

advances.sciencemag.org/cgi/content/full/6/24/eaaz7202/DC1

Supplementary Materials for

Tunable structural color of bottlebrush block copolymers through direct-write 3D

printing from solution

Bijal B. Patel, Dylan J. Walsh, Do Hoon Kim, Justin Kwok, Byeongdu Lee, Damien Guironnet, Ying Diao*

*Corresponding author. Email: yingdiao@illinois.edu

Published 10 June 2020, Sci. Adv. 6, eaaz7202 (2020)

DOI: 10.1126/sciadv.aaz7202

The PDF file includes:

 Legends for movies S1 to S6

Figs. S1 to S52
Tables S1 to S4

Other Supplementary Material for this manuscript includes the following:

(available at advances.sciencemag.org/cgi/content/full/6/24/eaaz7202/DC1)

Movies S1 to S6
Supplemental Hardware Software

§1. Description of Supplemental Videos

Supplemental Video 1: Microscope camera video of drying dropcast samples (Figure 1F).
Samples dropcast from 40 μL of 100 mg/mL solution in THF onto plasma-cleaned bare silicon
wafers at room temperature. Droplets are ~ 6 mm in diameter.

Supplemental Video 2: 5x speed pen camera video of the meniscus during printing of a
meanderline pattern at a speed of 60 mm/min, substrate temperature of 50°C, and applied pressure
of 30 kPa. Printed film is shown in the 3rd/4th rows and 3rd column of Figure 2C (lower panel) in
the main text.

Supplemental Video 3: 10x speed pen camera video of the meniscus during printing of the 50°C,
constant condition chameleon shown in Figure 2D of the main text.

Supplemental Video 4: Cellphone camera video clip of layered chameleon (Figure 2E) printing
onto a bare silicon 4” wafer.

Supplemental Video 5: Mosaic of side-view (transmission) videos analyzed for in situ optical
measurements. Printing speeds are noted in the video. The syringe needle shown in the videos has
outer diameter ~240 μm.

Supplemental Video 6: Top view videos of the type analyzed for in situ optical measurements.
Printing speeds are noted in the video. The syringe needle shown in the videos has outer diameter
~240 μm.

§2. Synthesis and Chemical Characterization
 All reactions were performed in an argon-filled glovebox (O2 < 2 ppm, H2O < 0.5 ppm) at room
temperature using oven dried glassware. THF and toluene were dried using a commercial solvent
purification system. rac-Lactide {Aldrich}, and tert-butyllithium solution {1.7 M in pentane,
Aldrich} was used as received. 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU) {Aldrich} and
hexamethylcyclotrisiloxane {Aldrich, 98%}, was distilled prior to use. Chlorotrimethylsilane
(TMSCl) was distilled over CaH2 and storage under argon. [(H2IMes)(3-Br-py)2(Cl)2Ru=CHPh],
G3 was synthesized according to literature.48 5-Norbornene-2-methanol was synthesized
according to literature (mixture of 20% exo/endo used)52.

 Gel Permeation Chromatography (GPC) was performed using a Tosoh Ecosec HLC-8320GPC
at 40 ºC fitted with a reference column (6.0 mm ID x 15 cm), a guard column (6.0 mm ID x 4.0
cm x 5 μm), and two analytical columns (7.8 mm ID x 30 cm x 5 μm). The reference flow rate is
0.5 mL min-1 while the analytical column is at 1.0 mL·min-1. THF (HPLC grade) was used as the
eluent, and polystyrene standards (15 points ranging from 500 Mw to 8.42 million Mw) were used
as the general calibration. An additional calibration was created for specifically for linear
polylactic acid and only used for linear polylactic acid (10 points ranging from 500 Mw to 10,000
Mw).

 Triple Detection Gel Permeation Chromatography (t-GPC) was performed using a Viscotek
GPCmax pump and TDA302 triple detector (Refractive Index, 90º and 7º light scattering,
Viscometer) at 35 ºC fitted with two mixed-bed analytical columns (PolyAnalytik PAS-M: 8
mmID x 30 cm length, 10 μm particles, exclusion limit 20,000,000 Da relative to polystyrene).
The flowrate was 1.0 mL·min-1. THF (HPLC grade) was used as the eluent. The detectors were
calibrated with a narrow polystyrene standard (Mw= 99,000 Da). Performed by PolyAnalytik Inc.
(London, Canada).

Procedure for the synthesis of PDMS macromonomers:

Procedure for the anionic ring opening polymerization (ROP) of siloxane has previously been
described by our group, and re-described here.30 Mn(GPC with respect to PS standards)= 6,200
g/mol; Mw/Mn=1.05 (GPC traces in Figure S4).

Procedure for the synthesis of PLA macromonomers

Procedure for the ring opening polymerization (ROP) of lactide has previously been described
by our group, and re-described here.15,30 Mn(GPC with respect to PLA standards)= 5,100 g/mol;
Mw/Mn=1.05 (GPC traces in Figure S4Figure S2).

Procedure to obtain kinetic data for the synthesis of PDMS-b-PLA bottlebrush polymers

In an oven-dried 20 mL glass vial, PDMS macromonomer (300 mg, 0.0484 mmol) was dissolved
into THF (3 ml). The polymerization is initiated by adding G3 via a stock solution (0.5 ml add of:
4.28 mg G3 in 2.5 ml THF). Time points were obtained by taken 70 μL aliquots and injecting into
1 ml of THF with a large excess of ethyl vinyl ether. Each aliquot was analyzed by GPC. After 30
min, PLA macromonomer (247 mg, 0.0484 mmol) was added in THF (3 ml). Time points were
collected and analyzed by GPC during this reaction period as well. GPC traces shown in Figures
S1, S2. Analyzed data shown in Figure S3.

Figure S1. GPC traces for the ROMP of PDMS macromonomers

Figure S2. GPC traces for the ROMP of PLA macromonomers continuing off of the PDMS
bottlebrush. The bold green trace is the PDMS bottlebrush.

Figure S3. Kinetic plot for the synthesis of PDMS-b-PLA bottlebrush..

Procedure to obtain kinetic data for the synthesis of PDMS-b-PLA bottlebrush polymers

m

Grubbs 3rd Gen

PLA-O

Ph

n

PDMS-O

Si
O

n

Si
ORu

Ph

NNMes Mes
Cl

Cl N

N

Br

Br

O
m
H

O

O

In an oven-dried round bottom flask, PDMS macromonomer (3 g, 0.484 mmol) was dissolved into
THF (30 ml). The polymerization is initiated by adding G3 via a stock solution (5 ml add of: 4.28
mg in 10 ml THF). Each aliquots was analyzed by GPC. After 30 min, PLA macromonomer (2.47
g, 0.484 mmol) was added in THF (30 ml). After 30 min, a large excess of ethyl vinyl ether (large
excess with respect to [Ru]) was added to the reaction mixture then poured into cold methanol (-
30 ℃) and a centrifuge was used to isolate the resulting polymer. The polymer was dried under
vacuum and then analyzed by GPC (Figure S4). Mn(t-GPC)= 1,930,000 g/mol; Mw/Mn=1.09

(2 % of unfunctionalized (no norbornene end group) brush is present by GPC)

Figure S4: GPC traces of PDMS-b-PLA bottlebrush and PDMS/PLA macromonomers.

§3. Thermal Properties (Differential Scanning Calorimetry)
The as-prepared bottlebrush block copolymer reflected the glass transition of the constituent arm
chemistries very close to the homopolymer brush and homopolymer arm transition temperatures
as summarized below. (Excerpts from 2nd heats plotted).

Figure S5. Replotted features excerpted from DSC curves for bottlebrush block copolymer,
homopolymer bottlebrush, and linear polymer arms.

Measurement Parameters.
 Samples of ~5 mg were measured into DSC Consumables Aluminum Tzero pans and scanned
on a TA instruments Discovery 2500 Differential Scanning Calorimeter (DSC) at the University
of Illinois Materials Research Laboratory. Samples were first equilibrated at -180°C. All
temperature ramps were performed at 10°C/min with 2 minute isotherms at endpoints.

Table S1. Thermal Properties of synthesized Bottlebrush

Parameter Measured from 2nd heat Literature Value (linear polymer)

PDMS Tg -125.51 C -123.15 C (150 K)33

PDMS Tm -50.90 C -53 C (220 K)33

PLA Tg 53.19 C 49.9 C - 56.9 C (323K-330K)33

-150 -100 -50 0 50 100 150

H
ea

t
F

lo
w

 (
E

xo
 U

p
)

Temperature (°C)

 200 PLA 65 Bottlebrush
 PLA 65 Arms
 PDMS 81 Arms

 {200PLA65}{200PDMS81} Bottlebrush

§4. Small-Angle X-ray Scattering and Scanning Electron Microscopy
Analysis of BBCP ink

Experimental Parameters:

Experiments were performed at beamline 12-ID-B of the Advanced Photon Source (Lemont, IL)
with beam energy 13.3 keV using the Pilatus 2M 2D detector at a sample-detector distance of 3.6
m. Q-calibration was performed against a silver behenate standard. 2D data reduction was
performed using the Nika package for Igor Pro (WaveMetrics, Lake Oswego, OR, USA)
developed by Jan Ilavsky.51

Ink Characterization (10.1 wt% solution)
 Solutions of the 10.1 wt% (100 mg/mL) BBCP in THF were prepared via dissolution with
stirring at room temperature, followed by aging for 2 hours without stirring and exhibited a faint
purple reflection. Solutions were loaded into 1.0 mm, thin-walled quartz capillaries (Charles
Supper Company, Inc. – Natick, MA). For each image/profile shown below, 10 scans were taken
at 0.1s exposure times and averaged. Azimuthal averaging was performed from 0 to 180 degrees.

Figure S6. Raw 2D SAXS data for solutions in capillaries. (A) Pure THF, (B) 10.1 wt% PDMS-
b-PLA with backbone DP of 200 repeat units, (C) and (D) two trials of 10.1 wt% PDMS-b-PLA

with backbone DP of 400 repeat units.

Figure S7. Azimuthally averaged profiles for capillary SAXS measurements (a) before and (b)

after subtraction of pure solvent background.

Scanning Electron Microscopy:
 To further support this conclusion, we have performed scanning electron microscopy of a solution of 100
mg/mL BBCP in THF prepared via a freeze drying method. In brief: a small quantity of solution was
dropped onto a silicon wafer and quickly covered by a glass slide and immersed in liquid nitrogen to freeze
the solvent. The slide was separated from the wafer while still immersed and immediately placed into an
evacuated microscope stage held at -150 C. While under vacuum, the temperature was slowly (~1C/min)
increased to allow solvent to melt and evaporate. The resulting film was coated with 5 nm Au/Pd and
imaged at 7 keV in a JEOL 7000F Analytical SEM.

