
GigaScienceGigaScience
Trans-NanoSim characterizes and simulates nanopore RNA-seq dataTrans-NanoSim characterizes and simulates nanopore RNA-seq data

--Manuscript Draft--

Manuscript Number:Manuscript Number: GIGA-D-20-00043R1

Full Title:Full Title: Trans-NanoSim characterizes and simulates nanopore RNA-seq data

Article Type:Article Type: Technical Note

Funding Information:Funding Information: Genome Canada
(281ANV)

Dr. Inanc Birol

Genome Canada
(243FOR)

Dr. Inanc Birol

National Human Genome Research Institute
(R01HG007182)

Dr. Inanc Birol

Canadian Network for Research and
Innovation in Machining Technology, Natural
Sciences and Engineering Research Council
of Canada

Dr. Inanc Birol

Abstract:Abstract: Background: Compared to second-generation sequencing technologies, third-generation
single-molecule RNA sequencing has unprecedented advantages; the long reads it
generates facilitate isoform-level transcript characterization. In particular, the Oxford
Nanopore Technology sequencing platforms have become more popular in recent years
due to their relatively high affordability and portability compared to other third-generation
sequencing technologies. To aid the development of analytical tools that leverage the
power of this technology, simulated data provides a cost-effective solution with ground
truth. However, nanopore sequence simulator targeting transcriptomic data is not
available yet.
Findings: We introduce Trans-NanoSim, a tool that simulates reads with technical and
transcriptome- specific features learnt from nanopore RNA-seq data. We
comprehensively benchmarked Trans-NanoSim on direct RNA and cDNA datasets
describing human and mouse transcriptomes. Through comparison against other
nanopore read simulators, we show the unique advantage and robustness of Trans-
NanoSim in capturing the characteristics of nanopore cDNA and direct RNA reads.
Conclusions: As a cost-effective alternative to sequencing real transcriptomes, Trans-
NanoSim will facilitate the rapid development of analytical tools for nanopore RNA-seq
data. Trans-NanoSim and its pre- trained models are freely accessible at
https://github.com/bcgsc/NanoSim .

Corresponding Author:Corresponding Author: Inanc Birol
British Columbia Cancer Agency
Vancouver, CANADA

Corresponding Author SecondaryCorresponding Author Secondary
Information:Information:

Corresponding Author 's Institution:Corresponding Author 's Institution: British Columbia Cancer Agency

Corresponding Author 's SecondaryCorresponding Author 's Secondary
Institution:Institution:

First Author:First Author: Saber Hafezqorani

First Author Secondary Information:First Author Secondary Information:

Order of Authors:Order of Authors: Saber Hafezqorani

Chen Yang

Theodora Lo

Ka Ming Nip

René L Warren

Inanc Birol

Order of Authors SecondaryOrder of Authors Secondary
Information:Information:

Response to Reviewers:Response to Reviewers: [A formatted version of our Response to Reviewers is attached as our cover letter]

Powered by Editorial Manager® and ProduXion Manager® from Aries Systems Corporation



Dear Dr. Nogoy,
Thank you for your consideration of our manuscript. We appreciate the thorough and
constructive comments from you and our reviewers. In our revised submission, we have
addressed the concerns raised, as outlined below, and edited the manuscript accordingly.
We also registered Trans-NanoSim in bio.tools and SciCrunch databases and included
the identifiers in the manuscript as requested.
Sincerely, 
Saber Hafezqorani, Chen Yang, and Inanc Birol 
Canada’s Michael Smith Genome Sciences Centre 
British Columbia Cancer Agency

