clinically affected by ACM. Sequencing of the PKP2 gene (GenBank:

NM_004572.3) identified the heterozygous c.2013delC mutation in exon 10, which causes a frameshift (p.Lys672fs) and premature

termination in exon 10 (Figure 7A) in the brother and the patient. Two years later, the patient developed frequent premature ventricular

contraction and was hospitalized for further medical assessment and possibly loop recorder implant. ECG showed repolarization

(inverted T waves V1-V2), depolarization, and conduction (ε wave) abnormalities and MRI documented mild right ventricle enlarge-

ment. Endomyocardial biopsy at this stage showed a limited area of fibro-fatty substitution and inflammatory cells, and another area

mostly composed of adipose tissue (not shown).

Primary fibroblasts culture
Human adult cardiac fibroblasts (ACFs; PromoCell) were cultured in FGM3 (PromoCell) medium following themanufacturer’s instruc-

tions; human adult skin fibroblasts (CTRL1 SFs WK12220, CTRL2 SFs WK12022 from Leiden University Medical Center hiPSC core

facility, ACM SFs WK13262, from Monzino Hospital, Milan) were cultured in DMEM/F12 Glutamax medium supplemented with 10%

FBS, 1% Non-essential amino acids (NEAA), 1% penicillin/streptomycin (pen/strep) and 0.18% 2-mercaptoethanol (all from Thermo

Fisher Scientific). Cell dissociation was carried out using TrypLE 1X for 5 min at 37�C, 5%CO2, followed by centrifugation for 3 min at

1100 rpm and resuspension either in FGM3 medium (ACFs) or DMEM/F12 supplemented medium (SFs). Fibroblasts (10cm2 per vial)

were cryopreserved in CryoStor CS10 medium (0.5ml/vial; Stem Cell Technologies).

Human fetal heart ECs and fibroblasts
RNA from human fetal heart ECs and fibroblasts was isolated at passage 1 (P1) after collection from fetal heart samples at gestation

ages Week(W)12.5, W15 and W21. Human fetal tissue samples were obtained from elective abortion material (vacuum aspiration)

without medical indication through approval to Dr Chuva de Sousa Lopes by the Medical Ethical Committee of Leiden Medical Uni-

versity Center (P08.087). Informed consent was obtained and the studywas conducted in accordancewith the Declaration of Helsinki

by the World Medical Association.

METHOD DETAILS

Differentiation of hiPSCs into CMs, cardiac ECs and EPI
CM differentiation was induced in monolayer as described previously (Giacomelli et al., 2017a, 2017b; van den Berg et al., 2016).

Briefly, 253 103 cells per cm2 (CTRL1, CTRL2, CTRL3) were seeded on plates coated with 75 mg/ml growth factor-reduced Matrigel

(Corning) the day before differentiation (day�1). On day 0, cardiac mesodermwas induced by changing E8 to BPELmedium (Bovine

Serum Albumin [BSA] Polyvinyl alcohol Essential Lipids (Ng et al., 2008), supplemented with a mixture of cytokines (20 ng/ml BMP4,

R&DSystems; 20 ng/ml ACTIVIN A,Miltenyi Biotec; 1.5 mMGSK3 inhibitor CHIR99021, AxonMedchem). After 3 days, cytokineswere

removed and the Wnt inhibitor XAV939 (5 mM, Tocris) was added for 3 days. BPEL medium was refreshed every 3 days. Cardiac EC

differentiation was induced in monolayer as described previously (Giacomelli et al., 2017a, 2017b). Briefly, 15 3 103 cells per cm2

(CTRL1, CTRL2) were seeded on Matrigel at day �1. On day 0, cardiac mesoderm was induced as described above. On day 3, cy-

tokines were removed and VEGF (50 ng/ml, R&D Systems) added with XAV939 (5 mM). Cardiac ECs were isolated as described pre-

viously (Giacomelli et al., 2017a, 2017b) using a Human cord blood CD34 Positive selection kit II (StemCell Technologies) following

the manufacturer’s instructions. For cardiac ECs culture, 153 103 cells per cm2 cells were seeded on fibronectin-coated plates and

cultured in BPEL medium supplemented with VEGF (50ng/ml). After 3-4 days, cells were confluent and cells (30cm2 per vial) were

cryopreserved in CryoStor� CS10 medium (0.5ml per vial; StemCell Technologies). EPI differentiation was induced in monolayer

as described previously (Guadix et al., 2017). Briefly, 25 3 103 cells per cm2 (CTRL1, CTRL2, CTRL4) and 30 3 103 per cm2

(LQT1, ACM) were seeded on Matrigel at day �1. On day 0, cardiac mesoderm was induced as described above. After 3 days, cy-

tokines were removed and the WNT inhibitor XAV939 (5 mM) added for 3 days with BMP4 (30 ng/ml) and Retinoic Acid (RA; 1 mM;

Sigma Aldrich). On day 6, BPEL medium supplemented with BMP4 (30 ng/ml) and RA (1 mM) was refreshed. On day 9, 15 3 103

per cm2 (CTRL1, CTRL2, CTRL4) and 20 3 103 per cm2 (LQT1, ACM) were seeded on plates coated with 2-5 mg/ml of fibronectin

from bovine plasma (fibronectin; Sigma Aldrich) in BPEL medium supplemented with the TGFb inhibitor SB431542 (10 mM; Tocris).
Cell Stem Cell 26, 862–879.e1–e11, June 4, 2020 e4
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By day 12, EPI were confluent and ready for passage or analysis. EPI cells (30 cm2 per vial) were cryopreserved in CryoStor CS10

medium (0.5 ml/vial; Stem Cell Technologies).

Differentiation of hiPSC-EPI into CFs
CF differentiation was induced in monolayer, similarly to Zhao et al. (2017). Briefly, 253 103 EPI (CTRL1, CTRL2, CTRL4 LQT1, ACM)

were seeded per cm2 on tissue culture plates coated with vitronectin in BPELmedium supplemented with FGF2 (10 ng/ml; R&D Sys-

tems) on day 12. On day 13 and every 2 days thereafter, mediumwas refreshed with BPEL supplemented with FGF2 (10 ng/ml). After

6 days (on day 19), CFs were expanded by changing BPEL to Fibroblast Growth Medium 3 (FGM3; PromoCell). FGM3 was refreshed

every 2 days for approximately 10 days in total. After 10 days (on day 29), CFs were confluent and ready to be passaged at 1:2 ratio.

FGM3was refreshed the day after passaging and every 2 days thereafter. CFs (10cm2 per vial) were cryopreserved in CryoStor CS10

medium (0.5ml/vial; Stem Cell Technologies).

Lentiviral transduction of hiPSC-CFs using shRNA-CX43
Lentivirus expressing short hairpin RNA (shRNA) targeting Cx43 (Sigma, TRCN0000059773) was used to downregulate Cx43 in

CTRL1 hiPSC-CFs (Cx43-sh-RNA CFs). Briefly, one day after seeding 60000 cells/12-well, hiPSC-CFs were transduced with viral

particles at MOI 1 in fresh FGM3 with 8 mg/mL polybrene overnight. GFP expressing virus (pLV-CMV-GFP) was used as a control

(scramble shRNA). 72 h post-transduction, when control cells expressed GFP, infected cells were selected with 1 mg/mL puromycin

(Sigma, P7255). After 3 days, remaining cells were fixed for immunofluorescence staining, collected for RNA extraction and disso-

ciated to prepare MTs.

Lentiviral transduction for CX43 overexpression in primary SFs
Lentivirus expressing Cx43 (LV.hCMV-IE.HsGJA1.IRES.PurR.hHBVPRE) (Liu et al., 2018) was used to overexpress Cx43 in CTRL2

SFs WK12022. Briefly, one day after seeding 40000 cells/12-well, SFs were transduced with 2,5 ml viral particles (5*10^8 TU) in fresh

medium with 8 mg/mL polybrene overnight. Empty lentiviral vector (LV.hCMV-IE.IRES.PurR.hHBVPRE) was used as a control. 72 h

post-transduction, infected cells were selectedwith 1 mg/mL puromycin (Sigma, P7255). After 3 days, remaining cells were expanded

(1:3 ratio), then dissociated and replated for immunofluorescence staining and used to prepare MTs.