We obtain the following micrograph:

Figure S8. SEM micrograph of freeze-dried 100 mg/mL BBCP solution.

 The freeze-dried film comprises a large number of partially-fused spherical micelles. Performing a simple
image analysis by measurement of the diameter of 50 isolated particles yields an average diameter of 190 ±
45 nm, in rough agreement particle size measured from SAXS (156.7 nm).

§5. 3D printer Hardware and Software
 Parts and software designed by BP during the course of this work are provided in the supporting
information in the zipped folder “SI_HardwareSoftware”. Latest versions of the printer control
software (PolyChemPrint) written for this work can be found at the following GitHub link:
https://github.com/BijalBPatel/PolyChemPrint3#polychemprint3 and at
http://diao.scs.illinois.edu/Diao_Lab. All code written for this work is released under the Open
Source UIUC/NCSA License. Software from other sources used in this work is listed below.

Lulzbot Taz 6 3D Printer Hardware modifications

 The Lulzbot Taz 6 3D Printer was purchased from Aleph Objects, Inc. The original thermoplastic
print head was removed from its mount but left connected to avoid a temperature probe error. A
new syringe mount was custom modeled in Autodesk Inventor and 3D printed with a simple grid
pattern of holes for supporting the pen camera for monitoring nozzle position. Holes were enlarged
with a soldering iron and threaded using ¼-20 socket head cap screws (used to secure the camera).
The syringe was secured to the mount with two zip ties during printing. The original PEI print bed
was protected from solvent by a large ¼” thick glass plate secured with two medium binder clips.
The filament reel and original hot end scrubbing pad were removed.

Figure S9. Custom syringe mount, CAD and STL files available for download in supplemental

zipped folder.

Lulzbot Taz 6 Firmware modifications
 Modifications to the open source Marlin firmware on the Taz 6
(https://github.com/alephobjects/Marlin, https://github.com/MarlinFirmware/Marlin)
were made using the open source arduinoIDE 1.8.9 (https://www.arduino.cc/en/main/software).
Three major changes were made to the stock Taz 6 Marlin firmware (original sources). First, the
baud rate was changed to 115200. Second, the motion buffer was reduced to 1 command to prevent

queueing of motion commands. Third, Marlins “ok…” command receipt response was suppressed
until the end of the current motion step in order to signal to PolyChemPrint that motion was
complete for synchronization with the extruder. The latest version of the modified firmware source
and compiled .hex file are available for download from the zipped folder or the link at the
beginning of this section.

Pneumatic Extrusion Hardware
 The Ultimus V dispensing system was procured from Nordson EFD, Inc. The unit was used
without modification along with 3 mL polypropylene amber syringe barrels and 32 Gauge standard
needle tips. Standard white polyethylene pistons were used to avoid excess evaporation of solvent.
In order to evaluate the chemical resistance of the barrel, nozzles, and piston, each was left in a
sealed (parafilmed) vial of tetrahydrofuran for 2 weeks before a sample of the solvent was taken
and dropcast onto clean silicon. No residue was observed and no visible degradation of the parts
was seen. Nevertheless, parts were only used once and were in contact with the solvent a maximum
of ~7 hours for each set of experiments. It was found that over time (~weeks) the O-ring at the seat
of the low-pressure syringe adapter began to crack due to solvent exposure and lead to uneven
dispensing. All data presented in this manuscript was collected with freshly installed o-rings.

PolyChemPrint Software
 A custom software program was written to control the Ultimus V extruder (over a RS-232 serial
port) and the Taz 6 (through USB). The current version of the program (v2.2) was written in Perl
and runs via a terminal interface on Linux Debian 9/10. In brief, the program has three modes of
operation: (1) direct hardware control (line-by-line command execution), (2) pre-programmed,
customizable, scripts for simple patterns such as meander-lines, and (3) importing of GCODE files.
As of version 2.2, imported GCODE files are only used for motion paths, while print speed,
pressure, travel speed, z-hop height, and z-speed are fully customizable within PolyChemPrint.
Automatic data logging is supported. Latest versions of the software and fully documented source
files are available at the link at the beginning of this section. Version 2.2 is available for download
from the supplemental zipped folder. A brief software overview (through screenshots) is provided
in the following figures.

 The authors thank John Roshek at the School of Chemical Sciences Electronics shop for
invaluable advice early in the process.

Figure S10. Main Menu and Settings

Figure S11. Hardware Menu

Figure S12. Printing from GCode File Menu

Figure S13. Printing Parameterized Shape Menu

§6. Printing Reproducibility Test

Figure S14. Microscope images and UV-Vis diffuse reflection spectra a series of samples

printed repeatedly at the same conditions.

§7. Demonstration Prints
 In order to print the complex chameleon patterns, a vector drawing was first drawn in Inkscape,
a free vector editing software. Then, the sections of the drawing at each print bed temperature were
separated into separate image files. Images were converted to GCode using the free GCodeTools
plugin for inkscape with a pen diameter of 10 mm, minimum arc radius of 1mm, depth function of
1, Z safe height of 3 mm, print speed of 9999, penetration speed of 9998, and passing speed of
1000 [replaceable values within PolyChemPrint]. This scheme is quite easy to use and allowed the
authors to create the patterns from scratch in a matter of hours.

Figure S15. Top left: Original inkscape chameleon drawing and (clockwise): 65 C layer, 50 C

layer, and 25 C layer with motion vectors overlayed.

 Chameleon patterns were printed onto bare 100mm silicon wafers (University Wafers No.1113)
and imaged on the Keyence VK-X1000 3D Laser Scanning Confocal microscope in image
acquisition mode with the full ring light enabled. ~150 individual images each were taken and
manually stitched together using Paint.Net, a free lightweight photo editor, to obtain the originals
below. Images shown below are each stitched from ~100 optical microscopy images under diffuse,
ring lighting. Dust particles and the faint reflection of the light source were removed from the
background for the images in the main text. Images shown below are unedited.

Figure S16. Original stitched microscope images of chameleons printed onto bare Si wafers.

For printing on a curved surface, a 10 mL glass round bottom flask was used as the substrate
(Figure S17A). The previous method using inkscape is unsuitable for 3D surfaces, so the surface
was modeled as a spherical cap in Cura with a very large line thickness (to give spacing between
the lines). Printing speed and pressure were held constant for each two prints, with the flask held
at 25C (Figure S17B,C,D) and ~50C (Figure S17 E,F,G). To improve the visibility of the lines,
the flask is imaged both empty, and filled with a dark ink to provide an absorbing background.
Image under a microscope at normal incidence reveals that there is a redshift in the reflected
wavelength with increasing substrate temperature, consistent with the results on planar surfaces.

Figure S17. Printing on a curved surface. (A) Image of the printer at the start of the print. (B – D)
Images of an example print at ambient temperature (25C) with an empty round bottom flask
(transmissive background), dark ink within the flask (absorbing background), and under a
microscope camera, respectively. Upper image in red outline is a magnification of the lower image.
(E – G) Images of an example print at elevated temperature (𝑇௦௦~ 50 𝐶). Photo Credit: Bijal
Patel, University of Illinois.

§8. UV-Vis Diffuse Reflectance Measurements
 UV-Vis measurements were taken on a Varian Cary 5G spectrophotometer using the internal
diffuse reflection accessory at the Illinois Materials Research Laboratory. Samples were taken in
diffuse reflection mode to eliminate the (mostly) specular reflection signal from the bare silicon
substrate. Measurements were taken with Zero/Baseline correction referenced against the empty
chamber and Spectralon diffuse reflectance standard, respectively. Signal to Noise Resolution
(SNR) mode was used with a threshold of 50:1 and a timeout of 0.25s.

Raw spectra for the large dataset in Figure 3A are reproduced below.

Figure S18. Raw UV-Vis reflection spectra for printed samples shown in Figure 2C of the main

text.

Peaks were fit to Lorentzian functions in Origin Pro with the initial starting point for iteration
placed manually (Aside from the 25 C very thin films, rescaling the y data and restricting the
domain to ~450 – 750 nm made the peaks very obvious). In nearly all cases the location of the
second order peak (𝜆ଶ = 𝜆ଵ/2) was missing in the obtained spectra. When deconvoluting the
spectra, the data to the left of the n=2 peak that was visible was cropped out and the remaining
decay was fit as its own Lorentzian peak.

§9. Volume Fraction Estimation

The volume fraction of PDMS (Φெௌ = 0.61) was found by substituting the following data

Table S2. Synthetic and chemical properties of polymacromonomers

Species Mn(g/mol) DP 𝜌 ቀ
𝑔

𝑐𝑚ଷ
ቁ Density

Citation

PLA-NB 5100 200 1.25 34

PDMS-NB 6200 200 0.965 33

into the following equation, as per Dalsin et al.9

𝜙ெௌ =
(𝑀,ெௌିே ∗ 𝐷𝑃ெௌିே/𝜌ெௌିே)

(𝑀,ெௌିே ∗ 𝐷𝑃ெௌିே/𝜌ெௌିே)) + (𝑀,ିே ∗ 𝐷𝑃 /𝜌ି))

Here, we approximate the density of the pdms-NB macromonomer to be the same as the bulk value
of the PDMS/PLA constituent.

§10. Scanning Electron Micrographs of Printed Films

Preparation of Cross-Sections
 It was quite challenging to generate undamaged cross-sections of printed films, we suspect due
to the very low glass transition of PDMS. The following approach was settled on after much trial
and error with simpler methods of freeze fracture and was found to provide acceptable yield
(~50%). Alternatively, ultramicrotome is an effective – albeit time-consuming method for
sectioning films (thank you to Dr. Scott Robinson at the Beckman Institute at the University of
Illinois).
 In our scheme, a “double boiler” setup of 1 small crystallization dish was placed inside a larger
recrystallization dish resting on a polystyrene board. Liquid nitrogen was poured into both vessels
and allowed to equilibrate after the first boil. Samples printed on silicon wafers were carefully
delaminated from the silicon with a new, clean steel razorblade. The lower half of each section
was sandwiched between two pieces of copper tape and dropped into the LN2 bath and left for 25
minutes. Meanwhile, two pairs of stainless-steel forceps (with insulation taped onto the handles)
were placed into the ‘outer’ crystallization dish to chill them. After 25 minutes, the copper tape
sample was picked up with 1 set of forceps and within the LN2 bath, the other set of forceps was
scraped across the projecting sample to fracture. Then, the copper tape was separated and replaced
lower down to expose ~0.5cm of polymer leading up to the edge for good coating of Au/Pd in the
next step.