REVIEWER 1
1. "The alignment experimental reads against the reference transcriptome and genome" I
would like to clarify whether this order is 1/ transcriptome then 2/ genome here?
Response: We align each read set to both reference transcriptome and to reference
genome. The genome alignments are used to detect retained introns, so we can compute
the error rates more accurately. The transcriptome alignments are used to assign the
source transcript for each read, which is essential for read length distribution analysis and
transcript expression level quantification. Both genome and transcriptome alignments are
required to model intron retention events. In other words, the alignment order has no
effect on the characterization phase. We have revised the text in the 1st paragraph in
Methods to clarify this issue.
2. A "staircase effect" can be observed because of truncated reads in ONT experiment. I
could not see a mention to truncated reads nor to this effect in the article, however I think
this can be an important one. Can this be modeled within the length distribution?
Response: As noted, nanopore reads are often shorter than their corresponding mRNA
molecules due to experimental or data acquisition artefacts, and thus they may represent
partial transcripts. In our revised manuscript, we further clarified and explained how we
consider this in our analysis.
Trans-NanoSim models the length distribution of nanopore RNA-seq reads based on the
primary alignment of these reads to the reference transcriptome. During simulation, a
transcript is selected from the expression profiles and read lengths are then selected from
the read length distribution models to generate synthetic reads from different parts of that
given transcript. We modified the following sections of our manuscript to clarify this issue:
• 4th paragraph of Findings section: We mention several reasons that cause nanopore
reads to be often shorter than their corresponding mRNA molecules.
• “Length distribution characterization and simulation” - Methods section: We clarify that
reads with varying lengths may be derived from different parts of a given transcript.
3. The unaligned bases are not taken into account to estimate the error rate (though the
unaligned reads are used to determine the length distribution). This is a (reasonable)
choice, which limitations should be clearly discussed.
Response: To calculate the error rate or accuracy for ONT reads in Trans-NanoSim, the
aligned length of query sequence is used as the denominator. We note that, for this
definition we are following the convention set in other studies [1, 2]. Our justification is,
since the source transcript molecule is unknown for unaligned reads, it is not possible to
include unaligned reads for error rate estimation. The limitation of this formula is that the
error rate could be slightly inflated. We added a sentence at the 6th paragraph of
“Method” section to clarify this.
4. "It is observed that the homopolymer lengths on reads follow normal distribution [...]".
Do you have other sources you could cite about this?
Response: This statement is based on our own analysis, and we edited the
“Homopolymer characterization and simulation” paragraph to clarify it. We also describe
this analysis at 8th paragraph of “Findings” section (homopolymer modeling). The
following sentences are from that paragraph:
“Trans-NanoSim simulates homopolymer of each base type individually, and in our
experiments, the mean homopolymer length is largely consistent between simulated and
experimental reads (Figure 2). Our analysis revealed a linear correlation between the
homopolymer length on the reference compared to the sequencing reads.”
5. I think sometimes the text contains too many repetitions. For instance, " In this work, we
introduce the first ONT transcriptome sequence simulator [...]" could be removed as this
has already been clearly stated before.
Response: Thanks for the constructive comment to improve the readability of the text. In
this revision, we thoroughly reviewed the manuscript to increase its readability and
removed the repetitive phrases.
REVIEWER 2
Major comment:
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1. My main suggestion is to add a comparison against IsoSeqSim
(https://github.com/yunhaowang/IsoSeqSim). Although it was released quite some time
ago and may not have such functionality as introducing intron retention, it still has main
simulation features such as truncating transcripts and introducing errors according to
given profiles.
Response: We thank the reviewer for bringing this tool to our attention. After careful
thought and in communication with our editor we decided not to include benchmarks
against IsoSeqSim. While we do not have any reason to doubt the validity of the approach
implemented in IsoSeqSim, we note that it neither has a peer-reviewed publication nor a
preprint describing the work. Further, we cannot determine its usage in other studies,
hence its impact in the field. At the time of this writing (March 27, 2020), a Google search
for “IsoSeqSim” returned only four hits, all of which were pages created by the maintainer
of IsoSeqSim. According to the method’s GitHub page
(https://github.com/yunhaowang/IsoSeqSim), the repository has not been updated for at
least two years. We also do not see any commits, forks, pull-requests, stars, or issues
(opened or closed) from other users. Thus, we conclude that IsoSeqSim is not a mature
enough tool to count as being part of the state-of-the-art. 
Minor comments:
1. Would be useful to provide some trained models for 1-2 typical ONT experiments in the
package to allow a user to make a quick start.
Response: We totally agree that providing pre-trained models would be beneficial for
users to make a quick start. In this regard, we provide several models for users to use
directly without training. We mention this throughout the manuscript:
• Conclusion section in “Abstract”
• Trans-NanoSim workflow overview section in “Methods”
• Availability of supporting source code and requirements section

2. For the same reason, it could be helpful to add the possibility to simulate reads without
transcript abundance file. Instead of real abundances, one can use some approximation
(e.g. negative binomial distribution).
Response: We thank the reviewer for this suggestion. We agree that the transcript
expression levels change between different experiments, and users may want to test
different scenarios. We note that, Trans-NanoSim is quite flexible in this regard; it allows
users to provide their own expression profile in a tab-delimited format. If users would like
to replace empirical abundance levels with theoretical models, they may do so by
generating their own tab-delimited values. We clarified this point in the “Transcript
abundance quantification and simulation” paragraph. 
3. Quality of plots used in the manuscript can be improved, preferably to vector quality.
Response: Thanks for pointing this out, as effective and good quality figures are indeed
important for effective communication. We recreated all figures in vector quality. In this
submission, we also attach all figures in the main text as PDF files.

