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§1. Description of Supplemental Videos 
 

Supplemental Video 1: Microscope camera video of drying dropcast samples (Figure 1F). 
Samples dropcast from 40 μL of 100 mg/mL solution in THF onto plasma-cleaned bare silicon 
wafers at room temperature. Droplets are ~ 6 mm in diameter. 

Supplemental Video 2: 5x speed pen camera video of the meniscus during printing of a 
meanderline pattern at a speed of 60 mm/min, substrate temperature of 50°C, and applied pressure 
of 30 kPa. Printed film is shown in the 3rd/4th rows and 3rd column of Figure 2C (lower panel) in 
the main text. 

Supplemental Video 3: 10x speed pen camera video of the meniscus during printing of the 50°C, 
constant condition chameleon shown in Figure 2D of the main text. 

Supplemental Video 4: Cellphone camera video clip of layered chameleon (Figure 2E) printing 
onto a bare silicon 4” wafer.  

Supplemental Video 5: Mosaic of side-view (transmission) videos analyzed for in situ optical 
measurements. Printing speeds are noted in the video. The syringe needle shown in the videos has 
outer diameter ~240 μm. 

Supplemental Video 6: Top view videos of the type analyzed for in situ optical measurements. 
Printing speeds are noted in the video. The syringe needle shown in the videos has outer diameter 
~240 μm. 

 

 

 

  



 

§2. Synthesis and Chemical Characterization 
   All reactions were performed in an argon-filled glovebox (O2 < 2 ppm, H2O < 0.5 ppm) at room 
temperature using oven dried glassware. THF and toluene were dried using a commercial solvent 
purification system. rac-Lactide {Aldrich}, and tert-butyllithium solution {1.7 M in pentane, 
Aldrich} was used as received.  1,8-diazabicyclo[5.4.0]undec-7-ene (DBU) {Aldrich} and 
hexamethylcyclotrisiloxane {Aldrich, 98%}, was distilled prior to use. Chlorotrimethylsilane 
(TMSCl) was distilled over CaH2 and storage under argon.  [(H2IMes)(3-Br-py)2(Cl)2Ru=CHPh], 
G3 was synthesized according to literature.48 5-Norbornene-2-methanol was synthesized 
according to literature (mixture of 20% exo/endo used)52. 

   Gel Permeation Chromatography (GPC) was performed using a Tosoh Ecosec HLC-8320GPC 
at 40 ºC fitted with a reference column (6.0 mm ID x 15 cm), a guard column (6.0 mm ID x 4.0 
cm x 5 μm), and two analytical columns (7.8 mm ID x 30 cm x 5 μm). The reference flow rate is 
0.5 mL min-1 while the analytical column is at 1.0 mL·min-1. THF (HPLC grade) was used as the 
eluent, and polystyrene standards (15 points ranging from 500 Mw to 8.42 million Mw) were used 
as the general calibration. An additional calibration was created for specifically for linear 
polylactic acid and only used for linear polylactic acid (10 points ranging from 500 Mw to 10,000 
Mw).  

   Triple Detection Gel Permeation Chromatography (t-GPC) was performed using a Viscotek 
GPCmax pump and TDA302 triple detector (Refractive Index, 90º and 7º light scattering, 
Viscometer) at 35 ºC fitted with two mixed-bed analytical columns (PolyAnalytik PAS-M: 8 
mmID x 30 cm length, 10 μm particles, exclusion limit 20,000,000 Da relative to polystyrene). 
The flowrate was 1.0 mL·min-1. THF (HPLC grade) was used as the eluent. The detectors were 
calibrated with a narrow polystyrene standard (Mw= 99,000 Da). Performed by PolyAnalytik Inc. 
(London, Canada).  

Procedure for the synthesis of PDMS macromonomers: 

 

Procedure for the anionic ring opening polymerization (ROP) of siloxane has previously been 
described by our group, and re-described here.30 Mn(GPC with respect to PS standards)= 6,200 
g/mol; Mw/Mn=1.05 (GPC traces in Figure S4). 

  



 

Procedure for the synthesis of PLA macromonomers 

 

Procedure for the ring opening polymerization (ROP) of lactide has previously been described 
by our group, and re-described here.15,30 Mn(GPC with respect to PLA standards)= 5,100 g/mol; 
Mw/Mn=1.05 (GPC traces in Figure S4Figure S2). 