3D cardiac microtissue (MT) culture
Prior toMT formation, hiPSC-ECs (CTRL1, CTRL2) and hiPSC-CFs (CTRL1, CTRL2, ACM) were prepared as follows: 2-3 days before

MT formation, a vial of cryopreserved hiPSC-ECs and a vial of cryopreserved hiPSC-CFs were thawed and cultured either in BPEL

medium supplemented with VEGF on plates coated with fibronectin (hiPSC-ECs), or in FGM3 on uncoated plates (hiPSC-CFs). On

the day of MT formation (day 0), hiPSC-ECs, hiPSC-CFs, SFs, ACFs, Cx43-sh-RNA CFs, SFs Empty LV and SFs CX43 LV were de-

tached using TrypLE 1X for 5 min at 37�C, 5% CO2, centrifuged for 3 min at 1100 rpm, resuspended in BPEL medium and counted.

hiPSC-CMs at day 14-21 (CTRL1, CTRL2) that showed > 80%purity, measured as the percentage of troponin positive cells by FACS,

were dissociated using the Multi Tissue Dissociation Kit 3 (Miltenyi Biotec) following the manufacturer’s instructions, resuspended in

BPEL medium and counted. For CMECs: cell suspensions were combined to a total of 5000 cells (85% cardiomyocytes and 15%

endothelial cells) per 50 mL BPELmedium supplemented with VEGF (50 ng/ml). For CMFs: cell suspensions were combined to a total

of 5000 cells (85% cardiomyocytes and 15% cardiac fibroblasts) per 50 mL BPEL medium supplemented with FGF2 (5 ng/ml). For

CMECFs: cell suspensions were combined to a total of 5000 cells (70% cardiomyocytes, 15% endothelial cells and 15% cardiac

fibroblasts) per 50 mL BPEL medium supplemented with VEGF (50 ng/ml) and FGF2 (5 ng/ml). MTs composed of primary fibroblasts

(ACFs, CTRL1 SFs, CTRL2 SFs, ACM SFs) were prepared as described for CMECFs. For all MTs, cell suspensions were seeded on

V-bottomed 96-well microplates (Greiner bio-one) and centrifuged for 10 min at 1100 rpm. MTs were incubated at 37�C, 5%CO2 for

21 days with media refreshed every 3-4 days. Dibutyryl cAMP (dbcAMP) treatment was performed on CMECFs and CMEC SFs from

CTRL1 and CTRL2 in BPEL medium supplemented with 0.5 mM dbcAMP for 7 days (from day 14 to day 21). Analysis of all MTs was

performed after 21 days, unless otherwise indicated in Figure legends. For experiments that required cell dissociation, MTs were

incubated in 290 U/mg of pre-warmed collagenase type II (Worthington) in HBSS solution (Sigma Aldrich). Single cells were used

for either scRNaseq or seeded on 24-well Matrigel-coated plates on top of glass coverslips (10 mm diameter) for immunofluores-

cence and electrophysiology.

OCT cryosections of 3D microtissues
Microtissues were fixed in 4%PFA at RT for 20min and were embedded in Tissue-Tek�OCT compound (Sakura� Finetek) for further

analysis. Thick frozen serial cross sections (8 mm) were processed for immunofluorescence staining.

Immunofluorescence analysis
For immunofluorescence staining, primary fibroblasts were dissociated using TrypLE 1X for 5 min at 37�C, 5% CO2 and 20 3 103

cells/well were seeded on a 96-well/plate (plastic, 96-well Black/Clear tissue culture treated plate; Falcon). hiPSC-derived cells

were dissociated as above and seeded either on Matrigel- (CMs: 40 3 103) or fibronectin- (EPI: 20 3 103) or vitronectin- (CFs:

20 3 103) coated plates, on a 96-well/plate (plastic, 96-well Black/Clear tissue culture treated plate). MTs were dissociated as

above and 50 and 1003 103 single cells were seeded on 24-well Matrigel-coated plates, on top of glass coverslips (10mmdiameter).
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Mediumwas refreshed the following day. Cells were fixed either after 7-10 days (CMs andMTs, to allow recovery) or after 2-3 days (all

other cell types) for 20 min in 4% paraformaldehyde, permeabilized for 10 min with PBS (Calcium, Magnesium, Thermo Fisher Sci-

entific) containing 0.1% Triton X-100 (Sigma Aldrich) and blocked for at least 1 h with PBS (Calcium, Magnesium) containing 10%

FCS. Primary antibodies were added overnight at 4�C on a shaker. The following day, cells were washed 3 times with PBS (Calcium,

Magnesium) at room temperature, each time incubated for 10/15 min. Secondary antibodies were added for 1h at 37�C and pro-

tected from light. Cells were washed three times with PBS (Calcium, Magnesium), each time incubated for 10 min and stained

with DAPI (Thermo Fisher Scientific) for 10 min at room temperature. Images were captured with an EVOS FL AUTO2 microscope,

using a 10x and 20x magnification objective. For dissociated MTs, images were captured with a Leica SP8WLL confocal laser-scan-

ning microscope, using a 63x magnification objective and Z stack acquisition. Whole mount immunofluorescence staining of 3D car-

diac MTs was performed as described previously (Giacomelli et al., 2017a, 2017b). Briefly, MTs were washed in PBS (Calcium, Mag-

nesium) on day 21 and fixed for 1h at 4�C with 4% paraformaldehyde, washed 3 times in PBS (Calcium, Magnesium) and stored at

4�C until processing. MTs were permeabilized for 30 min with PBS (Calcium, Magnesium) containing 0.2% Triton X-100 and blocked

for 2h in PBS (Calcium, Magnesium) containing 10% FCS. All incubations were at room temperature. Primary antibodies were added

overnight at 4�C. The following day, MTswere washed 3 times with PBS (Calcium, Magnesium) at room temperature, each time incu-

bated for 10 min. Secondary antibodies were added overnight at 4�C. The following day, MTs were washed 3 times with PBS (Cal-

cium, Magnesium) at room temperature, each time incubated for 20-30 min and then stained with DAPI (1:500) for 1h at room tem-

perature. MTs were mounted with ProLong Gold antifade Mountant (Thermo Fisher Scientific) onto microscope slides on top of

12 mm round, glass coverslips. Images were captured with a Leica SP8 WLL confocal laser-scanning microscope, using a 25x,

40x, or 100x objectives and Z stack acquisition or using Andor Dragonfly spinning disk confocal microscope with a 100x objective.

Transmission Electron Microscopy (TEM)
MTs were fixed for 1hr in 1.5% glutaraldehyde in 0.1 M cacodylate buffer (pH 7.4) by adding an equal volume of double concentrated

(3%) fixative to the culturemedium. After rinsing theMTs three times in 0.1M cacodylate buffer, theywere postfixed in 1%OsO4/0,1M

cacodylate solution for 1h on ice. Next, MTs were dehydrated in 70% EtOH overnight. The next day, MTs were dehydrated in 80 and

90%EtOH for 10mins, and twice in 100%EtOH for 30min. MTswere then embedded in amixture of propylene oxide and EPON (2:1,

1:1 and 1:2, for 30min each followed by pure EPON for 60min.MTswere transferred in an embedding capsule and EPONwas added.