References
1. Laver, Thomas, et al. "Assessing the performance of the oxford nanopore technologies
minion." Biomolecular detection and quantification 3 (2015): 1-8.
2. Loman, Nicholas J., Joshua Quick, and Jared T. Simpson. "A complete bacterial
genome assembled de novo using only nanopore sequencing data." Nature methods 12.8
(2015): 733-735.
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Experimental design and statisticsExperimental design and statistics

Full details of the experimental design and
statistical methods used should be given in
the Methods section, as detailed in our
Minimum Standards Reporting Checklist.
Information essential to interpreting the
data presented should be made available in
the figure legends.

Have you included all the information
requested in your manuscript?

Yes

ResourcesResources

A description of all resources used,
including antibodies, cell lines, animals and
software tools, with enough information to
allow them to be uniquely identified, should
be included in the Methods section. Authors
are strongly encouraged to cite Research
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model organisms and tools, where possible.
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requested as detailed in our Minimum
Standards Reporting Checklist?

Yes

Availability of data and materialsAvailability of data and materials

All datasets and code on which the
conclusions of the paper rely must be either
included in your submission or deposited in
publicly available repositories (where
available and ethically appropriate),
referencing such data using a unique
identifier in the references and in the
“Availability of Data and Materials” section
of your manuscript.
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Abstract 

Background: Compared to second-generation sequencing technologies, third-generation single-molecule 

RNA sequencing has unprecedented advantages; the long reads it generates facilitate isoform-level 

transcript characterization. In particular, the Oxford Nanopore Technology sequencing platforms have 

become more popular in recent years due to their relatively high affordability and portability compared to 

other third-generation sequencing technologies. To aid the development of analytical tools that leverage the 
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power of this technology, simulated data provides a cost-effective solution with ground truth. However, 

nanopore sequence simulator targeting transcriptomic data is not available yet. 

Findings: We introduce Trans-NanoSim, a tool that simulates reads with technical and transcriptome-

specific features learnt from nanopore RNA-seq data. We comprehensively benchmarked Trans-NanoSim 

on direct RNA and cDNA datasets describing human and mouse transcriptomes. Through comparison 

against other nanopore read simulators, we show the unique advantage and robustness of Trans-NanoSim 

in capturing the characteristics of nanopore cDNA and direct RNA reads.  

Conclusions: As a cost-effective alternative to sequencing real transcriptomes, Trans-NanoSim will 

facilitate the rapid development of analytical tools for nanopore RNA-seq data. Trans-NanoSim and its pre-

trained models are freely accessible at https://github.com/bcgsc/NanoSim. 

Keywords: Nanopore sequencing, Sequence simulation, Transcriptome, RNA-seq  
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Findings 

RNA-sequencing (RNA-seq) is a cornerstone technology that has helped study and further our 

understanding of transcriptomes [1]. Third-generation single-molecule sequencing technologies such as 

those from Oxford Nanopore Technologies (ONT, Oxford, UK) are proving invaluable for isoform-level 

analyses. For example, ONT reads 1-100 kb in length, permit identification and quantification of most full-

length isoforms in the human transcriptome and enable various complex feature analyses [2-5]. In recent 

years, there has been an increase in the development of novel algorithms to leverage the power of this 

technology, including de novo assembly, alignment and mapping, and structural variant detection [6-12]. 

In this active field of research, simulated data with a known ground-truth provides a cost-effective means 

to help develop, refine, and benchmark these tools. 

Long-read simulators have been developed for ONT genomic reads [13-14]. DeepSimulator [14] employs 

a context-dependent deep learning model to simulate the electrical current signals, which are decoded into 

sequence reads using any off-the-shelf base calling method. Although it may facilitate the development of 

base calling algorithms, DeepSimulator cannot provide the ground truth at the base level. On the other hand, 

as a base-level simulator, NanoSim [13] first utilizes statistical models to learn the characteristics of 

sequencing libraries and then applies those models to simulate ONT genomic reads directly. Although 

proven to have advanced the development of various bioinformatics analysis tools, NanoSim’s initial 

development was centered on simulating genomic reads [12, 15]. Neither of these tools is specifically 

designed to capture and reproduce transcriptome-specific features such as transcript expression profiles and 

intron retention (IR) events. While transcript expression levels inform the biological state of a 

transcriptome, IR, as one of the main forms of alternative splicing, contributes to the functional complexity 

of eukaryotic transcriptomes [16]. ONT reads have the potential to capture complex IR events involving 

multiple introns, thus allowing researchers to investigate IR at isoform-level resolution. In addition, the 

inadequacy of base callers to detect timespan in the signal data often results in homopolymer expansion 



and contraction events, represented by significantly higher deletion rates in homopolymer regions. Despite 

these homopolymer errors accounting for many, if not majority, of the errors in ONT reads, no ONT read 

simulator can accurately simulate them. Taking all these into consideration, there is currently an unmet 

need for an ONT RNA-seq simulator, which can aid the development of transcriptome analysis methods 

without the expense of sequencing experiments. 

