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A Movie dataset

The experimental procedure was approved by the Ethics Committee of the Chieti University and
the participants signed a written informed consent. We use the data from 22 right-handed young
and healthy volunteers (15 females, 20-31 years old) that had recordings for both a resting state
with eyes opened and a natural viewing condition (30 minutes of the movie ‘The Good, the Bad
and the Ugly’).

The fMRI time resolution (TR) is 2 seconds and each session of 10 minutes corresponds to
300 frames (or volumes). The preprocessing performed using SPM8 involves the coregistration of
structural and functional MRI, spatial normalization in the MNI coordinates and motion correction.
The data are parcellated in N = 66 ROIs (Hagmann et al., 2008). The ROIs are listed in Table 1,
indexed in the order of Figs. 5 and 6 in the main text. The generic structural matrix is obtained
from averaging individual matrices obtained using the diffusion spectrum imaging. A threshold
was then applied to retain the 27% largest connections. Inter-hemispheric connections between
homotopic ROIs were added, increasing the density to 28%. The same generic SC matrix is used
to determine the MOU-EC topology for all subjects.

We refer the readers to previous publications (Hlinka et al., 2011; Mantini et al., 2012; Gilson
et al., 2018) for further details.

B Functional connectivity measures

For each session of T = 300 time points (2 for rest and 3 for movie), we denote the BOLD time
series by sti for each region 1 ≤ i ≤ N with time indexed by 1 ≤ t ≤ T . The mean signal is
s̄i = 1

T

∑
t s
t
i for all i. Following (Gilson et al., 2016), the empirical FC consists of two BOLD

covariance matrices (see the blue and green matrices in the top box of Fig. S1), without and with
time lag:

Q̂0
ij =

1

T − 2

∑
1≤t≤T−1

(sti − s̄i)(stj − s̄j) , (1)

Q̂1
ij =

1

T − 2

∑
1≤t≤T−1

(sti − s̄i)(st+1
j − s̄j) .

Pearson correlation can be calculated from the covariances in Eq. (1):

Kij =
Q̂0
ij√

Q̂0
iiQ̂

0
jj

. (2)

C Multivariate Ornstein-Uhlenbeck (MOU) process to model

whole-brain dynamics

The network dynamics are determined by two sets of parameters:
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Table 1: Table of ROI indices and labels.

Indices Abbreviation Name
1/66 right/left CUN cuneus
2/65 right/left PCAL pericalcarine gyrus
3/64 right/left LING lingual gyrus
4/63 right/left LOCC lateral occipital cortex
5/62 right/left FUS fusiform gyrus
6/61 right/left SP superior parietal cortex
7/60 right/left IP inferior parietal cortex
8/59 right/left SMAR supramarginal gyrus
9/58 right/left BSTS bank of superior temporal sulcus
10/57 right/left PCUN precuneus
11/56 right/left ST superior temporal cortex
12/55 right/left TT transverse temporal cortex
13/54 right/left MT middle temporal cortex
14/53 right/left IT inferior temporal cortex
15/52 right/left TP temporal pole
16/51 right/left PREC precentral cortex
17/50 right/left PSTC postcentral cortex
18/49 right/left PARC paracentral lobule
19/48 right/left FP frontal pole
20/47 right/left CMF caudal middle frontal cortex
21/46 right/left RMF rostral middle frontal cortex
22/45 right/left PTRI pars triangularis
23/44 right/left PORB pars orbitalis
24/43 right/left POPE pars opercularis
25/42 right/left SF superior frontal cortex
26/41 right/left LOF lateral orbitofrontal cortex
27/40 right/left MOF medial orbitofrontal cortex
28/39 right/left ENT entorhinal cortex
29/38 right/left PARH parahippocampal cortex
30/37 right/left CAC caudal anterior cingulate cortex
31/36 right/left RAC rostral anterior cingulate cortex
32/35 right/left PC posterior cingulate cortex
33/34 right/left ISTC isthmus of cingulate cortex
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Figure S1: Dynamic model and optimization procedure to capture BOLD dynamics. From
the BOLD signals of the parcellation (top left in top box), two empirical FC matrices (blue and green
matrices) are calculated, both without and with time lag as depicted by the blue and green curve. The
dynamic network model describes the activity of the ROIs (only two are represented by the grey circles)
and comprises a parameter for the spontaneous activity of each ROI (Σ in the bottom box) and for each
directed connection between ROIs (effective connectivity, MOU-EC). The topology of existing connections
is determined by the structural connectivity (black matrix in top box). The optimization of the model is
similar to a gradient descent during which the model FC matrices are evaluated at each step and compared
to their empirical counterparts. From the differences between the corresponding matrices an update of
the MOU-EC and Σ parameters is calculated and the procedure is repeated until reaching a minimum for
the model error (light gray-blue curves in the left central panel between the boxes), which corresponds
to a high value for the Pearson correlation between the matrix elements of the model and empirical FCs
(black curve). Before the optimization, the time constant τx of the BOLD autocovariances (see log-plot)
is evaluated to calibrate the nodal dynamics in the model. Details can be found in (Gilson et al., 2016,
2018). 4