Procedure to obtain kinetic data for the synthesis of PDMS-b-PLA bottlebrush polymers 

 

In an oven-dried 20 mL glass vial, PDMS macromonomer (300 mg, 0.0484 mmol) was dissolved 
into THF (3 ml). The polymerization is initiated by adding G3 via a stock solution (0.5 ml add of: 
4.28 mg G3 in 2.5 ml THF). Time points were obtained by taken 70 μL aliquots and injecting into 
1 ml of THF with a large excess of ethyl vinyl ether. Each aliquot was analyzed by GPC. After 30 
min, PLA macromonomer (247 mg, 0.0484 mmol) was added in THF (3 ml). Time points were 
collected and analyzed by GPC during this reaction period as well.  GPC traces shown in Figures 
S1, S2. Analyzed data shown in Figure S3. 



 

 

Figure S1. GPC traces for the ROMP of PDMS macromonomers 

 

Figure S2. GPC traces for the ROMP of PLA macromonomers continuing off of the PDMS 
bottlebrush. The bold green trace is the PDMS bottlebrush. 

 

 

 



 

 

Figure S3. Kinetic plot for the synthesis of PDMS-b-PLA bottlebrush.. 

 

Procedure to obtain kinetic data for the synthesis of PDMS-b-PLA bottlebrush polymers 
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In an oven-dried round bottom flask, PDMS macromonomer (3 g, 0.484 mmol) was dissolved into 
THF (30 ml). The polymerization is initiated by adding G3 via a stock solution (5 ml add of: 4.28 
mg in 10 ml THF). Each aliquots was analyzed by GPC. After 30 min, PLA macromonomer (2.47 
g, 0.484 mmol) was added in THF (30 ml). After 30 min, a large excess of ethyl vinyl ether (large 
excess with respect to [Ru]) was added to the reaction mixture then poured into cold methanol (-
30 ℃) and a centrifuge was used to isolate the resulting polymer. The polymer was dried under 
vacuum and then analyzed by GPC (Figure S4). Mn(t-GPC)= 1,930,000 g/mol; Mw/Mn=1.09 

(2 % of unfunctionalized (no norbornene end group) brush is present by GPC) 



 

 

Figure S4: GPC traces of PDMS-b-PLA bottlebrush and PDMS/PLA macromonomers. 

  



 

§3. Thermal Properties (Differential Scanning Calorimetry) 
The as-prepared bottlebrush block copolymer reflected the glass transition of the constituent arm 
chemistries very close to the homopolymer brush and homopolymer arm transition temperatures 
as summarized below. (Excerpts from 2nd heats plotted). 

 

Figure S5. Replotted features excerpted from DSC curves for bottlebrush block copolymer, 
homopolymer bottlebrush, and linear polymer arms. 

Measurement Parameters. 
     Samples of ~5 mg were measured into DSC Consumables Aluminum Tzero pans and scanned 
on a TA instruments Discovery 2500 Differential Scanning Calorimeter (DSC) at the University 
of Illinois Materials Research Laboratory. Samples were first equilibrated at -180°C. All 
temperature ramps were performed at 10°C/min with 2 minute isotherms at endpoints. 
 

Table S1. Thermal Properties of synthesized Bottlebrush 

Parameter Measured from 2nd heat Literature Value (linear polymer) 

PDMS Tg -125.51 C -123.15 C (150 K)33 

PDMS Tm -50.90 C -53 C (220 K)33 

PLA Tg 53.19 C 49.9 C - 56.9 C (323K-330K)33 
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§4. Small-Angle X-ray Scattering and Scanning Electron Microscopy 
Analysis of BBCP ink 
 
Experimental Parameters: 

Experiments were performed at beamline 12-ID-B of the Advanced Photon Source (Lemont, IL) 
with beam energy 13.3 keV using the Pilatus 2M 2D detector at a sample-detector distance of 3.6 
m. Q-calibration was performed against a silver behenate standard. 2D data reduction was 
performed using the Nika package for Igor Pro (WaveMetrics, Lake Oswego, OR, USA) 
developed by Jan Ilavsky.51 

 
Ink Characterization (10.1 wt% solution) 
     Solutions of the 10.1 wt% (100 mg/mL) BBCP in THF were prepared via dissolution with 
stirring at room temperature, followed by aging for 2 hours without stirring and exhibited a faint 
purple reflection.  Solutions were loaded into 1.0 mm, thin-walled quartz capillaries (Charles 
Supper Company, Inc. – Natick, MA). For each image/profile shown below, 10 scans were taken 
at 0.1s exposure times and averaged. Azimuthal averaging was performed from 0 to 180 degrees. 

 
 
Figure S6. Raw 2D SAXS data for solutions in capillaries. (A) Pure THF, (B) 10.1 wt%  PDMS-
b-PLA with backbone DP of 200 repeat units, (C) and (D) two trials of 10.1 wt% PDMS-b-PLA 

with backbone DP of 400 repeat units. 
 