Here we present further developments of NanoSim and introduce Trans-NanoSim, which is specifically 

designed for ONT transcriptome sequencing platform. This versatile tool mimics the technical features of 

nanopore RNA-Seq data including read error modes, read length distribution and homopolymer artefacts, 

which might be affected by different library preparation methods and base calling algorithms. Furthermore, 

Trans-NanoSim can be trained to characterize transcriptome-specific features such as expression patterns 

and IR events for more accurate simulation. To demonstrate the performance of Trans-NanoSim, we chose 

three sets of publicly available experimental ONT reads for training and simulation, including human 

NA12878 direct RNA, cDNA 1D2, and mouse cDNA 1D libraries (Supplementary Note 1). Through 

benchmarking the similarity between experimental and simulated reads, we show that Trans-NanoSim 

consistently outperforms the genomic simulator DeepSimulator, on all three datasets. 

Unlike short-reads generated from second-generation sequencing technologies, ONT reads have very long 

and non-uniform lengths. Thus, read length is a key feature to preserve in simulation. The read length 

distribution of transcriptomic data is jointly influenced by sequencing techniques, sample preparation 

protocols (often leading to reads derived from partial transcripts), and transcriptomic variables, such as 

transcript lengths and expression levels (for the latter, different expression profiles may result in different 

read length distributions.) Therefore, in order to capture this relationship between expression levels and 

read lengths, we profiled three datasets and then simulated reads with Trans-NanoSim and DeepSimulator 

(Supplementary Note 2). For the human direct RNA dataset, the length distribution of simulated reads 

generated by Trans-NanoSim (mean = 807 nt, standard deviation of mean lengths = 0.75 nt determined by 

ordinary nonparametric bootstrapping 1,000 times using boot command in R, Figure S1) followed the 



empirical read length distribution (mean = 815 nt) closely (Figure 1A). Although we configured 

DeepSimulator to preserve the mean read length of empirical reads (mean = 808 nt), DeepSimulator still 

generated a bimodal length distribution with a mode of ~150 nt. We suspect that this limitation is due to 

the predefined read-length distributions of DeepSimulator, while the ONT read length cannot be simply 

described by a single statistical distribution, as elucidated by previous studies [13]. Further, DeepSimulator, 

being a genomic read simulator, does not associate the isoform expression levels with read lengths. 

Next, we aligned the simulated and empirical reads to the reference genome and evaluated the length of 

consecutive match/error bases in both sets (Supplementary Note 2). While the error rate of the empirical 

reads from human direct RNA dataset was 10.53%, the simulated reads generated by Trans-NanoSim and 

DeepSimulator were 10.44% and 11.09%, respectively (Supplementary Table S1). Combined with the 

length distribution of base-calling events, it is evident that Trans-NanoSim mimics error and match events 

more closely to the experimental data (Figure 1B). 

For a transcriptome sequence simulator, it is critical to output the correct number of simulated reads for 

each transcript (i.e., amount that reflects the expected expression level of a given transcript). To evaluate 

whether a simulated dataset generated by both tools account for transcript isoform usage and expression 

level, we used the quantify module in Trans-NanoSim to compute the transcript expression levels with 

both empirical and simulated reads (Supplementary Note 2). The coefficient of determination (R2) 

between the estimated transcript abundance of the empirical human direct RNA dataset and the simulated 

dataset generated by Trans-NanoSim is 0.9444, indicating that the observed raw transcript expression level 

is well replicated by Trans-NanoSim (Figure 1C). In contrast, the R2 value for DeepSimulator simulated 

reads is 0.0032, which suggests that the transcript abundance in the simulated dataset is independent of its 

counterpart in the empirical one. Since genomic simulators do not require expression profiles as input, it is 

expected that this desirable feature is missing. 



To the best of our knowledge, Trans-NanoSim is the first transcriptome sequence simulator that provides 

IR modelling. Considering the human direct RNA dataset as an example, the IR modelling module of Trans-

NanoSim identified 2,872 transcripts with at least one retained intron, and nearly half of them (1,285 

transcripts) were expressed at over two Transcripts Per Million (TPM). Interestingly, we identified as much 

as six retained introns in one highly expressed transcript (Ensembl transcript ID: ENST00000425660, TPM 

= 1,433). The IR modelling module also reports the transitional probability of each intron being retained 

based on the state of the previous intron, a model that the pipeline uses for read simulations. In the human 

direct RNA dataset, only 0.41% of reads spanned the first intron of the represented transcript. However, 

given an intron is retained, the probability of observing the subsequent intron being retained increased to 

17.12%. 