Figure S19. Fractured polymer thin-film sample prior to AuPd coating.

 To prevent charging during SEM, samples were coated for 40 seconds in the Emitech K575 with
Au/Pd at 20 mA (~2.5 Å/s) for a total thickness of ~10 nm. Samples were first mounted in the
‘mini-vise’ holder before coating.

Scanning Electron Microscopy
 Samples were scanned on a JEOL 7000F Analytical SEM at the Illinois Materials Research
Laboratory. It was found that the best balance between domain contrast and resolution was
obtained by scanning at 3-5 keV at the highest probe current. Samples were found to show
adequate contrast without the use of an additional chemical stain. Images that follow are contrast
enhanced in ImageJ 2 for clarity.

Dropcast Samples – 25°C

Figure S20. SEM of Dropcast Samples

Printed Samples – cross-sections of samples shown in Figure 2C of the main text

70°C – 30 mm/min – 30 kPa

Figure S21. SEM of printed sample – 70°C – 30 mm/min – 30 kPa

50°C – 30 mm/min – 30 kPa

Figure S22. SEM of printed sample – 50°C – 30 mm/min – 30 kPa

25°C – 60 mm/min – 30 kPa

Figure S23. SEM of printed sample – 25°C – 60 mm/min – 30 kPa

§11. Small-Angle X-ray Scattering Analysis of Printed Films

Printed Films
Due to their high surface roughness/curvature, samples were unsuitable for running in grazing
incidence configuration which is more typical for thin films. Instead, small-angle X-ray scattering
experiments were performed in transmission mode at a shallow negative angle (Figure S23).
Experiments were performed at beamline 12-ID-B of the Advanced Photon Source (Lemont, IL)
with beam energy 13.3 keV using the Pilatus 2M 2D detector. Five 0.1s scans were taken for each
image shown below.

Figure S24. Schematic of printed film SAXS experiments.

2D Data Reduction
 2D data reduction and scan averaging was performed using the Nika package developed by Jan
Ilavsky51 for Igor Pro (WaveMetrics, Lake Oswego, OR, USA). Spectra were restricted to the
region of q < ~0.4 nm-1 before peaks were deconvoluted and fit using Igor Pro’s built-in multi-
peak fitting function. Peaks were fit sequentially from weakest to strongest as voigt functions
before refitting the entire curve. The following figures correspond to points in Figure 4C of the
main text and contain 2D data and fitted 1-D linecuts. Not all fitted peaks were used to calculate
domain spacing.

Figure S25. 2D SAXS data and fitted linecut for (A) Dropcast 1 (25C) position 1 (B) Dropcast 1

(25C) position 2 (C) Dropcast 1 (25C) position 3

Figure S26. 2D SAXS data and fitted linecut for (A) Dropcast 2 (25C) position 1 (B) Dropcast 2
(25C) position 2 (C) Dropcast 2 (25C) position 3

Figure S27. 2D SAXS data and fitted linecut for (A) Dropcast 3 (25C) position 1 (B) Dropcast 3

(25C) position 2 (C) Dropcast 3 (25C) position 3

Figure S28. 2D SAXS data and fitted linecut for samples (A) printed at 15 mm/min, 25 C and

(B) 15 mm/min, 25 C.

Figure S29. 2D SAXS data and fitted linecut for samples printed at (A)15 mm/min, 50 C; (B) 15

mm/min, 50 C; and (C) 30 mm/min , 50C

Figure S30. 2D SAXS data and fitted linecut for samples printed at (A) 60 mm/min, 50 C; (B)

60 mm/min, 50 C; and (C) 120 mm/min , 50C

Figure S31. 2D SAXS data and fitted linecut for samples printed at (A) 180 mm/min, 50 C;

(B) 240 mm/min, 50 C; and (C) 360 mm/min , 50C

Figure S32. 2D SAXS data and fitted linecut for samples printed at (A) 600 mm/min, 50 C;
(B) 15 mm/min, 70 C; and (C) 30 mm/min , 70 C

Determination of the 2D out-of-plane orientation parameter

 To quantify the degree of out-of-plane alignment of lamellar domains, we have calculated the
2D out-of-plane orientation parameter37 𝑆ଶ using the equation:

𝑆ଶ =< 𝑐𝑜𝑠2χ >= 2 < cosଶ χ > −1

Where χ represents the angle between the lamellar normal and the substrate normal. 𝑆ଶ varies
between -1 and 1, with 1 representing lamellae perpendicular to the substrate, 0 representing
isotropy, and -1 representing fully parallel lamellae.

< cosଶ χ > can be calculated from 2D scattering data by taking sector cuts and determining the
area of a particular peak (here we choose n=2) as a function of 𝜒 and computing the following:

< cosଶ 𝛾 >ீூௐௌ=
∑ 𝐼(𝜒) cosଶ(𝜒) sin(𝜒) ∆𝜒

∑ 𝐼(𝜒) sin(𝜒) ∆𝜒

Where ∆𝜒 is the width of the ith sector.
 We have performed this calculation for two samples: the dropcast film and the film printed at 15
mm/min at 50 C and calculate 2D orientation parameters of -0.73 and -0.96, respectively. This
suggests that while both cases have lamellae oriented primarily parallel to the substrate, the printed
films are more strongly oriented. This supports the assessment we have made in the manuscript
and suggests that domain orientation plays a more minor role compared to domain size.

Domain Spacing Analysis

For lamellar morphology, constructive interference from successive layers causes peak spacing
to follow

𝑞 =
ଶగ

ௗೣ
 Equation S2

Where n is the order of the diffraction peak and dx is the lamellar repeat distance. When the

lowest order of diffraction is clearly visible, n takes the value 1, and the equation can be solved
directly for lamellar repeat distance. In our case, the predicted domain size (~230 nm) puts the
estimated 1st order peak at q = 0.0027 A-1, which is below the minimum q-value we can detect. By
rearranging equation 2 in series form, however, an alternate approach can be taken based on the
difference in peak location between successive order peaks.

𝑑௫ =
ଶగ

శభି
 Equation S3

Here, we present domain sizes obtained by averaging the predicted spacing from at least 4

diffraction orders to minimize the impact of diffuse scattering in biasing the low q peak positions.
For lamellar domains of a real symmetric block copolymers, peaks appear at integer multiples of
the fundamental peak, with every other peak (n=2, n=4, n=6) significantly weakened52. In our case
we predict that ϕୈୗ~ 0.61 based on molecular weight, synthetic parameters, and the bulk
density of the arm species (calculation shown above), and we find that for most of our spectra even
order peaks are only visible weakly or as peak shoulders at low q. When even order peaks are
weakly resolved, we instead fit only the stronger and highly evident odd numbered peaks and

multiply the resulting peak spacing by two to reflect the true domain spacing of the lamellar
repeat unit.

We note that is not the approach commonly used for BBCP lamellar X-ray analysis, where 1st
order peaks are usually experimentally measured9,17. We justify this approach in various additional
ways below:

Justification 1: Arguments based on symmetry and SAXS theory
 As mentioned above, this argument relies on the fact that for symmetric lamellae, SAXS spectra
should reflect a nonmonotonic (alternating) decay of peak intensity with peak order. The
underlying theory and calculations to support this can be found in many elementary SAXS texts,
such as Roe52. We note that this qualitative behavior is strictly true only for symmetric lamellae:
for asymmetric lamellae a monotonic decrease in peak intensity is predicted. As noted above, we
calculate a PDMS volume fraction of 𝜙ெௌ = 0.61, which is nearly, but not perfectly symmetric.
Aside from the inherent uncertainty in this value due to the choice of bulk density estimates, we
have deliberately made several choices during measurement and analysis that further reduce the
observed even order peak signal.
 First, all samples manifest a very intense, diffuse scattering signal along qz, requiring us to use
a large vertical beamstop and obscure the completely vertically aligned data (where even-order
peaks would be most evident). It is clear; however, that evenly spaced odd-order peaks are well-
resolved far from the centerline, and furthermore data obtained at moderate q is less likely to be
biased by diffuse scattering, film refraction, etc. As a result, we must choose a region of integration
for peak fitting that is offset from the center line, where we can consistently fit the strong, well-
resolved odd-order peaks.

For reference in the following discussion:
If 2nd order peaks are assumed to be hidden, 𝒅𝑿𝒓𝒂𝒚

𝒉 ~𝟐𝟏𝟎 𝒏𝒎. Otherwise, 𝒅𝑿ି𝒓𝒂𝒚 ~𝟏𝟎𝟓 𝒏𝒎.

Justification 2: Arguments based on optical properties
 The two indirect measurements of lamellar domain size that we can obtain from UV-Vis
reflection measurements and cross-sectional scanning electron microscopy also support the
assessment that even order peaks are obscured.

As described in the main text, we can use the ideal Bragg-Snell equation for 1D photonic crystals
to estimate domain size from the peak reflected wavelength observed.

𝜆 = 2(𝑛ଵ𝑑ଵ + 𝑛ଶ𝑑ଶ) Equation S4

Table S3. Parameters and source for substitution into the Bragg-Snell equation.

Parameter
Peak reflected

wavelength
(nm)

Refractive
index of
PDMS

Refractive
index of PLA

Domain size
of PDMS

Domain
size of
PLA

Symbol 𝜆 𝑛ଵ 𝑛ଶ 𝑑ଵ 𝑑ଶ

Value Measured 1.40 1.46 To be solved
To be
solved

Reference - 33 34 - -

We can relate the thickness of each layer based on our estimated volume fraction (𝜙) by assuming
constant cross-sectional area.