 

 
 

 
Figure S7. Azimuthally averaged profiles for capillary SAXS measurements (a) before and (b) 

after subtraction of pure solvent background. 
 

Scanning Electron Microscopy: 
   To further support this conclusion, we have performed scanning electron microscopy of a solution of 100 
mg/mL BBCP in THF prepared via a freeze drying method. In brief: a small quantity of solution was 
dropped onto a silicon wafer and quickly covered by a glass slide and immersed in liquid nitrogen to freeze 
the solvent. The slide was separated from the wafer while still immersed and immediately placed into an 
evacuated microscope stage held at -150 C. While under vacuum, the temperature was slowly (~1C/min) 
increased to allow solvent to melt and evaporate. The resulting film was coated with 5 nm Au/Pd and 
imaged at 7 keV in a JEOL 7000F Analytical SEM.  

We obtain the following micrograph: 



 

 

Figure S8. SEM micrograph of freeze-dried 100 mg/mL BBCP solution. 

   The freeze-dried film comprises a large number of partially-fused spherical micelles. Performing a simple 
image analysis by measurement of the diameter of 50 isolated particles yields an average diameter of 190 ±
45 nm, in rough agreement particle size measured from SAXS (156.7 nm).  

 

  



 

§5. 3D printer Hardware and Software  
     Parts and software designed by BP during the course of this work are provided in the supporting 
information in the zipped folder “SI_HardwareSoftware”. Latest versions of the printer control 
software (PolyChemPrint) written for this work can be found at the following GitHub link: 
https://github.com/BijalBPatel/PolyChemPrint3#polychemprint3 and at 
http://diao.scs.illinois.edu/Diao_Lab. All code written for this work is released under the Open 
Source UIUC/NCSA License. Software from other sources used in this work is listed below. 

Lulzbot Taz 6 3D Printer Hardware modifications 

   The Lulzbot Taz 6 3D Printer was purchased from Aleph Objects, Inc. The original thermoplastic 
print head was removed from its mount but left connected to avoid a temperature probe error.  A 
new syringe mount was custom modeled in Autodesk Inventor and 3D printed with a simple grid 
pattern of holes for supporting the pen camera for monitoring nozzle position. Holes were enlarged 
with a soldering iron and threaded using ¼-20 socket head cap screws (used to secure the camera). 
The syringe was secured to the mount with two zip ties during printing. The original PEI print bed 
was protected from solvent by a large ¼” thick glass plate secured with two medium binder clips. 
The filament reel and original hot end scrubbing pad were removed.  
 

 
Figure S9. Custom syringe mount, CAD and STL files available for download in supplemental 

zipped folder. 
 
Lulzbot Taz 6 Firmware modifications 
   Modifications to the open source Marlin firmware on the Taz 6 
(https://github.com/alephobjects/Marlin, https://github.com/MarlinFirmware/Marlin) 
were made using the open source arduinoIDE 1.8.9 (https://www.arduino.cc/en/main/software). 
Three major changes were made to the stock Taz 6 Marlin firmware (original sources). First, the 
baud rate was changed to 115200. Second, the motion buffer was reduced to 1 command to prevent 



 

queueing of motion commands. Third, Marlins “ok…” command receipt response was suppressed 
until the end of the current motion step in order to signal to PolyChemPrint that motion was 
complete for synchronization with the extruder. The latest version of the modified firmware source 
and compiled .hex file are available for download from the zipped folder or the link at the 
beginning of this section.  
 
Pneumatic Extrusion Hardware 
     The Ultimus V dispensing system was procured from Nordson EFD, Inc.  The unit was used 
without modification along with 3 mL polypropylene amber syringe barrels and 32 Gauge standard 
needle tips. Standard white polyethylene pistons were used to avoid excess evaporation of solvent. 
In order to evaluate the chemical resistance of the barrel, nozzles, and piston, each was left in a 
sealed (parafilmed) vial of tetrahydrofuran for 2 weeks before a sample of the solvent was taken 
and dropcast onto clean silicon. No residue was observed and no visible degradation of the parts 
was seen. Nevertheless, parts were only used once and were in contact with the solvent a maximum 
of ~7 hours for each set of experiments. It was found that over time (~weeks) the O-ring at the seat 
of the low-pressure syringe adapter began to crack due to solvent exposure and lead to uneven 
dispensing. All data presented in this manuscript was collected with freshly installed o-rings. 
 