Another novel feature we introduce to Trans-NanoSim is homopolymer length modelling, which applies to 

both genome and transcriptome simulations. It is known that the high error rate of ONT reads is partial due 

to the base calling artefact in homopolymer regions [17] and the base calling errors, majorly deletions, in 

those regions are substantially higher than in non-homopolymer regions (Supplementary Table S2). 

Trans-NanoSim simulates homopolymer of each base type individually, and in our experiments, the mean 

homopolymer length is largely consistent between simulated and experimental reads (Figure 2). Our 

analysis revealed a linear correlation between the homopolymer length on the reference compared to the 

sequencing reads. However, as the homopolymer length increases, less data points were observed, thus 

widening the confidence interval. As a result, we observed a larger variation between simulated length and 

experimental lengths for A and T homopolymers longer than 20 nt and C and G homopolymers longer than 

15 nt. We note that in the experimental long read datasets used herein, at most only 0.08% and <0.01% of 

reads containing these homopolymer lengths were observed, respectively and will likely represent rare 

occurrences in ONT data. 

Finally, we evaluated the computational performance of Trans-NanoSim and DeepSimulator through 

characterizing and simulating 687,192 reads describing the human reference transcriptome 



(Supplementary Note 2). Although both tools allow users to train a custom model with any dataset, authors 

of DeepSimulator noted that this step is computationally intensive, and advised their users against trying it 

[18]. In contrast, in a typical run, it takes Trans-NanoSim less than one hour to train and an additional few 

minutes to compute the expression profile with four processors. In the simulation stage, Trans-NanoSim 

ran for 2h11m with peak memory of 526MB, while DeepSimulator ran for 1d8h32m in total (with 5h46m 

to simulate signals and 1d2h46m for base calling) with peak memory of 17.22 GB (Supplementary Table 

S3, S4). Trans-NanoSim also supports multi-processing, which reduces the runtime significantly, but at the 

cost of increased memory usage (Supplementary Figure S2, Table S5). The runtime of Trans-NanoSim 

is proportional to the number of reads to be simulated, with a fixed time usage for reading in profiles. The 

effect of multiprocessing starts to saturate with 12 CPUs when processing less than 60,000 reads, while 

with more reads, this saturation point is observed with more number of CPUs. Even with only four 

processors, there is a substantial reduction in runtime (~75% less than the same run on a single CPU), which 

took 33 minutes to simulate 687,192 human direct RNA reads. 

We recapitulated our results by repeating all the analyses presented here on human cDNA 1D2 and mouse 

cDNA sequencing data and obtained similar findings (Supplementary Figure S3 and S4, respectively, and 

Table S1). We noticed that even though the error rates in the raw reads can vary from experiment to 

experiment, DeepSimulator always generates reads with similar error rates and length distribution, while 

Trans-NanoSim can adapt to different sequencing libraries and simulates base calling events that are true 

to the platform. 

In this work, we report on results from comprehensive benchmarking experiments to illustrate Trans-

NanoSim’s performance on three ONT RNA-seq datasets with different sequencing data types: direct RNA, 

cDNA 1D2, and cDNA 1D. Our evaluations demonstrate the robustness of Trans-NanoSim in learning and 

mimicking the length distribution, sequence error profiles, and homopolymer runs of nanopore RNA-seq 

reads. Moreover, Trans-NanoSim provides a solution to the characterization of transcriptome-specific 

features, such as isoform expression and IR events, which cannot be addressed by genomic read simulators. 



As a fast and memory-efficient ONT read simulator, Trans-NanoSim is feasible to run on a standard 

modern-day laptop computer. We anticipate that it will offer an important functionality to the community 

and it will facilitate the development of various base-level bioinformatics algorithms that leverage the 

potential of long nanopore reads, including transcriptome assembly, alignment and quantification, structural 

variant detection, and novel isoform identification.  

Methods 

Trans-NanoSim workflow overview 

The workflow of Trans-NanoSim consists of two stages: characterization of experimental reads and 

simulation from a reference transcriptome (Figure 3). In the characterization stage, experimental reads are 

aligned against the reference transcriptome to infer their source transcript, which is essential for read length 

analysis and transcript expression quantification. Reads are also aligned against the reference genome to 

compute statistical models for read error modes. Both genomic and transcriptomic alignments are used to 

model intron retention events. We also provide pre-trained models along with this work for users to use 

directly without training. Next, according to these models, reads are simulated given a reference 

transcriptome and genome. For each read to be simulated, the source reference transcript is selected based 

on the expression profile. Then, a sequence is extracted from that transcript according to the length 

distribution model, and it is modified with respect to the IR and error models.  