EPONwas allowed to harden for two days at 70�C. Samples were sliced using a elementsix ultramicrotome knife (Drukker) in a Reich-

ert Ultracut S microtome (Leica) into 80 nm ultrathin slices and mounted on copper grids before being stained with saturated uranyl

acetate (20 ml) in the dark at room temperature for 10min. MTswere thenwashed ten times inmilliQ and twice in NaOH (0.01M). Next,

MTs were stained for 5 min with lead citrate (20 ml) and washed 10 times in 0.01%NaOH/MilliQ solution and ten times in milliQ before

being air-dried and imaged with a Twin electron microscope (Tecnai T12Twin, Fei, Eindhoven). Samples were imaged with the Gatan

camera (One View) by stitching several photographs together (Faas et al., 2012). Stitches and sarcomere length were analyzed using

Aperio ImageScope (version 12.3.2.8013, Leica). Quantitative analysis of sarcomere length was performed on TEM images by calcu-

lating the distance between consecutive Z-lines (distance from themiddle of one Z-line to themiddle of the next) using Aperio Image-

Scope. Statistical analysis was performed using GraphPad Prism 8.2.0.

Contraction analysis
MTs were seeded on 24-well Matrigel-coated plates on top of plastic 13 mm coverslips (Sarstedt). Movies of spontaneous or paced

MTs were acquired for at least 10 s at 37�C either with a ThorLabs DCC3240M camera at 100 frames/sec and a 10 x objective phase

contrast objective (Leica Inverted microscope IBDE), using the ThorLabs uc480 software (v 4.20), either with a Leica Microsystems

LASAF6000microscope at 37�Cand 5%CO2. For verapamil and Bay-K8644 experiments, videos ofMTswere acquired under perfu-

sion after 5min of incubation in baseline condition (Tyrode’s) or drug. During the last min of incubation,MTswere stimulated at 1.5 Hz,

with 12V/cm strength and 3 ms long stimulation pulse. For ACM and CX43 overexpression data, movies were recorded from MTs

paced at 1, 2 or 3 Hz and kept in their V-bottomed culture plate, at 37�C and 5%CO2. Contraction data were obtained by analyzing

movies either with the MUSCLEMOTION ImageJ macro (ImageJ v. 2.0.0-rc-49) as described previously (Sala et al., 2018), or with

Vector Flow analysis. Contraction duration of spontaneously beatingMTswas normalized to their spontaneous beating rate: Normal-

ized contraction duration = contraction duration / sqrt (IBI).

For ACM data, MT pacing experiments were analyzed using an R script calculating the contraction rate and the coefficient of vari-

ation (CV) of contraction amplitudes. MTs were classified as correctly following the applied stimulation frequency when the rate was

equals to the pacing rate ± 15% and when the contraction amplitude CV was lower than a chosen cutoff (28%, which accounts for

random amplitude variations).

The Horn-Schunck Vector Flow analysis method was used to detect changes in pixel displacements during contraction of the mi-

cro tissues in general according to ref. (Hayakawa et al., 2012). The analysis package was developed with LabVIEW Motion and

Vision (National instruments U.S.A). Images were collected at 100 frames/sec with a Thor Labs camera DCC3260M (Thorlabs

GmbH 85221Munich, Germany) and a 10X objective phase contrast objective (Leica Invertedmicroscope IBDE). Cells were perfused

with a Tyrode solution at 37�C and paced at 1 Hz. Tyrode’s contained (in mM): 140 NaCl, 5.4 KCl, 1.8 CaCl2, 1.0 MgCl2, 5.5 glucose,

5.0 HEPES; pH 7.4 (NaOH). The mm/pixel was calibrated and used to compute the horizontal and vertical velocity and the resultant

velocity. Binning of the vectors was carried out over 153 15 mm2 at an average 300x300 mm selection. Of each image, the maximum

velocity bin of all bins was selected to compute the resulting contraction/relaxation profiles. The maximum velocity was selected
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either on an automated or manually chosen position within the selected area of interest. Standard deviations were computed for all

bins and plotted at the contraction/relaxation trajectories in order to quantify the deviations from the peak values. The direction of the

contraction was calculated computing the angular direction of the vertical and horizontal components (arc tangent). Experiments

were analyzed over at least 5 repetitive contractions per experimental condition. From the contraction/relaxation profile, five param-

eters were analyzed. The velocity of the upstroke (mm/sec) the acceleration of the upstroke (mm/sec2), the velocity of relaxation (mm/

sec), the acceleration of relaxation (mm/sec2) and the beat duration. For all individual data points presented, data from at least 3 sepa-

rate MTs were pooled (SD) or individual measurements were averaged to obtain the number of observations (SEM). From the

computed vectors, line integrals were computed with the Advanced Plotting Toolkit (National Instruments).

Sharp Electrode Electrophysiology
MTs were seeded on 24-well Matrigel- coated plates, on top of plastic 13 mm coverslips (Sarstedt). CMECFs were manually cut as

necessary into smaller pieces before measurement. Sharp electrodes were fabricated with a Sutter Flaming Brown puller 97 (Sutter

Instruments, CA, USA). Electrodes were filled with 3M KCl having a final resistance of 80 – 100 MOhm (estimated tip diameter of

0.2 mm). ADagan intracellular IX1 amplifier with a Buzz unit (DaganMinneapolisMNUSA) was used.MTswere perfusedwith Tyrode’s

solution at 37�C, gently touched by the electrodes and penetrated using the zap function of the amplifier Buzz unit using an MP-200

micromanipulator (Sutter Instruments, CA, USA). APs were stored with an Axon Digidata 1322A and pClamp 10 software at 10 kHz

(Axon Molecular Devices USA).

Patch clamp electrophysiology
For dibutyryl cAMP (dbcAMP) experiments in 2D culture, CTRL1 hiPSC-CMs were dissociated with TrypLE 1X for 5 min at 37�C, 5%
CO2, centrifuged for 3 min at 1100, plated on glass coverslips (10 mm diameter) coated with Matrigel at a density of 40.000 cells/well

and cultured for 72 hr either in Pluricyte medium (NCardia) (CTRL) or in medium containing 0.5 mM dbcAMP before analysis. Patch

clamp measurements were performed on small groups of cells (10-20) with Axopatch 200B patch clamp amplifier at 5 kHz in the fast

current-clampmode. Recordings only with seal resistances of 2.5 GOhm or higher were selected for further analysis. Data were digi-

tized with a DigiData 1322A at 10 kHz under control of Clampex 10.0 software (Molecular Devices Axon Instruments U.S.A.). Pipets

used had a resistance of �2.4 MOhm. Pipet buffer composition: K-gluconate 125 mM; KCl 20 mM; NaCl 5 mM; HEPES 10 mM

adjusted to pH 7.3 with KOH. Amphotericin-B (Sigma-Aldrich U.S.A) was added to the pipet buffer before start of the measurements

at a concentration of 3 mg/ml from a DMSO stock of 0.6 mg/ml (light protected). Cells were continuously perfused in a perfusion

chamber at 37�C (Cell MicroControls Norfolk VA, U.S.A.) with Tyrode’s solution. For MT experiments: single cells were dissociated

from all groups of MTs in parallel on day 21. Cells were re-plated on top of glass coverslips (10 mm diameter) at low density to obtain

isolated single cells. After 1 week, coverslips were placed onto the stage of an invertedmicroscope for patch clamp recordings. Cells

were kept at 36 ± 1�C and perfused with Tyrode’s physiological solution containing (mmol/L): 140 NaCl, 5.4 KCl, 1.8 CaCl2, 1 MgCl2,

5.5 D-glucose, 5 HEPES-NaOH, pH 7.4. Cardiomyocytes were selected based on morphology and spontaneous contraction. APs

were recorded with Axopatch 200B amplifier, digidata 1440A and pClamp10.7 software (Molecular Devices) using patch clamp in

whole cell perforated patch configuration and current clamp mode. The pipette solution contained (mmol/L): 125 K-gluconate, 20

KCl, 10 NaCl, 10 HEPES, 0.5 amphotericin B (Sigma), pH 7.2. APs were recorded by stimulating for 2 ms at 1 Hz both without

and with dynamic clamp technique for computed IK1 injection, as previously shown (Verkerk et al., 2017). AP duration, amplitude

and membrane resting potential were analyzed from recordings without IK1 dynamic injection, whereas Vmax was analyzed on dy-

namic clamp recordings to reduce variability due to different resting membrane potentials. The percentage of APs with a ‘‘notch’’

was obtained using R script by calculating the minimum derivative value of AP traces in the peak region. Notches were identified

for derivative values < �3, a cut-off set to account for trace random oscillations. Analysis was performed using RStudio, OriginPro

(Origin Lab) 2016 and GraphPad Prism 8.2.0.