• the time constant τx is an abstraction of the

• the network effective connectivity (MOU-EC) between these ROIs embodied by the matrix
C, whose topological skeleton is determined by structural data;

• the local variability embodied in the matrix Σ inputed individually to each of the N =
66 ROIs.

The activity variables obey are described by a multivariate Ornstein-Uhlenbeck process. Each
activity variable xi of node i decays exponentially according to the time constant τx and evolves
depending on the activity of other populations:

dxi =
(−xi
τx

+
∑
j 6=i

Cjixj
)
dt+ dBi . (3)

Compared to our previous work (Gilson et al., 2016, 2018), we use a different convention for the
weights Cji from ROI j to ROI i, in line with graph theory. In matrix notation it now reads

dx = xJdt+ dB . (4)

Here the fluctuating inputs dBi are independent and correspond to a diagonal covariance matrix
Σ, as represented in purple by the vector of variances Σii in the bottom box of Fig. S1. In the
model, all variables xi have zero mean. Their spatiotemporal covariances are denoted by Q1

ij, where
τ ∈ {0, 1} is the time lag, and correspond to the the blue and green matrices in the bottom box of
Fig. S1. They can be calculated by solving the consistency equations:

J†Q0 +Q0J = −Σ , (5)

Q1 = Q0eJ . (6)

The first equation is the continuous Lyapunov equation, which can be solved using the Bartels-
Stewart algorithm in scipy (??, sci). Here J is the Jacobian of the dynamical system and depends
on the time constant τx and the network MOU-EC: Jji = −δii

τx
+ Cji, where δji is the Kronecker

delta and the superscript † denotes the matrix transpose. In the second equation e denotes the
matrix exponential.

Ideally, the model should be extended to incorporate subcortical areas and the relevance of
input cross-correlations inputs should be evaluated for all ROI pairs (Gilson et al., 2018).

D Parameter estimation procedures

D.1 Lyapunov optimization or natural gradient descent

We tune the model such that its covariance matrices Q0 and Q1 reproduce the empirical FC0
and FC1 matrices in Fig. ??B, denoted here by Q̂0 and Q̂1, respectively. The uniqueness of this
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maximum-likelihood estimation follows from the bijective mapping from the model parameters τx,
C and Σ to the FC pair (Q0, Q1). The iterative optimization procedure for C is similar to the
original version (Gilson et al., 2016), which can be related to the concept of “natural” gradient
descent (Amari, 1998) that takes the non-linearity of the mapping between J and the matrix pair
Q0 and Q1 in the second line of Eq. (5). Note that the parameters τx and Σ also follow a gradient
descent now.