Length distribution characterization and simulation 

Previous versions of NanoSim utilized an empirical cumulative density function to simulate the length 

distribution of reads. In the current version of the pipeline, NanoSim uses kernel density estimation (KDE), 

which captures underlying patterns in the read length distributions, and avoids overfitting. We also replace 

the binning strategy in simulating the alignment ratio on each read with KDE, resulting in a smoother 

simulated read length distribution. Theoretically, nanopore transcriptome sequencing can yield reads of the 



same length as the original mRNA molecule. However, in practice, ONT reads are often shorter than their 

corresponding mRNA molecules due to experimental or data acquisition artefacts, and thus they may 

represent partial transcripts. Therefore, it is crucial to consider the length of the reference transcript when 

simulating the length distribution of simulated ONT reads. In order to achieve this, we utilize a two 

dimensional KDE model, and measure the length of an ONT read relative to the length of the source 

transcript. Furthermore, unaligned regions on both ends of each read are also subjected to length distribution 

analysis. We follow the same KDE model approach as described to model their length distributions 

separately. 

We note that, the percentage of antisense sequences in cDNA and direct RNA sequences may be 

substantially different. To capture this information, Trans-NanoSim automatically infers the strand ratio by 

calculating the percentage of reads that are in the same direction as the annotated strand. This strand ratio 

is then utilized to assign the orientation of reads accordingly during the simulation stage. 

Intron retention characterization and simulation 

Trans-NanoSim is able to detect and model IR events for ONT transcriptome reads. Based on alignments 

to intronic regions, it uses a Markov chain model to calculate the transitional probabilities between the 

states of spliced and retained introns, given the state of the previous intron. This feature is not part of the 

characterization phase by default. To enable this option, transcript annotation file in GTF/GFF format needs 

to be provided. This functionality can also be invoked in a standalone module (detect_ir), enabling 

users to only detect and model IR events without characterizing or simulating reads. The module outputs 

comprehensive information on the location of the detected IR events based on input ONT reads. 

Transcript abundance quantification and simulation 

We have incorporated a pipeline [19] to estimate transcript abundance based on reference transcriptome 

alignments (courtesy of Dr. Jared Simpson, personal communication). The pipeline relies on minimap2 [7] 



with -p0 flag to retain all secondary mappings, and then utilizes an expectation-maximization approach 

similar to RSEM [20] to assign multi-mapping reads. It is a standalone module (quantify) that outputs 

transcript abundance in TPM values, which can be used in the simulation stage. Users may also provide 

their own expression profile in tab-delimited format, describing empirical or theoretical distributions, if 

preferred. During simulation, these transcript abundance values are used to calculate the probability of an 

isoform being selected and ultimately the number of constituent reads of each isoform. 

Error mode characterization and simulation 

Statistical modeling of error patterns in long nanopore reads was proven to be effective in mimicking the 

sequencing platform [13]. In Trans-NanoSim, we build on the same mixture models to deal with 

transcriptome reads as these patterns are shared among different library preparation methods and datasets. 

According to the alignments, reads are classified into two groups: aligned and unaligned. For each group, 

we consider specific characterization and modeling approaches. As for the aligned reads, we consider their 

aligned bases for further error rate analysis. The length of indels and mismatches are drawn from 

Weibull/Geometric and Poisson/Geometric mixture models, respectively. We also calculate the transitional 

probability between every two consecutive base call errors using a Markov chain model. We re-

implemented the model fitting function of NanoSim in Python (formerly in R), and allowed multi-threading 

to expedite the fitting process. Unaligned reads may provide crucial information about the nature of ONT 

sequencing experiments, and thus we chose to model the length distribution of the unaligned reads as well. 

For this purpose, we extract sequences from reference transcripts based on their length distribution and 

apply an arbitrarily high error rate (default, 90%). However, since it is impossible to trace their source 

transcript molecule, unaligned reads are not included in the error rate analysis. 