Calcium analysis
MTswere seeded on aMatrigel-coated 96-well/plates (plastic, 96-well Black/Clear tissue culture treated plate), and loadedwith 5 mM

Fluo-4 AM (Thermo Fisher Scientific) for 30 min at 37�C. Medium was changed (BPEL) and left for 30 min at 37�C before recordings.

For recordings, MTs were stimulated at 1.5 Hz on a Leica Microsystems LAS AF6000 microscope and recorded for at least 10 s. All

calcium experiments were performed at 37�C and 5% CO2. Analysis was performed using a custom-made ImageJ macro to imple-

ment the calculation of dF/F as described by Takahashi et al. (1999). Briefly, the background of the recording was selected outside

the MT. The maximum projection of the recording was determined to automatically select the area of the MT by thresholding the

result at the overall mean intensity plus standard deviation. Finally, a custom-made Labview programwas used to detect the kinetics

and calcium transients. For caffeine experiments, MTs were plated and loaded as described above. MTs were stimulated at their

averaged spontaneous beating frequency. After 4 calcium transients, stimulation was stopped and 50 mM caffeine added immedi-

ately and directly to the culture medium. Analysis was performed as described above. To calculate the caffeine induced amplitude

increase, the amplitude of the first peak after caffeine addition was divided by the average of the four peaks before caffeine.

Drug preparation
Verapamil hydrochloride (Tocris), Bay-K8644 (Tocris), caffeine (Sigma-Aldrich) and dbcAMP (Sigma-Aldrich) were dissolved in

DMSO following the manufacturer’s instructions. Stock solutions were freshly prepared before experiments.
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Measurement of cAMP in microtissues
Direct cAMP Enzyme-linked Immunosorbent Assay (ELISA) was performed using a direct cAMP ELISA kit (Enzo Life Sciences)

following the manufacturer’s instructions. Prior to assay procedure, 240 MTs/condition were pooled and lysed in 0.1M HCL and

stored at �20�C before experiment.

Oxidative respiration and glycolytic acidification
Oxidative respiration and glycolytic acidification were measured with Seahorse XF-96 Analyzer (Agilent). MTs were collected into a

15mL Falcon tube andwashed three times in assaymedium+ 0.2%BSA. 4h beforemeasurement, fourMTs (or five for the CMECMT

group) per well were plated on 96-well Matrigel-coated (0.167 mg/ml) plates. Measurements were made in minimal DMEM (Sigma)

supplemented with 15 mM glucose (Sigma-Aldrich), 2 mM pyruvate (Thermo Fisher Scientific) and 1 mM L-glutamine (Thermo Fisher

Scientific) (assay medium). For Mitochondrial stress test, the following drugs were diluted in assaymedium: 3.5 mMOligomycin, 4 mM

FCCP, 2 mM Antimycin A and 2 mM Rotenone (all from Sigma-Aldrich). For the glycolytic stress test, MTs were plated in medium

without glucose and the injections contained 15 mM glucose, 3.5 mMOligomycin, and 100 mM 2-DG (Sigma-Aldrich). Normalization

was performed by lysing theMTswith a chloride-based lysis buffer (10mMTris, 1mMEDTA, 50mMKCl, 2mMMgCl2) supplemented

with 200 mg/ml Prot K, for 2 h at 60�C. DNA content was measured using a Picogreen assay (Thermo Fisher Scientific). Analysis was

performed using R and R-studio.

Nuclear Magnetic Resonance spectroscopy (NMR)
Two aliquots of culture medium were collected from each sample, first immediately after refreshing the culture medium 24h before

harvesting and then right before harvesting. All aliquots were immediately mixed with 2 volumes of cold methanol (�70�C) and stored

at �80�C. For analysis of intracellular metabolites, 60 MTs/condition were pooled together and spun down for 5 s, culture medium

was aspirated and pellets were washed with ice-cold PBS. After 5 s of mild centrifugation, PBS was aspirated and MTs were

immersed in liquid nitrogen to completely quench metabolic activity. Intracellular metabolites were extracted by addition of

0.6 mLmethanol/chloroform/water, 6.75:0.75:2.5 (v/v/v) and repeating cycles of 10 s of vortexing, 1 min sonication and 1min resting

on ice, for a total of 15 min. Subsequently, all samples (culture medium and MT extracts) were centrifuged for 20 min at 180003 g at

�4�C and collected supernatants were dried under a gentle flow of nitrogen. NMR samples were prepared by dissolving the dried

material with 0.22 mL of 0.15M phosphate buffer (pH 7.4) in deuterated water containing 0.05mM trimethylsilyl propionic-d4-sodium

salt (TSP-d4) as internal standard for NMR referencing and quantification. An 1D 1H-NMR spectrumwas collected for each sample on

a 14.1 T (600 MHz for 1H) Bruker Avance II NMR, using the 1D-NOESY experiment with pre-saturation as implemented in the spec-

trometer library (pulse sequence: noesygppr1d). All spectra were processed to correct the phase and baseline and imported in Che-

nomx NMR suite 8.4 for quantification of metabolites. All concentrations were normalized to the total protein mass of each sample.

Details of the experimental procedure and NMR analysis can be found in Kostidis et al. (2017).

Gene expression (qPCR)
For qPCR, total RNAwas purified using the NucleoSpin RNA Kit (Macherey- Nagel) according to the manufacturer’s protocol. 1 mg of

RNA was reverse transcribed by using the iScript-cDNA Synthesis kit (Bio-Rad). Expression profiles of genes of interest were deter-

mined by qPCR using either 8ng/ml of cDNA (MTs experiments) or 6 ng/mL of cDNA (all other experiments), and the iTaq Universal

SYBR Green Supermixes (Bio-Rad). Gene expression was assessed by a Bio-Rad CFX384 real time system. Gene expression levels

were normalized to RPL37A and HARP housekeeping genes. Results were analyzed by using the DCt method. For qPCR on MTs,

60 MTs/condition were pooled together. Primer sequences are provided in Table S6.

Gene expression (bulk RNA-sequencing)
Whole-genome transcriptome data were generated at BGI (Shenzhen, China) using the Illumina Hiseq4000 (100bp reads). Raw data

were processed using the LUMCBIOPETGentrap pipeline (https://github.com/biopet/biopet), which consists of FASTQpreprocess-

ing, alignment and read quantification. Sickle (v1.2) was used to trim low-quality read ends (Joshi and Fass, 2011). Cutadapt (v1.1)

was used for adapters clipping (Martin, 2011), reads were aligned to the human reference genome GRCh38 using GSNAP (gmap-

2014-12-23) (Dobin et al., 2013; Wu and Nacu, 2010) and gene read quantification with htseq-count (v0.6.1p1) against the Ensembl

v87 annotation (Anders et al., 2015). Gene length and GC content bias were normalized using the R package cqn (v1.24.0) (Wu and

Nacu, 2010). Median chromosome X and Y expression were used to verify the sex of included samples. Genes were excluded if the

number of readswas below 5 inR 90%of the samples. The final dataset comprised gene expression levels of 36 samples and 22,227

genes. Differentially expressed genes were identified using generalized linear models as implemented in edgeR (McCarthy et al.,

2012). P values were adjusted using the Benjamini-Hochberg procedure and PFDR % 0.05 was considered significant. Analyses

were performed using R (version 3.4.4). Figures were produced with the R package ggplot2 (v2.2.1). Consensus clustering of

selected DEGs was performed with CancerSubtypes R package (Xu et al., 2017). Clustering was iterated 500 times for K clusters

in the range 2 to 10. Heatmap of genes in all 8 clusters was generated using a heatmap function of NMF R package (Gaujoux and