For each session (subject and condition), we calculate the time constant τac associated with the
exponential decay of the autocovariance averaged over all ROIs using time lags 0 and 1 TR:

τac = − N∑
1≤i≤N a(vi|u)

=
NτTR∑

i log(Q̂0
ii)−

∑
i log(Q̂1

ii)
, (7)

where a(vi|u) is the slope of the linear regression of vi = [log(Q̂0
ii), log(Q̂1

ii)] by u = [0, 1], and
τTR is the value of the TR in seconds. Note that one can also use more time lags —e.g. up to
2 TRs— to assess the stability of the estimated τac, as was previously analyzed for resting-state
data (Gilson et al., 2016). The model is initialized with τx = τac and no connectivity C = 0, as well
as unit variances without covariances (Σij = δij). At each step, the Jacobian J is straightforwardly
calculated from the current values of τx and C. Using the current Σ, the model FC matrices Q0

and Q1 are then computed from the consistency equations, using the Bartels-Stewart algorithm to
solve the Lyapunov equation.

The difference matrices ∆Q0 = Q̂0 −Q0 and ∆Q1 = Q̂1 −Q1 determine the model error

E =
1

2

||∆Q0||
||Q0||

+
1

2

||∆Q1||
||Q1||

=
1

2

∑
i,j(∆Q

0
ij)

2∑
i,j(Q̂

0
ij)

2
+

1

2

∑
i,j(∆Q

1
ij)

2∑
i,j(Q̂

1
ij)

2
, (8)

where each term - for FC0 and FC1 - is the matrix distance between the model and data covariances,
normalized by the latter.

The following Jacobian update can be applied to decrease the model error E at each optimization
step similar to a gradient descent:

∆J = (Q0)−1[−∆Q0 + ∆Q1eJ ] , (9)

It turns out that a modified update is more robust to empirical noise in practice

∆J = (Q0)−1∆Q0 + ∆Q0(Q0)−1 + (Q1)−1∆Q1 + ∆Q1(Q1)−1 , (10)

which would corresponds to a proxy error based on the matrix logarithm:

Ẽ = || log(Q0)− log(Q̂0)||+ || log(Q1)− log(Q̂1)|| . (11)

See (Insabato et al., 2018) for a comparison of optimization methods. From the Jacobian update
∆J , we obtain the connectivity update:

∆Cij = ηC∆Jij (12)
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for existing connections only; other weights are forced at 0. We also impose non-negativity for the
MOU-EC values during the optimization.

To take properly the effect of cross-correlated inputs into account, the Σ update has been ad-
justed from the heuristic update in the first study (Gilson et al., 2016) to a gradient descent (Gilson
et al., 2018):

∆Σ = −ηΣ(J†∆Q0 + ∆Q0J) . (13)

As with weights for non-existing connections, only diagonal elements of Σ —and possible cross-
correlated inputs (Gilson et al., 2018)— are tuned; others are kept equal to 0 at all times.

Last, to compensate for the increase of recurrent feedback due to the updated C, one can also
tune the model time constant τx as

∆τx = ητ

(
τac +

1

λmax

)
, (14)

where λmax is the maximum negative real part of the eigenvalues of the Jacobian J . The rationale is
to avoid an explosion of the network dynamics (when λmax → 0) while letting the model connectivity
C develop a non-trivial structure to reproduce FC.

Repeating the parameter updates, the best fit corresponds to the minimum of the model error
E.

D.2 Heuristic optimization

Instead of the derivation of the Jacobian in Eq. (10) that takes into account the nonlinearity of the
mappings in Eq. (5), one can use a greedy algorithm to optimize the weights to fit an objective
measure on the data. Here we update the weights for the model to reproduce the correlation matrix
K in Eq. (2):

∆Cij = ηC∆K0
ij . (15)

Note that only correlations ∆K0
ij for existing connections i→ j and j → i are taken into account

in this update.

E Dynamic communicability and flow for network analysis

Following our previous study (Gilson et al., 2018), we firstly define dynamic communicability to
characterize the network interactions due to the MOU-EC connectivity C, ignoring the input prop-
erties Σ. Our definition is adapted to study complex networks associated with realistic (stable)
dynamics where time has a natural and concrete meaning. In comparison, a previous version of
communicability for graphs (Estrada and Hatano, 2008) relied on abstract dynamics. The basis
of our framework is the network response over time, or Green function, which is the basis of the
concept of dynamic communicability, which focuses on the temporal evolution of such interactions.
Although we focus on the MOU process here, our framework can be easily adapted to distinct
local dynamics for which the Green function is known. In addition to the MOU-EC matrix C, the
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MOU dynamics is determined by the input properties, so we use the dynamic flow in the main text
(Figs. 6 and 8).