𝜙ଵ =
భ

భାమ
=

∗ௗభ

(∗ௗభ)ା(∗ௗమ)
=

ௗభ

ௗభାௗమ
 Equation S5

Substituting in the value of 𝜙ெௌ = 0.61 and rearranging to solve for 𝑑ଵ gives us:

𝑑ଵ = 1.57 ∗ 𝑑ଶ Equation S6

Now we can substitute this relation into our Bragg-Snell equation

𝜆 = 2(𝑛ଵ ∗ 1.57𝑑ଶ + 𝑛ଶ ∗ 𝑑ଶ) 35 Equation S7
and rearrange to solve for 𝑑ଶ

𝑑ଶ =
ఒ

ଶ∗(ଵ.ହ∗భାమ)
 Equation S8

Now we note that the X-ray domain spacing, 𝑑் is equal to the sum of the thicknesses of each
layer, that is:

𝑑் = 𝑑ଵ + 𝑑ଶ = 1.57 𝑑ଶ + 𝑑ଶ = 2.575 ∗ 𝑑ଶ Equation S9

By substituting in the relation for 𝑑ଶ and our material properties we finally obtain:

𝑑் =
ଶ.ହ∗ఒ

ଶ∗(ଵ.ହ∗భାమ)
= 0.351 ∗ 𝜆 Equation S10

Our measured peak reflection of 403 nm – 626 nm, thus corresponds to estimates of 𝑑் = 141.4
to 219.7 nm. As shown in Figure 4c, right of the main text (reproduced below), this agrees quite
well with our X-ray values when hidden peaks are accounted for.

Figure S33. Calculated lamellar period versus printing speed. Where present, error bars on colored
points represent the range of two sample scans. Error bars for dropcast (DC) sample represent the
standard deviation of nine measurements across three samples. The dashed line represents the
contour length of the bottlebrush estimated with a fixed backbone contour length of 0.62 nm per

norbornene repeat unit as per Dalsin et al.9 Solid lines represent the domain size estimated from
the optical data shown in Figure 3 of the main text.

Justification 3: Arguments based on SEM-Cross sections
 While we acknowledge the uncertainty of domain size measurements from cryo-fractured SEM
cross-sections (detailed in the main text), it is useful to get a ‘ballpark’ value of domain size from
the SEM as this technique is the most unambiguous way to determine domain size. The following
analysis is performed using the free software ImageJ250.

Taking the image for which we have the best SEM contrast and most X-ray data (dropcast sample),
we can directly measure the domain size (A+B layer repeat unit) as shown below. We first set the
scale using the inset scale bar, and then use the measure tool.

Figure S34: Annotated SEM of DC sample

The SEM measured domain size (𝑑ௌாெ = 215.27 ± 12 nm) compares quite favorably to our X-
ray value accounting for hidden peaks (𝑑ೝೌ

 ~210 𝑛𝑚).

Justification 4: Further Numerical analysis of X-ray data supports hidden peaks
Finally, it is possible to support the proposed method purely through numerical analysis of the X-
ray data. Our strategy is as follows: first, we return to the equation for the location of a lamellar
scattering peak in q-space.

𝑞 =
ଶగ

ௗೣ
 Equation S11

By rearrangement, we can identify the order of a measured peak based on the domain size
calculated from the inter-peak spacing.

𝑛 =
∗ௗೣ

ଶగ
 Equation S12

The calculated values of n should take on integer values (n = 1, 2, 3, …), however the calculated
values of n for experimentally determined peaks always exhibit some remainder, which reflects

MSMT
Length
(nm)

Length/5 (nm)

1 1130 226
2 1161 232
3 973 195
4 1041 208
5 1077 215
Avg 1076 215
St. dev. 66 12

the accuracy of our peak fitting strategy. That is, an approach that leads to experimentally
determined orders of n ~1,2,3,4 is more accurate than one that leads to orders of n ~1.5,2.5,3.5 etc.

Thus, by defining the cumulative error as the sum of the distances between the calculated order
and its nearest integer, we can numerically compare the quality of the peak fitting approach when
only the strong peaks are fit versus when the hidden peaks are considered. Figure S35 plots the
cumulative error of each approach for the first 5 peak orders of all of the samples printed at 50C.

Figure S35. Cumulative error vs printing speed for X-ray samples printed at 50C with domain

sizes calculated by each method.

It is apparent that by considering hidden peaks, we can drastically improve the quality of our fitted
peak orders, providing further support for this decision.

§12. Topographical Mapping and Commensurability

Topography plots and selected correlations (to accompany the discussion in the main text)

Figure S36. Topographical analysis of printed lines. (A) Surface profiles obtained using laser
confocal optical profiling for samples printed at various speeds. (B) Compiled topographical data
for each printing speed and temperature. Vertical error bars in the top panel reflect the rms
roughness of the film. Solid lines on the bottom panel indicate expected scaling of cross section
with printing speed for a Newtonian fluid. (C) Correlating the peak reflected wavelength and full-
width half max to the film thickness. Horizontal error bars indicate RMS roughness. Vertical error
bars indicate standard error of the optical peak fit.

Profile Data Collection Parameters
 Optical profiling was performed using the Keyence VK-X1000 3D Laser Scanning Confocal
microscope at the Illinois Materials Research laboratory. This technique was chosen after the
sample was judged to be a poor fit for both stylus profilometry (Sloan instruments Dektak3ST)
and atomic force microscopy (Asylum Research MFP-3D) due to its softness and
waxiness/stickiness. Comparisons between film thicknesses obtained via optical profiling vs.
stylus profilometry generally show only minor variation in average film thickness (< 5%).
Film profiles were measured in laser confocal, “film top” mode with high brightness and a medium
noise filter. Samples were scanned with substrate on both sides and plane leveled. RMS roughness
values were evaluated using “stylus mode” with a tip radius of 5 microns.

Data analysis considerations (statistical analysis, spurious peak removal).
 For film thickness and rms roughness measurements, a large (~𝑚𝑚ଶ) region was scanned.
Within this region, 61 profiles were drawn perpendicular to the printing direction. For each profile,
an average thickness and rms roughness are calculated. Then, the average of each of these 61
values per sample is reported as X-axis values and error bars, respectively, in Figure S36. The

full data set of film thickness, rms roughness, and standard deviations of each are reported in Table
S4 and Figure S39 below.
 We note that there was some initial difficulty scanning these semi-transparent samples due to
the strong substrate reflection through the film. This manifests as spurious peaks [spikes] that are
especially significant for thinner films. Scanning at sufficiently high magnification and slow speed
helps reduce the number of spurious peaks.

We further mitigate errors caused by these peaks via three approaches:
1. Thresholding. The acquisition software can identify and remove data points that lay

far away from the local mean value in each region. Because spurious peaks are very
sharp and have thickness values near zero, this technique can very easily eliminate
most spurious peaks. The software then interpolates thicknesses from surrounding
pixels.

2. Manual removal of remaining low intensity peaks. These peaks have orders of
magnitude lower intensity than surrounding regions are easily identified. Any
remaining obvious spurious peaks (usually < 10 peaks) are removed manually and
thickness in that region interpolated from surrounding pixels.

3. Averaging of many profiles. Spurious peaks generally occupy small, localized regions
of the total scanned data. After steps 1 and 2, we then average 61 profiles spaced
apart to cover the entire scanned region along the printed line). Even if some spurious
peaks remain, their impact on the final thickness and rms roughness is thus very
small.

Figure S37. Sample optical profiling data.

Figure S38. Raw optical profiling data for printed lines. Bed temperature is listed along the top

(columns) and printing speed on the side (rows) Note: Horizontal and vertical axes are not at equal

scale.

Table S4. Printed film thickness/roughness and standard deviations.

TEMP
(°𝑪)

PRINTING
SPEED

(mm/min)

THICKNESS
(𝝁𝒎)

STD.
DEV
(𝝁𝒎)

RMS
ROUGHNESS

(𝝁𝒎)

STD.
DEV.
(𝝁𝒎)

25 15 23.74 1.02 4.91 0.47
25 30 14.17 0.58 3.03 0.35
25 60 8.76 0.13 2.67 0.05
25 120 5.83 0.18 1.41 0.04
25 180 3.65 0.09 0.89 0.02
25 240 2.17 0.06 0.62 0.03
25 360 1.44 0.20 0.59 0.03
25 480 1.51 0.08 0.39 0.04
25 600 1.45 0.10 0.52 0.03
70 15 58.17 0.34 9.57 0.23
70 30 45.04 5.99 6.73 0.37
70 60 11.30 0.36 2.96 0.04
70 120 9.47 0.17 3.38 0.05
70 180 5.35 0.21 1.79 0.07
70 240 3.36 0.69 0.55 0.05
70 360 1.65 0.29 0.45 0.02
70 480 2.15 0.12 0.38 0.03
50 15 34.52 0.34 6.41 0.12
50 30 23.67 1.02 4.36 0.58
50 60 13.43 0.27 2.00 0.11
50 120 6.89 0.69 0.90 0.10
50 180 5.99 0.07 1.28 0.07
50 240 4.91 0.12 0.50 0.04
50 360 4.67 0.04 0.83 0.03
50 480 3.91 0.04 0.68 0.02

Figure S39. Plots of film thickness (left) and roughness (right) for printed meanderline patterns.

Discussion on Evaluating Commensurability arguments

To evaluate the importance of commensurability (balance of elastic and surface tension forces) in
controlling domain d-spacing, we first plot domain size (estimated from optical measurements)
versus film thickness.

Figure S40. Left: Domain size estimated from optical measurements versus film thickness. Error
bars denote film average roughness (X-error) and propagated error of optical peak fitting (Y-axis).
Right: Number of PDMS-PLA layers versus film thickness.

Figure S41. Measured wavelength plotted against both thickness (left panel, reproduced from
Figure S36) and number of layers (2* thickness/D0). In the right panel, triangles, circles, and
squares represent division by 𝐷,௧ and stars represent division by 𝐷,ି௬. X-error bars
represent error propagated from the uncertainty in thickness measurements and optical
measurements.

400

450

500

550

600

30 50 300 50010 100
100

200

300

400

λ
 (

n
m

)
F

W
H

M
 (

n
m

)

2*Thickness/D0

25 C 50 C 70 C

§13. High Speed/High Pressure Printing Experiments
 To gauge the impact of fluid flow driven assembly, experiments were performed in which both
printing speed and pressure were increased. In this way, the wet film geometry could be kept
constant, minimizing the impact of changing evaporation rates and any confinement effects. To
determine the appropriate scaling between printing speed and pressure without performing in depth
measurements to determine viscosity vs shear rate, a simple scaling experiment was performed. A
long meanderline pattern was printed onto glass in which the printing speed was scaled by a factor
of 1.41 for every pair of lines, and the pressure was scaled by a factor of 1.24. This scaling reflects
the shear-thinning behavior of the fluid and was determined by trial and error to obtain the sample
shown in Figure S42.

Figure S42. Meanderline pattern with increasing pressure and printing speed.

Here, despite an extremeley large change in the printing speed and pressure, there is not a dramatic
change in color until reaching very high pressures and speeds that were beyond the range used for
the experiments in the main text.

To more quantitatively assess this phenomenon, three meanderline samples were printed at
different speeds and pressure using this scaling relationship and their reflectivity was compared
(Figure S43).