Seoighe, 2010). GO and KEGG pathway enrichment for each cluster of genes was performed using compareCluster function of clus-

terProfiler R package (v3.10.1) (Yu et al., 2012) and q % 0.05 was considered significant.
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Gene expression (single-cell RNA-sequencing)
Pre-processing, clustering and tSNE

For clustering, replicates of CMs and CMECFs were pre-processed separately. In both cases, undetected genes (genes with a count

of one in less than two cells) and the 50 cells with the lowest number of transcripts were removed from further analysis. This resulted in

6810 cells and 12823 genes for the CMs dataset, and 9497 cells and 13958 genes for the CMECFs dataset. Then, k-nearest neigh-

bors (knn) smoothing was performedwith the python package kNN-smoothing (Version 2.1, (Wagner et al., 2018)) using k = 15, d = 10

and dither = 0.05. Each replicate was normalized individually with the scran package in R (V 1.10.1) using themethod described in Lun

et al. (2016). The 10%most highly variable genes (HVG) for each replicate were calculated with scran after excluding ribosomal genes

(obtained from the HGNCwebsite without any filtering for minimum gene expression), stressed genes (van den Brink et al., 2017) and

mitochondrial genes. Batch effect correction between replicates was performed with a mutual nearest neighbors (MNN)- based

approach (Haghverdi et al., 2018) implemented in the scran package. (Here we used log transformed, knn-smoothed and normalized

count data of the 10%most HVG that were present in all replicates). The MNN algorithm was run with d = 50. Hierarchical clustering

was performed onMNN corrected counts using Pearson correlation as distance measure andWard linkage. For the CM dataset, the

hierarchical clustering tree was cut at height 40 which resulted in 2 clusters. For CMECFs, the hierarchical clustering tree was cut at

height 12 which resulted in 4 clusters. Among the clusters thus defined, cardiomyocytes were identified by knownmarker genes from

the literature. Then, the cardiomyocytes from each of the four datasets were combined into one dataset comprising 8405 cells and

11472 genes in total. The raw data from these cells was pre-processed again, as described above using the same parameters, where

normalization and calculation of HVGwas now performed simultaneously for all cardiomyocytes. No batch effect correction was per-

formed. T-distributed stochastic neighbor embedding (tSNE) was performed using the R package Rtsne. We used Freeman-Tuckey

transformed and MNN corrected values to calculate the Pearson correlation as a distance measure for the tSNE.

Differential expression analysis

The R package edgeR (V 3.24.1, (Robinson et al., 2010)) was used to perform differential expression analysis. We used counts and a

negative binomial distribution to fit the generalized linear model. The covariates were comprised of four binary dummy variables that

indicate the four cardiomyocyte populations and a variable that corresponds to the total number of counts per cell. Finally, p values

for a contrast between CMECFs and CMs (CMECFs – CMs) were obtained and adjusted for multiple hypothesis testing with the

Benjamini-Hochberg method.

Comparison to bulk RNA-sequencing data

Bulk samples were obtained from dataset GEO: GSE62913 (Kuppusamy et al., 2015). For principal component analysis (PCA) the

intersection of the 10% most HVG of the single cell cardiomyocyte dataset and genes expressed in the bulk samples were used.

Each of the three datasets (merged cardiomyocytes from the scRNA-seq dataset, bulk samples of CMs, CMECs and CMECFs,

bulk samples from Kuppusamy et al., 2015) were Freeman-Tuckey transformed and scaled individually before calculating the prin-

cipal components.

Western blot
hiPSC-CFs and EPI generated from CTRL1, CTRL2 and ACM were lysed on ice in protein extraction buffer (10 mM Tris-HCl pH 7.4,

150 mM NaCl, 1% Igepal CA630, 1% sodium deoxycholate, 0.1% SDS (Sodium Dodecyl Sulfate) and 1% Glycerol supplemented

with protease inhibitor mix. Total lysates were quantified using BCA protein kit (Thermo Fisher Scientific) following manufacturer’s

instructions. Total proteins (30 mg) were resolved by SDS-PAGE gel (4%–15% Criterion Precast Gel, Bio-Rad) and transferred to

PVDF membrane (Bio-Rad). The membrane was blocked by incubation with TBS 0.1% Tween, 5% non-fat dry milk for 1 h at

room temperature (RT). The membrane was then incubated overnight at 4�C with primary commercial antibodies against PKP2

and GAPDH. The membrane was washed with TBS 0.1% Tween and incubated 1 h at RT with the appropriate HRP-conjugated sec-

ondary antibody (Cell Signaling). Detection was performed using the enhanced chemiluminescence system (SupersignalWest Dura

Extended Duration Substrate, Thermo Fisher Scientific) and images were acquired with the ChemiDocMP Imaging System (Bio-rad).

Acquired images were quantified using Image Lab software 5.2.1 (Bio-Rad).

Bright field images
Bright field images were acquired with a Nikon DS- 2MBW camera connected to a Nikon Eclipse Ti-S microscope, controlled by the

Nikon NIS-Element BR software. Lens magnification was 4x with a PhL contrast filter.

QUANTIFICATION AND STATISTICAL ANALYSIS

Quantitative sarcomere analysis by immunostaining
Sarcomere length

3D cardiac MTs and dissociated MTs were stained for Z-bands (ACTN2) and sarcomere length was analyzed on images captured by

confocal microscope using standard analysis plugin in open-source Fiji Software, ImageJ.

Sarcomere organization

Z-band density and bidimensional organization indicating sarcomere alignment were evaluated on 3D cardiac MTs stained for

ACTN2 and acquired by confocal microscope. The analysis of sarcomere alignment was performed using a plugin based on Fast

Fourier Transform (FFT) algorithm (Fiji Software, ImageJ) as previously described (Pioner et al., 2016). Briefly, the peak components
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of the power spectrum curve reproduced the periodicity of Z-bands. The index of sarcomere alignment was obtained by normalizing

the area under the first order peak for the total area of the power spectrum profile.

Quantitative CX43 analysis by immunostaining
Quantification of immunostaining was preformed using the open-source software Cellprofiler (Bray et al., 2015; Carpenter et al.,

2006). Objects were identified in the pipeline using otsu thresholding to segment DAPI positive nuclei or CX43 positive spots in

the respective channels to provide total number of CX43 per cell. For quantification of CX43 and PKP2 intensity, the positive staining

was first outlined using Sobel edge-finding method, then total intensity of the image enclosed by the defined edges was quantified

and normalized to the number of nuclei. For quantification of intensity at cell junctions only, an additional step tomask the area inside

the cell was applied, so that the only defined areas at the cell junctions were quantified.

To quantify SMApositive cells, non-specific small bright objects were first identified usingOtsu’s thresholdingmethod and cell size

and used to mask non-specific signal in the image. Next, using Otsu’s thresholding and cell size, parameters were used to segment

SMA positive and DAPI positive cells to obtain the percentage of SMA positive cells per image.

3D quantification of CX43 in MTs was preformed using the spot detection function of the IMARIS software.

Computational framework for quantitative analysis
We developed a computational framework in-house for semi-automated quantification of 3D stack reconstructions from confocal

sections, which combines computer graphic algorithms, image processing, segmentation, ellipsoidal fitting and 3D object recon-

struction based on area superposition. The framework was developed combining Java scripts in Fiji (Schindelin et al., 2012) and

MATLAB (Mathworks Inc.). The sequence of instructions implemented in the framework is the following:

Segmentation of nuclei channel:

1. Definition of Kernel Radius (KR): User defines the radius of the kernel required to perform several of the image processing al-

gorithms used in the framework. This parameter is defined attending the minimal radius of interest objects in the image. To

analyze images of MTs, a KR of 5 pixels was used.