Homopolymer characterization and simulation 

Previous versions of NanoSim have a k-mer bias parameter (--k-mer) in the simulation stage that 

effectively compresses all homopolymers longer than n into n-mers. However, it does not simulate 



homopolymer expansion events nor is it an accurate representation of the distribution of read homopolymer 

lengths. In our analysis and the datasets inspected, we observed that the homopolymer length on sequencing 

reads is consistent with a normal distribution. Further, the mean and associated standard deviation of 

homopolymer lengths on those same reads is linearly proportional to the reference homopolymer length 

(Supplementary Figure S5). In the simulation stage, Trans-NanoSim first finds homopolymers greater 

than n in the sequence extracted from the reference. Given the reference homopolymer length, the mean 

and standard deviation, which are used to generate the normal distribution, are calculated from segmented 

and linear regression models, respectively. The homopolymer length to be simulated is then drawn from 

the constructed normal distribution, and the extracted sequence is modified accordingly. Depending on the 

base caller used and sequencing types, the distribution of read homopolymer lengths can vary; thus, we 

provide pre-trained models to simulate genome and transcriptome reads base called with Albacore, Guppy’s 

default model and Guppy’s flip-flop model. 

Availability of supporting source code and requirements 

Trans-NanoSim is developed in Python. Source code and pre-trained models for this work are freely 

accessible at https://github.com/bcgsc/NanoSim (Licence: GPL-3). Trans-NanoSim is also registered in 

bio.tools (biotools:Trans-NanoSim) and SciCrunch (RRID:SCR_018243) databases. 

Availability of supporting data  

Snapshots of our code and other supporting data are openly available in the GigaScience repository, 

GigaDB [21]. 

Additional files 

Supplementary material 

https://github.com/bcgsc/NanoSim
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IR:  Intron Retention 
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RNA-seq: RNA sequencing 

TPM:  Transcript Per Million 
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Figures 

Figure 1. Benchmarking Trans-NanoSim and DeepSimulator on the human direct RNA 

dataset. A. Comparison of length distributions of experimental reads and simulated reads 

generated by Trans-NanoSim and DeepSimulator. B. The length of consecutive match/error 

bases of empirical and simulated reads, as indicated. C. Transcript expression levels measured 

from simulated reads versus the same measured from experimental reads. 

Figure 2. Homopolymer simulation performance on the human direct RNA dataset. The x-

axis shows the reference homopolymer length (nt) and y-axis is the mean homopolymer length 

(nt) on corresponding reads. The distributions for A and T homopolymers are trimmed at 40 nt. 

Figure 3. Schematic overview of the Trans-NanoSim pipeline. The first stage 

(Characterization) of the pipeline aligns input ONT transcriptome reads against the reference 

transcriptome and genome to statistically model the read length distribution and error modes. It 

also optionally detects intron retention events and quantifies transcript expression. These profiles 

alongside homopolymer model are then used in the second stage (Simulation) to generate 

simulated reads, also reporting their associated error profiles. 
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Dear Dr. Nogoy, 

Thank you for your consideration of our manuscript. We appreciate the thorough and constructive 

comments from you and our reviewers. In our revised submission, we have addressed the 

concerns raised, as outlined below, and edited the manuscript accordingly. We also registered 

Trans-NanoSim in bio.tools and SciCrunch databases and included the identifiers in the 

manuscript as requested. 

Sincerely,  

Saber Hafezqorani, Chen Yang, and Inanc Birol  

Canada’s Michael Smith Genome Sciences Centre  

British Columbia Cancer Agency 

 

REVIEWER 1 

1. "The alignment experimental reads against the reference transcriptome and genome" 

I would like to clarify whether this order is 1/ transcriptome then 2/ genome here? 

Response: We align each read set to both reference transcriptome and to reference genome. 

The genome alignments are used to detect retained introns, so we can compute the error rates 

more accurately. The transcriptome alignments are used to assign the source transcript for each 

read, which is essential for read length distribution analysis and transcript expression level 

quantification. Both genome and transcriptome alignments are required to model intron retention 

events. In other words, the alignment order has no effect on the characterization phase. We have 

revised the text in the 1st paragraph in Methods to clarify this issue. 

2. A "staircase effect" can be observed because of truncated reads in ONT experiment. I 

could not see a mention to truncated reads nor to this effect in the article, however I 

think this can be an important one. Can this be modeled within the length distribution? 

Response: As noted, nanopore reads are often shorter than their corresponding mRNA 

molecules due to experimental or data acquisition artefacts, and thus they may represent partial 

transcripts. In our revised manuscript, we further clarified and explained how we consider this in 

our analysis. 

Personal Cover Click here to access/download;Personal
Cover;TNS_GigaScience_reviewer_comments_14Apr20.docx

https://www.editorialmanager.com/giga/download.aspx?id=94755&guid=4ab2c5a7-8fce-4104-b5d1-d562663ebc55&scheme=1
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Trans-NanoSim models the length distribution of nanopore RNA-seq reads based on the primary 

alignment of these reads to the reference transcriptome. During simulation, a transcript is selected 

from the expression profiles and read lengths are then selected from the read length distribution 

models to generate synthetic reads from different parts of that given transcript. We modified the 

following sections of our manuscript to clarify this issue: 

 4th paragraph of Findings section: We mention several reasons that cause nanopore reads 

to be often shorter than their corresponding mRNA molecules. 