Figures S43. Meanderline patterns printed onto silicon wafers. Despite a large increase in printing
speed and pressure, there is very little change in the peak location observed.

§14. In Situ monitoring of printing and assembly kinetics

Discussion of the role of refractive index and domain size on reflected film color and
intensity

By ascribing the structural color observed to lamellar domains, as observed in both SAXS and
SEM, we can relate the measurable optical properties at normal incidence (Hue and Value) to the
microstructural evolution through the equations for reflected wavelength (𝜆) and the reflected
intensity (R) for a 1D lamellar stack (Equation S13,S14)1.

𝜆 = 2(𝑛ଵ𝑑ଵ + 𝑛ଶ𝑑ଶ) Equation S13

𝑅 =
ଵିቀ

మ
భ

ቁ
మಿ

ଵାቀ
మ
భ

ቁ
మಿ൩ Equation S14

Where 𝑛ଵ, 𝑛ଶ, 𝑑ଵ, 𝑑ଶ represent the refractive indices of each layer and their corresponding
thicknesses, and N represents the number of layers.
 We note that these equations quantitatively describe only the observed reflectance from perfect
1D stacking under normally incident illumination and observation. As the film assembles/dries,
this criterion is increasingly valid; however, in the initial stages it is likely that domains form at a
variety of angles before reaching their final orientation, predominately parallel to the substrate as
indicated by SAXS and SEM analysis. For dropcast samples where domains adopt a range of
orientations, we note that at angles less than normal incidence, the apparent color of domains will
be always be blue-shifted vs. that predicted by equation 1, but color evolution will follow the same
trend during drying as the remainder of the film (initial red shift, followed by blue shift). A more
accurate (quantitative) model of the color and intensity over time could be achieved by coupled
finite-difference time-domain (FTDT), mass transport, and phase separation simulation which is
out of the scope of this work. As a result, we use equations S13 and S14 above only for qualitative
guidance and to not attempt to match results quantitatively.
 During deposition, all three quantities (n, d, N) may vary, but by gauging their relative
magnitudes it is possible to decouple their influence. For this system, the relevant refractive indices
are 𝑛ெௌ = 𝑛்ுி = 1.40 and 𝑛 = 1.46. For solutions of polymer and solvent, the refractive
index of the mixture lies between the two limiting refractive indices (of pure solvent and pure
polymer), During the drying process, the refractive index of the PDMS layer remains unchanged
(as it matches the solvent) and the refractive index of the PLA layer can change by only a maximum
of ~4% as it goes from ~𝑛்ுி to 𝑛. By inspection of Equation 1, we can therefore note that the
impact of refractive index change on wavelength during drying is a small redshift. We can then
state that both the large red shift during the initial stages of drying, and the slight blue shift during
the final stage are caused primarily by domain size variation. The increase in reflected intensity
during drying is attributable to both an increase in the number of domains, and the influence of
solvent removal on refractive index. As solvent dries, the refractive index of the PLA layer
approaches its pure value (maximizing refractive index contrast) and the degree of microphase
separation (number of domains) increase, with both phenomena possibly contributing to the
observed saturation of intensity.

Methods
 In situ optical microscopy was taken using an XIMEA xiQ USB3 camera connected to a high
magnification Navitar lens system purchased from W. Nuhsbaum, Inc. Videos were obtained at
moderate framerate (~45 fps) and analyzed frame-by-frame using a script written for MATLAB
(The MathWorks, Inc., Natick, Massachusetts, United States). The following image shows the
camera and lighting setup. All experiments in this series were carried out at room temperature with
the same lighting/ fume extractor setup shown below.

Figure S44. Experimental apparatus for in situ printing videos
 We note that the conditions for these two sets of videos, while self-consistent, do not exactly match the
printing conditions for those experiments from Figure 2C of the main text, as a high intensity light source was
needed to ensure high framerate. This caused local heating and some added nonuniformity in the printed films;
however, the films printed for these experiments show the same qualitative trend. Unfortunately, it was not
possible to collect side view videos at sufficient resolution/framerate for analysis at speeds higher than 240 mm/
min. Photograph courtesy of Bijal Patel, University of Illinois.

Figure S45. Microscope images of samples printed for different sets of experiments. “Top View”
and “Side View” are for the corresponding kinetics videos under strong lighting, “10/3 batch”
correspond to those samples used for peak quantification. Empty cells for top view 120,240
mm/min were samples that accidently disposed of before images could be taken.

Videos used for the following analysis are compiled in Supplemental Videos 5 and 6 as
detailed at the beginning of the SI

Supplemental plot: Hue and intensity from top-view (reflection) printing videos.

 Imaging difficulties prevent the use of Hue measurements as evidence for the mechanism. As
the printed meniscus was very small, cameras and illumination had to be set up at extremely high
brightness and away from normal incidence, using a different microscope camera than the drop-
casting case (due to the printing nozzle). As a result, we find that the recorded video has a
substantial red cast compared to the reflection (for example the final film shown below Figure 5C,
S45 actually appears green and not orange as in the video).

Figure S46. Calculated Hue and Intensity (normalized) curves from top-view (reflection) videos
during printing. The limitations of the hue measurement are described in the main text.

Top View Analysis Strategy
Top view videos show the movement of the printing nozzle past a point on the substrate and track
evolution of color of the printed line over time (Supplemental Video 5).
Videos were analyzed in MATLAB (analysis code follows). The analysis procedure is as follows:

 Step 0: Initialization of data directories.
 Step 1: Video file selected and export directories created
 Step 2: Video loaded into ram
 Step 3: Video converted to frames and exported.
 Step 4: The first frame for integration was chosen as the point at which the nozzle crosses

the center of the field of view and an integration region (mask) is drawn.
 Step 5: Identify frame Tzero when needle enters mask for time correction
 Step 6: The program then iterates through all frames after time t=0, calculating the summed

R,G,B, total, intensities within the masked region. If intensity exceeds threshold, value is
set to NaN

 Step 7: Finally, the code exports this data and generates several useful plots (shown below).

Top View MATLAB Code

%Computes RGB/HSV Intensity from select region in videos

%% Step 0 - Initialize
 disp('Step 0: Initializing...')
 clear all
 close all

 % For rejecting oversaturated reflections from liquid
 % surface. BWThreshold is the ratio versus the average pixel intensity
 %within masked region, above which the pixel is omitted from analysis.
 %Determine by trial and error. White pixels should be completely removed.
 BWThreshold = 1.6;

 %Get current date/time
 dateTime = datestr(datetime(now,'ConvertFrom','datenum'));
 dateTime = strrep(dateTime,":","_");
 dateTime = strrep(dateTime,"-","_");
 dateTime = strrep(dateTime," ","_");

 %ENTER FOLDER PATH WITH ORIGINAL VIDEOS HERE
 filedir=strcat('C:\Users\...,'\');
 % or default to userdir
 % filedir=strcat(userpath,'\');

 newAnalysis = 0;

 disp('Choose Video File...')
 [filenameext, filedir]=uigetfile(strcat(filedir,'*.*'));
 [~,filename,fileext]=fileparts(strcat(filedir,filenameext));
 disp('Video File Chosen!')

 %Prompt for new analysis or not, if so, find log file
 inp = input("First Analysis? (Y/N): ",'s');
 if (strcmp(inp,'Y'))
 newAnalysis = 1;

 %Make specific folders for data/frame export
 expDir = strcat(filedir,'MATLABexport\',filename,"\");
 rawFramesDir = strcat(expDir,'frames\raw\');
 threshFramesDir = strcat(expDir,'frames\BrightThresholded\');
 calcDataDir = strcat(expDir,'calcData\',dateTime,'\');

 mkdir(expDir);
 mkdir(rawFramesDir);
 mkdir(threshFramesDir);
 mkdir(calcDataDir);

 else

 disp('Choose Log File')
 [logFileNameExt, logFiledir]=uigetfile(strcat(filedir,'*.*'));
 disp('Loading from Log File...')
 loadedData = readLog(strcat(logFiledir,logFileNameExt));
 loadParams = loadedData(:,1);
 loadedVals = loadedData(:,2);

 expDir = loadedVals(2);
 rawFramesDir = loadedVals(3);
 threshFramesDir = loadedVals(4);
 calcDataDir = strcat(expDir,'calcData\',dateTime,'\');
 framerate = str2num(loadedVals(6));
 maskFrame = str2num(loadedVals(7));
 disp('Data Loaded from Log File...')
 end

 calcDataDir = strcat(expDir,'calcData\',dateTime,'\');
 logParams = ["1. Export Directory" "2. RawFramesDirectory" "3.
ThresholdFramesDirectory" "4. CalculatedValuesDirectory"];
 logVals = [expDir rawFramesDir threshFramesDir calcDataDir];
 disp('Step 0: Initializing Complete!')

%% Load Video to RAM
 % If new analysis, will import video to RAM
 loadToRAM = input("Frame Export Required? (Y/N): ",'s');
 if (strcmp(loadToRAM,'Y'))
 disp('Importing Video to RAM...')
 obj = VideoReader(strcat(filedir,filenameext));
 vid = read(obj);
 frames = obj.NumberOfFrames;
 framerate = obj.FrameRate;

 logParams = [logParams "Framerate"];
 logVals = [logVals framerate];
 disp('Import Video Complete!')
 else
 disp('Skipping Loading Video to RAM')
 frames = size(dir(fullfile(rawFramesDir, '*.jpg')),1);
 end

%% Convert Video file to frames and export
 if(strcmp(loadToRAM,'Y'))
 disp('Export Raw Frames to File...')
 %Ask user if frames need to be output
 inp = input(" Output Frames? Y/N: ",'s');

 %if needs output, do so, else skip
 if (strcmp(inp,'Y'))
 for x = 1:1:frames

imwrite(vid(:,:,:,x),strcat(rawFramesDir,filename,'_raw_',num2str(x),'.jpg'))
;
 fprintf('\tExporting frame: %d out of %d.\n',x,frames);
 end

 disp('Export Raw Frames Complete!')
 beep
 else
 disp('Skipping Frame Export')
 end
 else
 disp('Skipping Frame Export')
 end

%% Draw mask
 disp('Masking')
 inp = input(" Draw New Mask? Y/N: ",'s');

 if(newAnalysis || strcmp(inp,'Y'))
 disp('Choose Frame to draw mask from.')
 %Choose frame to look at for drawing mask
 maskFrame =
chooseFrame(20,frames,rawFramesDir,strcat(filename,'_raw'),-1);