2. Lighting Homogenization: To reduce differences in intensity along x and y axis of each confocal section, a gray-scale morpho-

logical subtraction using an opening image with large kernel (Sreedhar and Panlal, 2012) (5*KR) was performed.

3. Local Background Subtraction: To remove the background intensity, a local threshold defined by the local median intensity (8x

KR x KR) was used.

4. Enhancing Object definition: A sequence of filters was applied to remove noise and increase the definition of the boundaries of

each object (Median filter, Gaussian Blur, Maximum Filter).

5. SeedGeneration: A binary copy of each image was generated using themedian as threshold for each slice. Euclidean Distance

Map (EDT) was performed in the binary image to generate the primordium points (seeds) for each object.

6. Identification of objects: Segmentation was completed from seeds using a flood fill algorithm. Objects smaller than KR*KR

were not considered. Objects n times larger than a threshold defined by the user were divided into n independent objects.

3D reconstruction of nuclei:

After identification of each 2D object in each section of the sample, our framework identified each segmented object in each section

of the sample with a 3D object in the stack. An example of MT reconstructed digitally is shown in Figure S1D. This script is used to

generate the data for Figure S1B (right panel). This was performed as follows:

1. Ellipsoidal fitting: Each segmented object was fitted to an ellipse, with area and orientation depending on the dimensions and

characteristics of the object.

1. Overlapping area: Interactions between segmented objects of adjacent planes were identified based on the amount of over-

lapping between their fitted ellipses. As a first approximation, an interaction between 2D objects was established if their fitted

ellipses overlapped.

2. Initial objects and elongation: If a 2D ellipse did not have an interactionwith an object in the previous section, it was identified as

the start of a new 3D object. Starting from each initial section, the next section of the object was identified based on the

maximal overlap of the ellipses. This reconstruction was performed iteratively until the final section of each 3D object was iden-

tified.

3. Final objects: The end of a 3D object was defined by an average size of the object in the z-direction, estimated by the size of the

3D projections of each image (this length in the Z axis was referred as KZ).

4. Parameter analysis: The desired values of each 3D object in the 3D stack were extracted and listed for quantitative analysis

(volume, location, orientation, distance to neighbors).

Identification of each cell type:

The information of the marker intensity based on immunostaining was used to determine the identity of each nucleus. This script is

used to generate the data for Figure S1C. For the classification of cellular composition of MT in different conditions analyzed, the

intensity of the following markers was used: TNN1, COL1A1, CD31.
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By assuming that all cells in the tissue had a defined phenotype, and that each cell corresponded to only one of the phenotypes

defined, the following tasks were defined:

1. Noise removal: Noise in the form of small pixel-to-pixel variations was removed using a Gaussian blur filter in the sections. Fil-

ters were applied with a user defined KR.

2. Intensity normalization: Intensity of all channels containing the identity markers was normalized.

3. Threshold definition: A threshold value for each identity marker was defined in correlation with the others to define the most

probable identity of this object. These thresholds were defined by the user based on the characteristics of the staining and

the nature of each identity marker.

4. Nuclei classification: Identification of each 3D object was defined as the most frequently occurring identity of all its ellipsoidal

2D sections. If themost frequent staining was TNN1 the cell was identified as cardiomyocyte; COL1A1 corresponded to a fibro-

blast identity; CD31 to an endothelial phenotype.

Identification of proliferative cells:

For the identification of proliferative and fibroblast cells at day 7 and 21, identities were established based on presence or absence of

a staining. This script is used to generate the data for Figure S1E. In case cells could not be assumed as positive for an identity

marker, the approach used was:

1. Noise removal: Noise in the form of small pixel-to-pixel variations was removed using a Gaussian blur filter in the sections. Fil-

ters were applied with a user defined KR.

2. Morphological operation: Presence of fibers were removed by applying an opening filter using as structuring element a line in

135 degrees respect the horizontal (Legland et al., 2016). Filters were applied with a user defined KR.

3. LightningHomogenization: To reduce differences in intensity along x and y axis of each confocal section, a gray-scalemorpho-

logical subtraction using an opening image with large kernel (Sreedhar and Panlal, 2012) (5*KR) was performed

4. Background subtraction: Subtraction of values lower than the result of the sum of the average and standard deviation were

performed in each slice.

5. Nuclei classification: Classification of nuclei based on the average intensity value in fitted 2D ellipses was performed for all

channels. A cell with an average intensity of KI67 higher than zero was assumed as proliferative. A cell with an average intensity

of COL1A1 higher than zero was considered a fibroblast.

Measurement of average distance:

This script was used to generate the data for Figure S1F, by computing the centroid of each 3D object in the stack as follows:

1. Distance between nuclei in the sample and its 12 closest neighbors was computed. The median value was calculated for each

nuclei as the most probable distance.

2. Average distance (as well as standard deviation of the average distance) between all cells in the sample was calculated as the

average value of all the medians for the whole MT.

Measurement of volume:

This script was used to quantify the average volume of TNN1+ nuclei plotted in Figure S1G as follows:

1. Each 3D object in the stack was fitted to an ellipsoid. The KZ (length in the z axis) in the different samples analyzed was varied

based on the average size of 3D objects in the Z-direction: KZ = 18 for images corresponding to day 7 and 21 without fibro-

blasts; 10 for images corresponding to day 7 and 21 with fibroblasts; 46 for images corresponding to CMECs, whereas 36 for

the rest of the images.

2. TNN1+ cells were identified using the approach explained above.

The volume of each cell was calculated from the semi-axis distance of each MT.

Statistics
Detailed statistics and statistical significance are indicated in each figure legend. Results with p values p < 0.05 were considered

statistically significant. Briefly, One-way ANOVA, two-way ANOVA, Student’s t test, for paired or unpaired measurements were

applied as appropriate to test for differences in means between groups/conditions. Data are expressed and plotted as the

Mean ± SEM orMean ± SD as indicated in figure legends. The sample size used in each experiment is indicated in the figure legends.

Statistical analysis was performed using GraphPad Prism 8.2.0 and RStudio.
e11 Cell Stem Cell 26, 862–879.e1–e11, June 4, 2020



Cell Stem Cell, Volume 26
Supplemental Information
Human-iPSC-Derived Cardiac Stromal Cells Enhance

Maturation in 3D Cardiac Microtissues and Reveal

Non-cardiomyocyte Contributions to Heart Disease

Elisa Giacomelli, Viviana Meraviglia, Giulia Campostrini, Amy Cochrane, Xu Cao, Ruben
W.J. van Helden, Ana Krotenberg Garcia, Maria Mircea, Sarantos Kostidis, Richard P.
Davis, Berend J. van Meer, Carolina R. Jost, Abraham J. Koster, Hailiang Mei, David G.
Míguez, Aat A. Mulder, Mario Ledesma-Terrón, Giulio Pompilio, Luca Sala, Daniela C.F.
Salvatori, Roderick C. Slieker, Elena Sommariva, Antoine A.F. de Vries, Martin
Giera, Stefan Semrau, Leon G.J. Tertoolen, Valeria V. Orlova, Milena
Bellin, and Christine L. Mummery



 

 
 



 
Figure S1 (related to Figure 2). Characterization of 3D microtissues. (A) Representative immunofluorescence images 
of CM- (TNNI, green), EC- (CD31, grey) and fibroblast- (COL1A1, red) markers in MTs, as indicated. Scale bar: 50 μm. 
(B) Bar graphs showing MT diameter measured in MTs mounted on glass coverslips (left, N>9) and total number of 
DAPI+ cells measured by 3D semi-automated image processing (right, N=4). *P<0.0001. One-way ANOVA with 
Dunnett’s multiple comparisons test.  (C) Representative immunofluorescence images (top) and digital images (bottom) 
showing TNN1+ (green), COL1A1+ (red), and CD31+ (grey) cells in MTs (left).  Bar graph quantification of the same cell 
populations (right). N=4, *P<0.001 for COL1A1+ cells. Two-way ANOVA with Tukey’s multiple comparisons test. (D) 
Representative immunofluorescence (top, raw) and digital (bottom, reconstruction) images for KI67+COL1A1+ (yellow) 
and KI67+COL1A1- (green) cells. DAPI+ cells in blue. MTs at day 7 (upper panel) and day 21 (lower panel) were analysed. 
(E) Bar graph showing the percentage of KI67+COL1A1- and (green) and KI67+COL1A+ (yellow) cells in MTs at the 
indicated time points (D=day). N>3. (F, G) Bar graph showing average distance between nuclei (F) and average volume 
of TNNI+ nuclei (G) in MTs. N=4 MTs, ****P<0.0001, ***P<0.0005, *P<0.05. One-way ANOVA with Dunnett’s 
multiple comparisons test. All data are shown as mean ± SEM. 