 “Length distribution characterization and simulation” - Methods section: We clarify that 

reads with varying lengths may be derived from different parts of a given transcript. 

3. The unaligned bases are not taken into account to estimate the error rate (though the 

unaligned reads are used to determine the length distribution). This is a (reasonable) 

choice, which limitations should be clearly discussed. 

Response: To calculate the error rate or accuracy for ONT reads in Trans-NanoSim, the aligned 

length of query sequence is used as the denominator. We note that, for this definition we are 

following the convention set in other studies [1, 2]. Our justification is, since the source transcript 

molecule is unknown for unaligned reads, it is not possible to include unaligned reads for error 

rate estimation. The limitation of this formula is that the error rate could be slightly inflated. We 

added a sentence at the 6th paragraph of “Method” section to clarify this. 

4. "It is observed that the homopolymer lengths on reads follow normal distribution [...]". 

Do you have other sources you could cite about this? 

Response: This statement is based on our own analysis, and we edited the “Homopolymer 

characterization and simulation” paragraph to clarify it. We also describe this analysis at 8th 

paragraph of “Findings” section (homopolymer modeling). The following sentences are from that 

paragraph: 

“Trans-NanoSim simulates homopolymer of each base type individually, and in our experiments, 

the mean homopolymer length is largely consistent between simulated and experimental reads 

(Figure 2). Our analysis revealed a linear correlation between the homopolymer length on the 

reference compared to the sequencing reads.” 



5. I think sometimes the text contains too many repetitions. For instance, " In this work, 

we introduce the first ONT transcriptome sequence simulator [...]" could be removed 

as this has already been clearly stated before. 

Response: Thanks for the constructive comment to improve the readability of the text. In this 

revision, we thoroughly reviewed the manuscript to increase its readability and removed the 

repetitive phrases. 

REVIEWER 2 

Major comment: 

1. My main suggestion is to add a comparison against IsoSeqSim 

(https://github.com/yunhaowang/IsoSeqSim). Although it was released quite some time 

ago and may not have such functionality as introducing intron retention, it still has 

main simulation features such as truncating transcripts and introducing errors 

according to given profiles. 

Response: We thank the reviewer for bringing this tool to our attention. After careful thought and 

in communication with our editor we decided not to include benchmarks against IsoSeqSim. While 

we do not have any reason to doubt the validity of the approach implemented in IsoSeqSim, we 

note that it neither has a peer-reviewed publication nor a preprint describing the work. Further, 

we cannot determine its usage in other studies, hence its impact in the field. At the time of this 

writing (March 27, 2020), a Google search for “IsoSeqSim” returned only four hits, all of which 

were pages created by the maintainer of IsoSeqSim. According to the method’s GitHub page 

(https://github.com/yunhaowang/IsoSeqSim), the repository has not been updated for at least two 

years. We also do not see any commits, forks, pull-requests, stars, or issues (opened or closed) 

from other users. Thus, we conclude that IsoSeqSim is not a mature enough tool to count as 

being part of the state-of-the-art.  

Minor comments: 

1. Would be useful to provide some trained models for 1-2 typical ONT experiments in the 

package to allow a user to make a quick start. 

https://github.com/yunhaowang/IsoSeqSim


Response: We totally agree that providing pre-trained models would be beneficial for users to 

make a quick start. In this regard, we provide several models for users to use directly without 

training. We mention this throughout the manuscript: 

 Conclusion section in “Abstract” 

 Trans-NanoSim workflow overview section in “Methods” 

 Availability of supporting source code and requirements section 

 

2. For the same reason, it could be helpful to add the possibility to simulate reads without 

transcript abundance file. Instead of real abundances, one can use some 

approximation (e.g. negative binomial distribution). 

Response: We thank the reviewer for this suggestion. We agree that the transcript expression 

levels change between different experiments, and users may want to test different scenarios. We 

note that, Trans-NanoSim is quite flexible in this regard; it allows users to provide their own 

expression profile in a tab-delimited format. If users would like to replace empirical abundance 

levels with theoretical models, they may do so by generating their own tab-delimited values. We 

clarified this point in the “Transcript abundance quantification and simulation” paragraph.  

3. Quality of plots used in the manuscript can be improved, preferably to vector quality. 

Response: Thanks for pointing this out, as effective and good quality figures are indeed important 

for effective communication. We recreated all figures in vector quality. In this submission, we also 

attach all figures in the main text as PDF files. 
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