
S1 Appendix. Technical details of the MHA algorithm. In this appendix, we
give further details of the block-coordinate descent algorithm which we implement to
update the model parameters. In practice, we solve the constrained optimisation (8) via
the use of projections onto the non-negative quadrant (non-negativity) and Lagrange
multipliers. More specifically, we use the objective function:

L̃ = L+
δ

2
||WTW − Ik||22 + tr(ΓT (WTW − Ik)), (16)

where Γ ∈ Rk×k and δ are Lagrange multipliers enforcing the orthonormality
constraints.

We employ gradient descent approach to update the estimate of W . To this end, we
follow M onti and H yvärinen [29] and i  ntroduce a gradient step s ize η and project onto 
the non-negative orthant at each i teration (this ensures that the positivity constraint
is maintained). The update takes the form

W ← P+

(
W − η

(
∂L
∂W

+ δ(WW>W −W ) +WΓ)

))
, (17)

where P+ = max(0, x) denotes the projection onto the non-negative orthant and η is a
stepsize parameter. The update for the Lagrange multipliers Γ is given by:

Γ← Γ + δ(W>W − I).

In the case of the loading matrix, the gradient update is defined as:

∂L
∂W

=
N∑

i=1

∂L
∂Σ(i)

∂Σ(i)

∂W
(18)

=
N∑

i=1

(
−Σ(i)−1 + Σ(i)−1S(i)Σ(i)−1

)
WG(i) ,

where we note that via the Sherman-Woodbury identity and using the form of the

covariance (3), we can write Σ(i)−1 as follows:

Σ(i)−1 = (v(i)I)
−1 − (v(i)I)

−1
W (G(i)−1 +W>v(i)IW )−1W>(v(i)I)

−1
. (19)

For the diagonal matrix of eigenvalues, G(i), we can update each matrix independently
as follows:

∂L
∂G(i)

=
∂L
∂Σ(i)

∂Σ(i)

∂G(i)
(20)

=
N∑

i=1

(
−Σ(i)−1 + Σ(i)−1K(i)Σ(i)−1

)
.
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