 
Figure S2 (related to Figure 2). Structural maturation and ultrastructure of 3D microtissues. (A, B) Quantification 
of sarcomere organization (sarcomere alignment index, left) and sarcomere length (right) in CTRL2 hiPSCs (N>30, 
*P<0.05) (A) and CTRL3 hiPSCs (N=30, *P<0.005) (B) MTs from immunofluorescence analysis. Data are shown as 
mean ± SEM. N indicates different areas from 3 independent MTs per group. One-way ANOVA with Dunnett’s multiple 
comparisons test. (C) Graphs showing variability of morphological parameters, i.e. size, sarcomere length, and sarcomere 
alignment index. Mean values (dots) and SD (error bars) for different MT batches from CTRL1 and CTRL2 hiPSCs are 
shown. (D) Representative TEM images showing presence or absence of ultrastructural features typical of mature 
cardiomyocytes in CMECs, CMFs, CMEC SFs, CMECFs and CMEC ACFs: caveolae (c), Z-lines (Z), M-lines (M), I-
bands (I), H-zones (H) and mitochondria (red arrows). CMECs, CMFs, CMEC SFs and CMEC ACFs, scale bar: 1 μm. 
CMECFs, scale bar: 0.5 μm.  
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Figure S3 (related to Figure 3). Single-cell and bulk transcriptome profiling of microtissues. (A) Tsne plots of 
hiPSC-CMs based on scRNA-seq profiles. In the left panel, colors represent different replicate samples (Replicate 1; 
Replicate 2); in the right panel, colors represent different cell type clusters (Cardiomyocytes; Other). (B) Violin plots 
showing expression (log transformed) of selected CM- (TNNT2, ACTN2), fibroblast- (COL1A1, POSTN), and EC- 
(CD31, CDH5) markers in hiPSC-CMs based on their scRNA-seq profiles. (C) Tsne plots of CMECFs based on their 
scRNA-seq profiles. In the left panel, colors represent different replicate samples (Replicate 1; Replicate 2); in the 
right panel, colors represent different cell type clusters (Cardiomyocytes; Endothelial cells; Fibroblasts; Other). (D) 
Violin plots showing expression (log transformed) of selected CM- (TNNT2, ACTN2), fibroblast- (COL1A1, POSTN), 
and EC- (CD31, CDH5) markers in CMECFs based on their single-cell RNA-seq profile. (E) Total number of DEGs 
identified across hiPSC-CMs, CMECs, CMECFs, CMEC SFs and CMEC ACFs in bulk RNA-seq analysis. (F) Consensus 
matrix: DEGs from (E) grouped into eight gene clusters with ConsensusCluster, each row and column represent a unique 
gene and the color scale represents consensus values, which indicate how often two items occupied the same cluster out 
of 500 iterations. The color key indicates cluster definitions and the number of genes in each cluster. 
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Figure S4 (related to Figure 4). Cardiac fibroblasts promote electrical maturation and enhance contractility of 
hiPSC-CMs in microtissues. (A) Bar graph showing parameters of APs recorded from single hiPSC-CMs (CTRL2) 
dissociated from CMECFs and CMEC SFs: APA, RMP, APD90; Vmax (in APs measured with dynamic clamp). N>18, 
single CMs dissociated from 2 independent MT batches per group, *P>0.05. Student’s t-test. Data are shown as mean ± 
SEM.  (B, C) Representative AP traces measured by sharp electrode electrophysiology in CMECs (black) and in CMECFs 
(red) generated from CTRL1 (B) and AP parameters (C). N>11, MTs per group, *P<0.05. Student’s t-test. Data are shown 
as mean ± SEM. (D) Diagram and representative examples of APs measured in CMECFs by sharp electrode 
electrophysiology documenting direct coupling between CMs (CM-CM) or CM and CF (CM-CF), together with APs 
overlay. (E) Rate-dependence analysis for velocity and acceleration of contraction (left panel) together with velocity and 
acceleration of relaxation (right panel) in CMECs (black) and CMECFs (red). N>22, MTs per group, *P<0.0001. Two-
way ANOVA with Sidak’s multiple comparison test. Data are shown as mean ± SD. (F) Representative Ca2+ transients 
before and after addition of 50 mM Caffeine in CMECs (black) and CMECFs (red). (G) Change in Ca2+ amplitude 
(percentage, relative to amplitude at baseline condition) measured in CMECs (black) and CMECFs (red). N=8, MTs per 
group. *P<0.005. Student’s t-test. Data are shown as mean ± SEM. (H, I) Representative contraction traces from CMECFs 
stimulated at 1.5 Hz under baseline condition (red lines) and upon addition of 1 x 10-6 M verapamil (H, top) or 1 x 10-7 M 
Bay K-8644 (I, top) (dashed grey lines). Concentration-response curves (contraction amplitude was normalized to 
baseline) in CMECFs under baseline condition and upon increasing concentrations of Verapamil (H, bottom, N=10) or 
Bay K-8644 (I, bottom, N=6). Data are shown as mean ± SEM. (J) Concentration-response curves for velocity and 
acceleration of contraction (top) and relaxation (bottom) of CMECFs under baseline condition and upon increasing 
concentrations of Verapamil. MTs were stimulated at 1.5 Hz. N>14. Data are shown as mean ± SEM. (K) Graphs showing 
variability of contraction parameters, i.e. IBI and contraction duration (top panels) and single-cell electrophysiology 
parameters, i.e. RMP, Vmax, and APD90 in CMECFs. Mean values (dots) and SD (error bars) for different MT batches 
from CTRL1 and CTRL2 hiPSCs are shown. 