 %Export Frame
 expTail = strcat(filename,'_maskFrame.jpg');
 expPath = strcat(calcDataDir,expTail);
 saveas(gcf,expPath);

 disp(" Mask Frame chosen! Now Draw Mask");

 %Size of frame image

imsize=size(imread(strcat(rawFramesDir,filename,'_raw','_1','.jpg')));

 %Draw polygon mask
 %mx and my are the vertex positions of your mask
 %left click for points, right click to close loop
 %right click a vertex to create mask
 [mask, mx, my]=roipoly;

 %name image of frame to mask
 im
=imread(strcat(rawFramesDir,filename,'_raw_',num2str(maskFrame),'.jpg'));

 %Display mask overlayed onto image
 imshow(imoverlay(mat2gray(im),mask,[0.1 0.8 0.1]));

 %Save masked image
 %Export Frame
 expTail = strcat(filename,'_maskedFrame.jpg');
 expPath = strcat(calcDataDir,expTail);
 saveas(gcf,expPath);

 %Save mask itself
 %Save mask to file

 maskPath = strcat(expDir,'_',dateTime,'_mask.mat');

 save(strcat(calcDataDir,'mask_',dateTime,'.mat'),'mask');

 %uncomment for no mask
 %mask=logical(ones(imsize(1:2)));
 else %Load Mask from File
 disp('Choose Mask');
 [maskfilenameext, maskfiledir] = uigetfile(strcat(filedir,'*.*'));
 maskPath = strcat(maskfiledir,maskfilenameext);
 load(maskPath);
 save(strcat(calcDataDir,'mask_',dateTime,'.mat'),'mask');
 end

 logParams = [logParams "MaskFrame"];
 logVals = [logVals maskFrame];

 disp('Get Mask Complete!')

%% Identify first frame to calculate
 disp('Choose first frame to calculate values for (NOT tZERO)')

 %Choose frame for t=0
 calcStartFrame =
chooseFrame(maskFrame,frames,rawFramesDir,strcat(filename,'_raw'),mask);
 %Export start Frame
 expTail = strcat(filename,'_MaskedCalcStart.jpg');
 expPath = strcat(calcDataDir,expTail);
 saveas(gcf,expPath);

 disp('Frame for calculation start chosen!')

 %%Identify frameTzero time correction
 disp('Choose frame for time zero...')

 %Choose frame for t=0
 frameZero =
chooseFrame(maskFrame,frames,rawFramesDir,strcat(filename,'_raw'),mask);
 %Export Masked Frame
 expTail = strcat(filename,'_MaskedTzero.jpg');
 expPath = strcat(calcDataDir,expTail);
 saveas(gcf,expPath);

 disp('tzero Frame Chosen!')

%% Evaluate mean RGB intensity in masked region
 fstart=calcStartFrame;%number of starting frame
 fspace=1;%number of frames to increment by

 numFramestoCalc = frames-fstart; %number of frames to calc
 %Preallocate arrays
 Int_RGB = zeros(1,numFramestoCalc);
 frameAvg_Gint = zeros (1,numFramestoCalc);
 frameAvg_Rint = zeros (1,numFramestoCalc);
 frameAvg_Bint = zeros (1,numFramestoCalc);

 frameAvg_HSV = zeros (1,numFramestoCalc);

 %Folder for thresholded images
 threshfolder =
strcat(expDir,'frames\BrightThresholded\',num2str(BWThreshold),'\');
 mkdir(threshfolder);

 for k=fstart:fspace:frames

I_RGB=imread(strcat(rawFramesDir,filename,'_raw_',num2str(k),'.jpg'));

 %extract R, G, and B maps values separately
 R=double(I_RGB(:,:,1));
 G=double(I_RGB(:,:,2));
 B=double(I_RGB(:,:,3));

 %NaN values outside of region of interest
 R(mask==0)=nan;
 G(mask==0)=nan;
 B(mask==0)=nan;

 %Get avg RGB values for this frame within mask
 frameAvg_Rint(k-fstart+1)= nanmean(nanmean(R));
 frameAvg_Gint(k-fstart+1)= nanmean(nanmean(G));
 frameAvg_Bint(k-fstart+1)= nanmean(nanmean(B));

 %Mean intensity calculated from R,G,B.
 Int_RGB(k-fstart+1)=mean([frameAvg_Rint(k-fstart+1),frameAvg_Gint(k-
fstart+1),frameAvg_Bint(k-fstart+1)]);

 %NAN overexposed pixels (white) from light source reflection
 %White pixels are those above threshold value
 [lengthX, lengthY, rgb] = size(I_RGB);
 for column = 1:lengthY
 for row =1:lengthX
 if (sum([R(row,column) G(row,column) B(row,column)]) >
BWThreshold* 3*Int_RGB(k-fstart+1))
 R(row,column)= nan;
 G(row,column)= nan;
 B(row,column)= nan;
 end
 end
 end

 %Export Thresholded Frame

imwrite(uint8(cat(3,R,G,B)),fullfile(threshfolder,strcat(num2str(k),".jpg")))
;

 fprintf('\tOn frame: %d out of %d processed.\n',k-fstart+1,frames-
fstart);
 end
 logParams = [logParams "Pixel Threshold"];
 logVals = [logVals BWThreshold];

 disp('Step 6: Calc Mean RGB Complete!')
%% Step 7 - Convert to HSV and Plot data
 disp('Step 7: Converting to HSV and Plotting Results...')

 %Time management

 %frame number array
 xFrame=fstart:fspace:frames;

 %time array
 %calc time with first frame at t = 0s
 xTime=(xFrame-frameZero)./framerate;%seconds
 %calc actual time of frame zero
 timeZero = frameZero/framerate;%seconds
 %correct xtime to account for timeshift
 xTime = xTime + timeZero;

 xvar=xTime;

 %Plotting mean RGB vs time
 subplot(2,3,1);
 plot(xvar,Int_RGB,'k')
 title('Mean RGB Intensity')
 xlabel('Time elapsed(s)')
 ylabel('Intensity (Arb)')
 set(gcf,'color','w');
 box on

 %Plotting R, G, B, individually and mean vs frame
 subplot(2,3,4);
 hold on
 plot(xFrame,Int_RGB,'k','Linewidth',1.5)
 plot(xFrame,frameAvg_Rint,'r','Linewidth',1.5)
 plot(xFrame,frameAvg_Gint,'g','Linewidth',1.5)
 plot(xFrame,frameAvg_Bint,'b','Linewidth',1.5)

 %add thick vertical lines every 10/100/1000 frames
 if (frames > 1000)
 for i=0:100:frames
 xline(i,'k');
 end

 elseif (frames > 10000)
 for i=0:1000:frames
 xline(i,'k');
 end
 else
 for i=0:10:frames
 xline(i,'k');

 end
 end

 title('RGB Separated Intensity Values')
 xlabel('Frame')
 ylabel('Intensity (Arb)')
 set(gcf,'color','w');
 hold off
 box on

 %Plotting R, G, B, individually and mean vs time
 subplot(2,3,[2 3]);
 hold on
 plot(xvar,Int_RGB,'k','Linewidth',1.5)
 plot(xvar,frameAvg_Rint,'r','Linewidth',1.5)
 plot(xvar,frameAvg_Gint,'g','Linewidth',1.5)
 plot(xvar,frameAvg_Bint,'b','Linewidth',1.5)
 title('RGB Separated Intensity Values')
 xlabel('Time elapsed (s)')
 ylabel('Intensity (Arb)')
 set(gcf,'color','w');
 box on
 hold off
 set(gcf, 'Position', [100, 100, 1000, 500])

 %Convert RGB to HSV
 frameAvg_RGB = [frameAvg_Rint' frameAvg_Gint' frameAvg_Bint']./255;
 frameAvg_HSV = rgb2hsv(frameAvg_RGB);
 %Separate out hue / saturation/ Value
 frameAvg_H = frameAvg_HSV(:,1)*360;
 frameAvg_S = frameAvg_HSV(:,2);
 frameAvg_V = frameAvg_HSV(:,3);
 %"Unwrap" H circle so red values dont appear on both top and bottom
 %of axis
 for hValIndex = 1:size(frameAvg_H)
 if (frameAvg_H(hValIndex)>320)
 frameAvg_H(hValIndex) = frameAvg_H(hValIndex)-360;
 end
 end

 %Plotting H and V vs time
 subplot(2,3,[5 6]);
 hold on
 yyaxis left
 ylabel('Hue')
 plot(xvar,frameAvg_H,'k','Linewidth',1.5)
 yyaxis right
 plot(xvar,frameAvg_S,'b','Linewidth',1.5)
 plot(xvar,frameAvg_V,'r','Linewidth',1.5)
 title('Hue and Value over time')
 xlabel('Time elapsed (s)')
 ylabel('Value')
 set(gcf,'color','w');
 box on

 hold off
 set(gcf, 'Position', [100, 100, 1000, 500])
 legend("Hue","Saturation","Value");

 %Concatenate results into matrix [frame xtime(s) Mean1(Arb) Mean2(Arb)
Rint(Arb) Gint(Arb) Bint(Arb)]
 m = [transpose(xFrame) transpose(xTime) transpose(Int_RGB) ...
 transpose(frameAvg_Rint) transpose(frameAvg_Gint) ...
 transpose(frameAvg_Bint) frameAvg_H frameAvg_S ...
 frameAvg_V];

 %Export Text
 expTail = strcat(filename,'_Data.txt');
 expPath = strcat(calcDataDir,expTail);

 %Write data file headers
 fid = fopen(expPath, 'w');
 fprintf(fid, "Frame,TimeElapsed(s),Mean Intensity,Red Intensity,Green
Intensity,Blue Intensity, Hue (degrees), Saturation (0-1), Value (0-1)\n");
 fclose(fid);

 %Write data
 dlmwrite(expPath,m,'-append','delimiter',',');

 disp('Step 7 Complete!')

%% Step 8: Write Log File
 disp('Step 8 Writing Log File...!')

 %Write Log File

 if(writeLog(expDir,logParams, logVals))
 disp('Log File Written');
 else
 disp('Log Failed');
 end

%%

 %% END

disp('Sequence Complete!')