E.1 Definitions

Formally, dynamic communicability is the “deformation” of the Green function eJt of the MOU
process due to the presence of the (weighted and directed) matrix C, as compared to the Green
function eJ

0t corresponding to the Jacobian with leakage only and no connectivity, J0
ij = −δij/τ .

It is defined as the family of time-dependent matrices depicted in Fig. 6A:

C(t) = ||J0||
(
eJt − eJ0t

)
. (16)

The scaling factor ||J0||−1 = ||
∫
t≥0

eJ
0tdt|| where || · || is the L1-norm for matrices (i.e., sum

of elements in absolute value) is used for normalization purpose (Gilson et al., 2018). Recall that
t ≥ 0 here is the time for the propagation of activity in the network, referred to as ‘impulse-response
time’ in the figures.

To incorporate the effect of local spontaneous activity or excitability (inputs in the model), we
define the dynamic flow that fully characterizes the complex network dynamics (Gilson et al., 2018).
The input statistics of interest for a stable MOU process correspond to the input (co)variance
matrix Σ, which are independent parameters from the MOU-EC matrix C. This is represented
by the purple arrow in the left diagram of Fig. 6A, indicating that the fluctuation amplitude is
individual for each ROI. The Σ matrix may be non-diagonal when ROIs experience cross-correlated
noise (Gilson et al., 2018), as represented by the purple dashed arrows. The dynamic flow describes
the propagation of local fluctuating activity over time via the recurrent connectivity and is defined
by the

F(t) =
√

Σ C(t) , (17)

where
√

Σ is the real symmetric “square-root” matrix of the input covariance matrix, satisfying

Σ =
√

Σ
√

Σ
†
. Dynamic communicability is thus a particular case of the flow for homogeneous

input statistics.
From the time-dependent matrices F(t), we define the total flow that sums all interactions

SF(t) =
∑
{i,j}

Fij(t) . (18)

Total communicability for graphs has been used to define a version of centrality (Benzi and Klymko,
2013). Here the proximity between ROIs correspond to how much flow they exchange. We also
define the diversity (akin to heterogeneity) among the ROI interactions in the time-dependent
matrices F(t), which can be seen as a proxy for their homogenization over time:

DF(t) =
σ{i,j}[Fij(t)]
µ{i,j}[Fij(t)]

, (19)
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defined as a coefficient of variation where µ{i,j} and σ{i,j} are the mean and standard deviation over
the matrix elements indexed by (i, j).

We also define the input and output flows for each node:

F in
j (t) =

∑
i

Fij(t) ,

F in
i (t) =

∑
j

Fij(t) . (20)

E.2 Community detection

To detect communities from F(t) in Fig. 8 in the main text, we rely on Newman’s greedy algorithm
for modularity (Newman, 2006) that was originally designed for weight-based communities in a
graph. Adapting it here to the flow matrix F(t) at a given time t, we seek for communities where
ROIs have strong bidirectional flow interactions. In the same manner as with weighted modularity,
we calculate a null model for MOU-EC:

Cnull =
cincout†

SC
. (21)

Note that we preserve the empty diagonal. The resulting matrix contains from the expected weight
for each connection, given the observed input strengths cin and output strengths cout; SC is the
total sum of the weights in C. Then we caclulate Fnull(t) using Eq. (17) with Cnull instead of
C. Starting from a partition where each ROI is a singleton community, the algorithm iteratively
aggregates ROIs to form a partition of K communities denoted by Sk that maximizes the following
quality function:

Φ =
∑

1≤k≤K

∑
i,j∈Sk

(
F(t)−Fnull(t)

)
ij

+
(
F(t)−Fnull(t)

)
ji
. (22)

At each step of the greedy algorithm, the merging of two of the current communities that maximizes
the increase of Φ is performed. Note that communicability-based communities can be defined
similarly using C(t) and the corresponding null model Cnull(t).
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