 
Figure S5 (related to Figure 5). Tri-cellular crosstalk between cardiac cell types is essential for metabolic 
maturation of hiPSC-CMs in microtissues. (A) Heat-map of intracellular metabolites (standardized values) measured 
in the 5 MT groups. (B) Net release (positive) or uptake (negative) of metabolites to- or from the medium, respectively. 
Quantities are expressed as µmol, corrected for the total protein mass per sample (µg/ml). 
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Figure S6 (related to Figure 6). Mechanisms underlying hiPSC-CM maturation in microtissues with cardiac 
fibroblasts. (A) cAMP concentration (pmol/mL) measured in MTs. N=4, independent MT batches per group, *P<0.05. 
Friedman test with Dunn’s multiple comparisons test. Data are shown as mean ± SEM. (B) qPCR analysis for NOS3 and 
EDN1 genes in CMFs and CMECFs. N>3, independent MT batches; *P<0.05. Student’s t-test.  Data were normalized to 
RPL37A and are shown as mean ± SEM. (C) Immunofluorescence analysis of CX43 (green) in non-transduced CTRL2 
hiPSC-CFs (CFs), CTRL2 primary dermal/skin fibroblasts (SFs), CTRL2 CX43 LV transduced SFs (SFs CX43 LV), 
CTRL2 Control LV transduced SFs (SFs Empty LV). Nuclei stained with DAPI (blue). Scale bar: 100 μm. (D, E) 
Representative immunofluorescence images corresponding to those in Figure 6F and 6G) of CX43 (green) alone, to 
illustrate CX43 distribution in MTs from CTRL1 hiPSCs, either untreated (CMECFs, CMEC SFs) or treated for 7-days 
with dbcAMP (CMECFs +dbcAMP, CMEC SFs +dbcAMP) (D), and MTs from CTRL1 hiPSCs containing either SFs 
transduced with control lentivirus (LV) (CMEC SFs Empty LV) or SFs transduced with CX43 lentivirus (LV) (CMEC 
SFs CX43 LV) (E). Nuclei stained with DAPI (blue). Scale bar: 10 μm. Insets are magnifications of the framed areas and 
highlight CX43 distribution. (F, G) Quantification of sarcomere organization (sarcomere alignment index) (F) and 
sarcomere length (G) from immunofluorescence analysis of MTs from CTRL2 hiPSCs (CMECFs and CMEC SFs) and 
treated for 7-days with dbcAMP (CMECFs +dbcAMP and CMEC SFs +dbcAMP), MTs from CTRL2 hiPSC-CMs and 
ECs with CTRL2 primary dermal/skin fibroblasts transduced with control lentivirus (LV) (CMEC SFs Empty LV) or 
CTRL2 primary dermal/skin fibroblasts transduced with CX43 lentivirus (LV) (CMEC SFs CX43 LV). N=30, different 
areas from 3 MTs per group, *P<0.01, **P<0.005, ***<P=0.0005, ****P<0.0001. One-way ANOVA with Tukey’s 
multiple comparisons test. All data shown as mean ± SEM.  (H) Quantification of CX43 per cell in MTs. **P<0.01. Data 
shown as mean ± SEM. N=15. Student’s t-test. (I) Representative contraction traces (left, normalized amplitude is shown) 
and bar graph of mean contraction duration (right panel) in MTs paced at 1Hz. N=17, MTs per group. *P<0.0001. One-
way ANOVA with Fisher’s LSD test. Data shown as mean ± SEM. (J) Immunofluorescence analysis of CX43 (green) in 
non-transduced CTRL1 hiPSC-CFs (CFs), scrambled shRNA CTRL1 hiPSC-CFs and CX43-shRNA CTRL1 hiPSC-CFs. 
Nuclei stained with DAPI (blue). Scale bar: 100 μm. (K) qPCR analysis for GJA1 (encoding for CX43) in non-transduced 
CTRL1 hiPSC-CFs (CFs), scrambled shRNA CTRL1 hiPSC-CFs and CX43-shRNA CTRL1 hiPSC-CFs. Values are 
normalized to HARP and RPL37A. N=2, independent transductions. Data shown as mean ± SD.  
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Figure S7 (related to Figure 7). Microtissues as model of Arrhythmogenic Cardiomyopathy (ACM). (A) 
Representative bright field images of CTRL- and ACM-EPI. Scale bar: 100 μm. (B) Heat-map showing qPCR expression 
for fibroblast- (ITGA4, COL1A2, COL1A1, POSTN) and EPI- (WT1, TBX18) genes in hiPSC-EPI and -CFs from CTRL1 
and ACM lines. Values were normalized to RPL37A. N>3 independent differentiations. (C) Representative 
immunofluorescence images for ZO-1 (green) and WT1, TBX18, COL1A1 (red) in ACM hiPSC-EPI and ACM hiPSC-
CFs. Nuclei stained with DAPI (blue). Scale bar: 20 μm. (D) Immunofluorescence analysis of PKP2 (red, upper panel) 
and CX43 (green, lower panel) in hiPSC-EPI from CTRL1 hiPSCs (CTRL-EPI) and ACM hiPSCs (ACM-EPI). Nuclei 
stained with DAPI (blue). Scale bar: 100 μm. (E) Quantification of PKP2 (upper panel) and CX43 (lower panel) intensity 
at the cell-cell junctions in CTRL-EPI and ACM-EPI. (F) Immunofluorescence analysis of SMA (red) in CTRL-EPI and 
ACM-EPI. Nuclei stained with DAPI (blue). Scale bar: 100 μm. (G) Quantification of SMA-positive cells in CTRL- and 
ACM-EPI. CTRL-EPI, N=3 (two independent differentiations from CTRL1 and one from CTRL2); ACM-EPI, N=2 (two 
independent differentiations). (H) Immunofluorescence analysis of SMA (red) in hiPSC-CFs from CTRL1 hiPSCs 
(CTRL-CFs) and ACM hiPSCs (ACM-CFs). Nuclei stained with DAPI (blue). Scale bar: 100 μm. (I) Quantification of 
SMA positive cells in CTRL- and ACM-CFs. CTRL-CFs, N=2 (two independent differentiations from CTRL1 and 
CTRL2 hiPSCs); ACM-CFs, N=2 (two independent differentiations from ACM hiPSCs). (J) Immunofluorescence 
analysis of CX43 (green) and cardiac sarcomeric protein ACTN2 (red) in CTRL CMECFs or ACM CMECFs. Nuclei 
stained with DAPI (blue). Scale bar: 10 μm. (K) Quantification of sarcomere organization (sarcomere alignment index, 
left) and sarcomere length (right) in CTRL CMECFs and ACM CMECFs. N=30, different areas from 3 MTs per group.  
 



Table S6. List of oligonucleotides used for qPCR. 

Oligonucleotides SOURCE IDENTIFIER 
Primer sequences for qPCR 
RPL37A Forward: GTGGTTCCTGCATGAAGACAGTG Zhang et al. 2014 N/A 
RPL37A Reverse: TTCTGATGGCGGACTTTACCG Zhang et al. 2014 N/A 
HARP Forward: CACCATTGAAATCCTGAGTGATGT Devalla et al. 2015 N/A 
HARP Reverse: TGACCAGCCCAAAGGAGAAG Devalla et al. 2015 N/A 
WT1 Forward: TATTCTGTATTGGGCTCCGC Guadix et al. 2017 N/A 
WT1 Reverse: CAGCTTGAATGCATGACCTG Guadix et al. 2017 N/A 
TBX18 Forward: TTGCTAAAGGCTTCCGAGAC Guadix et al. 2017 N/A 
TBX18 Reverse: AGGTGGAGGAACTTGCATTG Guadix et al. 2017 N/A 
GJA1 Forward: TGGTAAGGTGAAAATGCGAGG PrimerBank N/A 
GJA1 Reverse: GCACTCAAGCTGAATCCATAGAT PrimerBank N/A 
ITGA4 Forward: AGCCCTAATGGAGAACCTTGT PrimerBank N/A 
ITGA4 Reverse: CCAGTGGGGAGCTTATTTTCAT PrimerBank N/A 
COL1A1 Forward: GAGGGCCAAGACGAAGACATC PrimerBank N/A 
COL1A1 Reverse: CAGATCACGTCATCGCACAAC PrimerBank N/A 
COL1A2 Forward: GAGCGGTAACAAGGGTGAGC PrimerBank N/A 
COL1A2 Reverse: CTTCCCCATTAGGGCCTCTC PrimerBank N/A 
POSTN Forward: CTCATAGTCGTATCAGGGGTCG PrimerBank N/A 
POSTN Reverse: ACACAGTCGTTTTCTGTCCAC PrimerBank N/A 
NOS3 Forward: TGATGGCGAAGCGAGTGAAG PrimerBank N/A 
NOS3 Reverse: ACTCATCCATACACAGGACCC PrimerBank N/A 
EDN1 Forward: AGAGTGTGTCTACTTCTGCCA PrimerBank N/A 
EDN1 Reverse: CTTCCAAGTCCATACGGAACAA PrimerBank N/A 

 

PrimerBank: https://pga.mgh.harvard.edu/primerbank/ 
 

https://mail.lumc.nl/owa/redir.aspx?C=bmkG3CikmW_I3WXtrYeBpXt28DrxiM6cFe3qv-ZJcImDdqSrsuvXCA..&URL=https%3a%2f%2fpga.mgh.harvard.edu%2fprimerbank%2f
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