%% Local functions
%Writes parameters to log file
function logged = writeLog(expPath,params, vals)
 %Get current date/time
 dateTime = datestr(datetime(now,'ConvertFrom','datenum'));

 dateTime = strrep(dateTime,":","_");
 dateTime = strrep(dateTime,"-","_");
 dateTime = strrep(dateTime," ","_");

 logName = strcat(expPath,'\AnalysisLog_',dateTime,'_.txt');
 logFileID = fopen(logName,'w');
 fprintf(logFileID, 'Log Entry - Generated \n%s\n',dateTime);
 outputs = [params;vals];
 fprintf(logFileID, '%s\n',outputs);
 fclose(logFileID);
 logged = 1;
end

%Loads parameters from log file
function data = readLog(logFilePath)
 logFid = fopen(logFilePath);
 txt = textscan(logFid,'%s','delimiter',',\n');
 fclose(logFid);
 txt = txt{1}; %Pull first element of cell aray
 txt = string(txt); %convert to string array
 %Convert to n x 2 array of param-val pairs
 data = [txt(1:2:end) txt(2:2:end)];
end

%Allows user to choose a frame
function pickedFrame = chooseFrame(frame, maxFrames, framesDir,
filename,mask)
 currentFrame = frame;
 pickedFrame = 0;
 done = 0;

 while (done ~= 1)
 %display masked, if mask given

 im
=imread(strcat(framesDir,filename,'_',num2str(currentFrame),'.jpg'));

 if (mask~=-1)
 imshow(imoverlay(mat2gray(im),mask,[0.0 0.5 0.0]));
 else
 imshow(im);
 end

 cmd = input(' q for done, asd+fgh for -(10/5/1)+(1/5/10), frames:
','s');
 switch cmd
 case 'q'
 done = 1;
 pickedFrame = currentFrame;
 case 'd'
 if (currentFrame > 1)
 currentFrame = currentFrame-1;

 end
 case 's'
 if (currentFrame > 6)
 currentFrame = currentFrame-5;
 end
 case 'a'
 if (currentFrame > 101)
 currentFrame = currentFrame-100;
 end
 case 'f'
 if (currentFrame < maxFrames)
 currentFrame = currentFrame+1;
 end
 case 'g'
 if (currentFrame < maxFrames-5)
 currentFrame = currentFrame+5;
 end
 case 'h'
 if (currentFrame < maxFrames-100)
 currentFrame = currentFrame+100;
 end
 otherwise
 disp('Unrecognized input\n');
 end

 end
end

Side View Analysis Strategy
Side view videos show the movement of the printing nozzle past a point on the substrate and track
the meniscus height over time (Supplemental Video 6).
Videos were analyzed in MATLAB (analysis code follows). The analysis procedure is as follows:

 Step 0: Initialization of data directories.
 Step 1: Video file selected and export directories created
 Step 2: Video loaded into ram
 Step 3: Video converted to frames and exported.
 Step 4: User selects a frame and sets the Black/White threshold and noise filter strength to

make the liquid film black and free space above it white. These can be set to be different
for the early frames (usually these have different contrast to the following).

 Step 5: User sets the horizontal baseline manually.
 Step 6: User chooses what column should be used for height measurement (the highest

black pixel in this column will be chosen as the meniscus height). User also selects the first
frame for analysis.

 Step 7: User calibrates length based on a chosen standard in the field of view (i.e., width
of the nozzle). This allows the code to report height values in real measurements.

 Step 8: Iterate through all frames and compute meniscus height at each location.
 Step 9. Compile data, export as plots and to file.

Side View MATLAB Code

%Meniscus Height profile from video calculator
% 12/19/2018 - JK
% 02/19/19 - BP

%% Step 0 - initialize
 disp('Step 0: Initializing...')
 clear all
 close all

 %ENTER FOLDER PATH WITH ORIGINAL VIDEOS HERE
 filedir=strcat('C:\Users…','\');
 %or default to userdir
 %filedir=strcat(userpath,'\');
 disp('Step 0 complete: Initialized gotten!')

 %Export directory
 expDir = strcat(filedir,'exportSide\');
 framesDir = strcat(expDir,'frames\');
 dataDir = strcat(expDir,'calcData\');
 disp('Step 0: Initializing Complete!')

%% Step 1 - Get Video file
 disp('Step 1: Get Video File...')
 [filenameext, filedir]=uigetfile(strcat(filedir,'*.*'));
 [~,filename,fileext]=fileparts(strcat(filedir,filenameext));
 disp('Step 1: Get Video File Complete!')

 %Make specific folder for data export
 dataExpDir = strcat(dataDir,filename,'\');

 mkdir(dataExpDir);

 %Make specific folder for frame export
 framesExpDir = strcat(framesDir,filename,'\');
 mkdir(framesExpDir);

%% Step 2 - Load Video to RAM
 disp('Step 2: Import Video to RAM...')
 obj = VideoReader(strcat(filedir,filenameext));
 vid = read(obj);
 frames = obj.NumberOfFrames;
 disp('Step 2: Import Video Complete!')

%% Step 3 - Convert Video file to frames and export
 disp('Step 3: Export Frames to File...')
 %Ask user if frames need to be output
 inp = input(" Output Frames? Y/N: ",'s');

 if(inp=='Y')
 for x = 1:1:frames

imwrite(vid(:,:,:,x),strcat(framesDir,filename,'\',filename,'_',num2str(x),'.
jpg'));
 fprintf('On frame: %d out of %d saved.\n',x,frames);

 end
 else
 disp(' Step 3 skipped!')
 end

imsize=size(imread(strcat(framesDir,filename,'\',filename,'_','1','.jpg')));
 beep
 disp('Step 3 complete: Frames Exported!')

%% Step 4 - SET BW Threshold and filtering
%Choose a frame then pick a BWthresh value. Iterate to find best value

 disp('Step 4 Set Black/White Threshold...')
 framenum= chooseFrame(20,frames,framesDir,filename,-1);

 %BWthresh is used to determine when converting from raw grayscale images
 %to black and white, so that we can identify the first black pixel in a
 %column as the top surface of the meniscus. Values range from 0 to 1. As
 %a first guess, the threshold is initialized at 0.4, but the user will
 %iteratively vary this until a clean image is obtained.
 BWthresh=0.4;

 %WF values reflect the strength of noise filtering applied to the image
 %Begin with a high value and reduce until the region above the meniscus
 %has no stray black pixels. The user will iteratively modify this at
 %runtime until a clean image is obtained.

 WF = 1;
 WF1=0;

I1test=imread(strcat(framesDir,filename,'\',filename,'_',num2str(framenum),'.
jpg'));
 Imid =
imread(strcat(framesDir,filename,'\',filename,'_',num2str(framenum+round(0.3*
(frames-framenum))),'.jpg'));
 Ifinal=imread(strcat(framesDir,filename,'\',filename,'_',num2str(frames-
5),'.jpg'));

 BWtest=rgb2gray(I1test);
 I2mid=rgb2gray(Imid);
 I2final=rgb2gray(Ifinal);

 montage({I1test,Imid,Ifinal,BWtest,I2mid,I2final}, 'Size', [2 3]);

 %let user enter BW and refresh image until they enter -1 for quit
 done = 0;
 while (done ~= 1)

 fprintf("Current Filter setting: BW %d, Filterx %d\n",BWthresh,WF);
 inp = input("Vary BWthresholdInit20/Final (A,B) or Filter (C/D):
",'s');

 switch(inp)
 case 'A'
 inp = input("Enter BWinitial threshold from 0 to 1 [no stray
black pixels], -1 to save: ",'s');
 inp = str2num(inp);
 BWthresh1 = inp;
 case 'B'
 inp = input("Enter BW threshold from 0 to 1 [no stray black
pixels], -1 to save: ",'s');
 inp = str2num(inp);
 BWthresh = inp;
 case 'C'
 inp = input("Enter number of times to run WFilter on 1st 20
frames: ",'s');
 inp = str2num(inp);
 WF1 = inp;
 case 'D'
 inp = input("Enter number of times to run WFilter on rest of
frames: ",'s');
 inp = str2num(inp);
 WF = inp;
 case 'q'
 done = 1;
 otherwise
 end

 %Display new setting

I1test=imread(strcat(framesDir,filename,'\',filename,'_',num2str(framenum),'.
jpg'));
 Imid =
imread(strcat(framesDir,filename,'\',filename,'_',num2str(framenum+round(0.3*
(frames-framenum))),'.jpg'));

Ifinal=imread(strcat(framesDir,filename,'\',filename,'_',num2str(frames-
5),'.jpg'));

 I2test=rgb2gray(I1test);
 I2mid=rgb2gray(Imid);
 I2final=rgb2gray(Ifinal);

 BWtest=imbinarize(I2test,BWthresh1);
 I2mid=imbinarize(I2mid,BWthresh);
 I2final=imbinarize(I2final,BWthresh);

 %Denoise with Weiner2 filter
 for (i=1:1:WF1)
 BWtest = wiener2(BWtest,[5 5]);
 end

 for (i=1:1:WF)
 I2mid = wiener2(I2mid,[5 5]);
 I2final = wiener2(I2final,[5 5]);
 end
 montage({I1test,Imid,Ifinal,BWtest,I2mid,I2final}, 'Size', [2 3]);
 str_caption = sprintf("F%d BW1%.2d WF1%.2d BW%.2d
WF%.2d",framenum,BWthresh1,WF1,BWthresh,WF);
 title(str_caption);
 %Export Frame
 expTail = strcat(filename,'_ImgSettings.jpg');
 expPath = strcat(dataExpDir,expTail);
 saveas(gcf,expPath);
 end
 disp('Step 4 complete: BW threshold set!');

%% Step 5 - Select Baseline

 disp('Step 5 Set Baseline...')
 %Choose a frame for baseline selection
 disp(' Choose Frame for Baseline Set')
 framebase=chooseFrame(framenum,frames,framesDir,filename,-1);

I1test=imread(strcat(framesDir,filename,'\',filename,'_',num2str(framebase),'
.jpg'));

 disp(' Choose Baseline Set')
 [~,row]=ginputc(1,'Color','r','LineStyle',':');
 baseline=round(row);
 disp('Step 5 Complete: Baseline set!')

%% Step 6 Choose Column and 1st frame to analyze height for
close all

 disp('Step 6 Set Column')
 %Choose a frame and click on image to select which column of pixels to

 %use. Or assign pixel column number in next section instead.

 disp(' Choose Column for Height MSMT')
 framenum=chooseFrame(framenum,frames,framesDir,filename,-1);

I1test=imread(strcat(framesDir,filename,'\',filename,'_',num2str(framenum),'.
jpg'));
 I2test=rgb2gray(I1test);
 colFrame=imbinarize(I2test,BWthresh1);
 %Denoise with Weiner2 filter
 for (i=1:1:WF)
 colFrame = wiener2(colFrame,[10 20]);

 end
 imshow(colFrame)
 [col,~]=ginputc(1,'Color','r','LineStyle',':');
 col=round(col);

 %Create labeled image
 str_caption = sprintf("F%d BW1%.2d WF1%.2d BW%.2d WF%.2d Col%d
Base%d",framenum,BWthresh1,WF1,BWthresh,WF,col,baseline);
 colFrame(:, col) = 255; % White = 255, can pick any intensity.
 colFrame(:, col-1) = 255;
 colFrame(:, col+1) = 255;
 colFrame(baseline, :) = 255;
 colFrame(baseline-1, :) = 255;
 colFrame(baseline+1, :) = 255;
 imshow(colFrame)
 title(str_caption);

disp('Step 6 complete: column set!')

%% Step 7 - Calibrate Length (optional)

 disp('Step 7 Calibrate Length...')

 %Ask user if length needs to be calibrated
 inp = input(" Calibrate Length? Y/N: ",'s');
 if(inp=='Y')
 lengthCalib=1;
 disp('Draw rectangular mask around reference length [left edge
first!]');

 %show the original image at current framenum

imshow(imread(strcat(framesDir,filename,'\',filename,'_',num2str(framenum),'.
jpg')));

 %Draw polygon mask
 %mx and my are the vertex positions of your mask
 %left click for points, right click to close loop
 %right click a vertex to create mask

 [mask, mx, my]=roipoly;

 refPix = ((mx(3)-mx(2))+(mx(4)-mx(1)))/2;

 %Display mask overlayed onto image
 imshow(imoverlay(mat2gray(colFrame),mask,[0.1 0.8 0.1]));

 refLength = input(" Enter Reference Length(um): ",'s');
 pSpeed = str2num(input(" Enter Printing speed(mm/min): ",'s'));
 mmPerPix = str2num(refLength)/1000/refPix;
 disp('Step 7 Complete: Length Calibrated!')
 else
 lengthCalib=0;
 disp('Step 7 skipped! - No Length param. set')
 end

 %Export Frame
 expTail = strcat(filename,'_maskEDFrame.jpg');
 expPath = strcat(dataExpDir,expTail);
 title(filename);
 saveas(gcf,expPath);

%% Step 8: Find meniscus height position for each frame
disp('Step 8: Obtain Meniscus Height at each frame...')

fstart=1; %start before needle appears, make sure col is at position before
needle passes
fspace=1;
fend=frames;
ypos=NaN([1,fend-fstart+1]);

%Early frames diff protocol
for k=fstart:fspace:20
 I1=imread(strcat(framesDir,filename,'\',filename,'_',num2str(k),'.jpg'));
 I2=rgb2gray(I1);
 BW=imbinarize(I2,BWthresh1);

 %Denoise with Weiner2 filter
 for (i=1:1:WF1)
 BW = wiener2(BW,[20 30]);
 end
 BWcol=BW(:,col);

 %height
 hpos = find(~BWcol,1,'first');
 if(isempty(hpos))
 ypos(k)=0;
 else
 ypos(k)=find(~BWcol,1,'first');
 end
 fprintf('On frame: %d out of %d processed.\n',k-fstart+1,frames-fstart);
end

if(k < 20)
 BW=imbinarize(I2,BWthresh1);
 else

end

for k=21:fspace:fend
 I1=imread(strcat(framesDir,filename,'\',filename,'_',num2str(k),'.jpg'));
 I2=rgb2gray(I1);
 BW=imbinarize(I2,BWthresh);

 %Denoise with Weiner2 filter
 for (i=1:1:WF)
 BW = wiener2(BW,[20 30]);
 end

 BWcol=BW(:,col);
 ypos(k)=find(~BWcol,1,'first');
 fprintf('On frame: %d out of %d processed.\n',k-fstart+1,frames-fstart);
end
disp('Step 8 complete: Meniscus height obtained!')

%% Step 9: Calculate meniscus profile
disp('Step 9: Calculate Meniscus Profiles...')

[~,minindex]=min(ypos);%get frame that needle first enters view

menheight=baseline-ypos; %substract baseline to get height of meniscus in
pixels

%mmPerPix=0.23/520;%real world length per pixel for conversion, from needle
width or another reference
if (lengthCalib==1)
 menheightreal=menheight.*mmPerPix;
end

%Average frame rate of video file for calculation. If frame rate is
inconsistent or
%there are dropped frames then you must find the time of each individual
%frame instead
framerate=obj.FrameRate;

%frame number array
xframe=1:fspace:fend;
%time array
xtime=(xframe-fstart)./framerate;%seconds

tOffset = minindex/framerate;%time needle first enters view
xtime = xtime-tOffset; %corrected time so 0 is when needle enters

%Use printing speed to scale distance
xDist = xtime*pSpeed*60; %mm

%Plotting
close all;

figure (1);

%Plotting realheight vs distance

 subplot(2,3,1);
 plot(xDist,menheightreal,'k','Linewidth',1.5)
 title('Meniscus Length')
 xlabel('Distance from Nozzle(mm)')
 ylabel('Height(mm)')
 set(gcf,'color','w');
 box on

%Plotting arb. axes vs frame
 subplot(2,3,4);
 plot(xframe,menheight,'k','Linewidth',1.5)

 %add thick vertical lines every 10/100/1000 frames
 if (frames > 1000)
 for i=0:100:frames
 xline(i,'k');
 end

 elseif (frames > 10000)
 for i=0:1000:frames
 xline(i,'k');
 end
 else
 for i=0:10:frames
 xline(i,'k');
 end
 end

 title('Raw Calculations')
 xlabel('Frame')
 ylabel('Height (pixels)')
 set(gcf,'color','w');
 hold off
 box on

 %Plot realheight vs time
 subplot(2,3,[2 3 5 6]);
 hold on
 plot(xtime,menheightreal,'k','Linewidth',1.5)
 xlabel('Time elapsed (s)')
 ylabel('Height(mm)')
 set(gcf,'color','w');
 box on
 hold off
 set(gcf, 'Position', [100, 100, 1200, 500])

 %Export Figure 1
 expTail = strcat(filename,'_allPlots.jpg');
 expPath = strcat(dataExpDir,expTail);
 saveas(gcf,expPath);

 figure(2)
 hold on
 plot(xtime,menheightreal,'k','Linewidth',1.5)
 title(filename)
 xlabel('Time elapsed (s)')

 ylabel('Height (mm)')
 set(gcf,'color','w');
 box on
 set(gcf, 'Position', [100, 100, 700, 500])
 %Export Figure 2
 expTail = strcat(filename,'_HvsT.jpg');
 expPath = strcat(dataExpDir,expTail);
 saveas(gcf,expPath);

 %Export Data to File

 %Concatenate results into matrix [frame xtime(s) xDist(mm)
menheight(pixel) menheightreal(mm)]
 m = [transpose(xframe) transpose(xtime) transpose(xDist)
transpose(menheight) transpose(menheightreal)];

 expTail = strcat(filename,'_Data.txt');
 expPath = strcat(dataExpDir,expTail);

 %Write data file headers
 fid = fopen(expPath, 'w');
 fprintf(fid, "Frame,TimeElapsed(s),Distance from nozzle
(mm),Height(pixel),Height(mm)\n");
 fclose(fid);

 %Write data
 dlmwrite(expPath,m,'-append','delimiter',',');
 disp('Step 7 Complete!')

 disp('Step 9 complete: Sequence Complete!')

%% Local functions
function pickedFrame = chooseFrame(frame, maxFrames, framesDir,
filename,mask)
 currentFrame = frame;
 pickedFrame = 0;
 done = 0;

 while (done ~= 1)
 %display masked, if mask given

 im
=imread(strcat(framesDir,filename,'\',filename,'_',num2str(currentFrame),'.jp
g'));

 if (mask~=-1)
 imshow(imoverlay(mat2gray(im),mask,[0.0 0.5 0.0]));
 else
 imshow(im);
 end

 cmd = input('Choose Frame: q for done, asd+fgh for -
(10/5/1)+(1/5/10), frames: ','s');
 switch cmd
 case 'q'
 done = 1;
 pickedFrame = currentFrame;
 case 'd'
 if (currentFrame > 1)
 currentFrame = currentFrame-1;
 end
 case 's'
 if (currentFrame > 6)
 currentFrame = currentFrame-5;
 end
 case 'a'
 if (currentFrame > 101)
 currentFrame = currentFrame-100;
 end
 case 'f'
 if (currentFrame < maxFrames)
 currentFrame = currentFrame+1;
 end
 case 'g'
 if (currentFrame < maxFrames-5)
 currentFrame = currentFrame+5;
 end
 case 'h'
 if (currentFrame < maxFrames-100)
 currentFrame = currentFrame+100;
 end
 otherwise
 disp('Unrecognized input\n');
 end

 end
end

§15. Solvent Vapor Annealing Study
 The apparatus for annealing during in situ microscopy comprised a small glass petri dish sitting
(base down) within a larger petri dish (also base down) on a hot plate set to the target temperature
underneath a microscope camera.
 In the absence of solvent vapor, structural rearrangement is not evident after several hours even
at the highest modest temperature used (65°C). Into the small petri dish were placed a metal weight
and the desired sample. An excess of THF solvent was injected into the larger petri dish and the
system was partially capped with a glass petri dish cover (preheated to 150°C to avoid
condensation) and held closed for 300 seconds. Then the dish is uncapped and the remaining THF
solvent was removed via syringe pump from the reservoir and the sample could deswell. All
experiments took place in a fume hood with strong forced convection.

Microscope camera images of solvent-vapor annealed samples discussed in the main text.

Figure S47 Printed at 25C, annealed at 25C.

Figure S48 Printed at 25C, annealed at 50C.

Figure S49. Printed at 50C, annealed at 50C.

Figure S50. Printed at 50C, annealed at 65C.

Microscope Images of Dropcast Solvent Annealed Samples

Figure S51. Images and peak reflected wavelength for dropcast samples prepared at 25 C and then

solvent vapor annealed at the indicated temperatures.

§16. Thermal Annealing
The following result is from compression/annealing of the as-synthesized polymer between glass slides in
a vacuum oven for 3 hours at 150 C. We see that after thermal annealing, the peak reflected wavelength is
~605 nm, (corresponding to optically estimated d-spacing of 212 nm, see SI page 40). This is well above
that of the majority of our printed films and suggests that the printed films are indeed trapped in a metastable
conformation.

Figure S52. Thermal Annealing results. (A) Microscope camera image of annealed film under a ring light.

	aaz7202_coverpage
	aaz7202_SM_1
	aaz7202_coverpage
	aaz7202_SupplementalMaterial_v9