PolyChemPrint Software  
   A custom software program was written to control the Ultimus V extruder (over a RS-232 serial 
port) and the Taz 6 (through USB). The current version of the program (v2.2) was written in Perl 
and runs via a terminal interface on Linux Debian 9/10. In brief, the program has three modes of 
operation: (1) direct hardware control (line-by-line command execution), (2) pre-programmed, 
customizable, scripts for simple patterns such as meander-lines, and (3) importing of GCODE files. 
As of version 2.2, imported GCODE files are only used for motion paths, while print speed, 
pressure, travel speed, z-hop height, and z-speed are fully customizable within PolyChemPrint. 
Automatic data logging is supported. Latest versions of the software and fully documented source 
files are available at the link at the beginning of this section.  Version 2.2 is available for download 
from the supplemental zipped folder. A brief software overview (through screenshots) is provided 
in the following figures. 
 
   The authors thank John Roshek at the School of Chemical Sciences Electronics shop for 
invaluable advice early in the process.  
 
 
  



 

 
Figure S10. Main Menu and Settings 

 
 

 
Figure S11. Hardware Menu 

  



 

 
Figure S12. Printing from GCode File Menu  



 

 

Figure S13. Printing Parameterized Shape Menu 

 



 

§6. Printing Reproducibility Test 

 
Figure S14. Microscope images and UV-Vis diffuse reflection spectra a series of samples 

printed repeatedly at the same conditions. 

  



 

§7. Demonstration Prints 
     In order to print the complex chameleon patterns, a vector drawing was first drawn in Inkscape, 
a free vector editing software. Then, the sections of the drawing at each print bed temperature were 
separated into separate image files. Images were converted to GCode using the free GCodeTools 
plugin for inkscape with a pen diameter of 10 mm, minimum arc radius of 1mm, depth function of 
1, Z safe height of 3 mm, print speed of 9999, penetration speed of 9998, and passing speed of 
1000 [replaceable values within PolyChemPrint]. This scheme is quite easy to use and allowed the 
authors to create the patterns from scratch in a matter of hours. 

 

 
Figure S15. Top left: Original inkscape chameleon drawing and (clockwise): 65 C layer, 50 C 

layer, and 25 C layer with motion vectors overlayed. 
      
  



 

     Chameleon patterns were printed onto bare 100mm silicon wafers (University Wafers No.1113) 
and imaged on the Keyence VK-X1000 3D Laser Scanning Confocal microscope in image 
acquisition mode with  the full ring light enabled. ~150 individual images each were taken and 
manually stitched together using Paint.Net, a free lightweight photo editor,  to obtain the originals 
below. Images shown below are each stitched from ~100 optical microscopy images under diffuse, 
ring lighting. Dust particles and the faint reflection of the light source were removed from the 
background for the images in the main text. Images shown below are unedited. 
 

 
Figure S16. Original stitched microscope images of chameleons printed onto bare Si wafers. 

  



 

For printing on a curved surface, a 10 mL glass round bottom flask was used as the substrate 
(Figure S17A). The previous method using inkscape is unsuitable for 3D surfaces, so the surface 
was modeled as a spherical cap in Cura with a very large line thickness (to give spacing between 
the lines). Printing speed and pressure were held constant for each two prints, with the flask held 
at 25C (Figure S17B,C,D) and ~50C (Figure S17 E,F,G). To improve the visibility of the lines, 
the flask is imaged both empty, and filled with a dark ink to provide an absorbing background. 
Image under a microscope at normal incidence reveals that there is a redshift in the reflected 
wavelength with increasing substrate temperature, consistent with the results on planar surfaces. 
 

 
 
Figure S17. Printing on a curved surface. (A) Image of the printer at the start of the print. (B – D) 
Images of an example print at ambient temperature (25C) with an empty round bottom flask 
(transmissive background), dark ink within the flask (absorbing background), and under a 
microscope camera, respectively. Upper image in red outline is a magnification of the lower image. 
(E – G) Images of an example print at elevated temperature (𝑇௦௦~ 50 𝐶). Photo Credit: Bijal 
Patel, University of Illinois. 
 

  



 

§8. UV-Vis Diffuse Reflectance Measurements 
   UV-Vis measurements were taken on a Varian Cary 5G spectrophotometer using the internal 
diffuse reflection accessory at the Illinois Materials Research Laboratory. Samples were taken in 
diffuse reflection mode to eliminate the (mostly) specular reflection signal from the bare silicon 
substrate. Measurements were taken with Zero/Baseline correction referenced against the empty 
chamber and Spectralon diffuse reflectance standard, respectively. Signal to Noise Resolution 
(SNR) mode was used with a threshold of 50:1 and a timeout of 0.25s. 

Raw spectra for the large dataset in Figure 3A are reproduced below. 

  

Figure S18. Raw UV-Vis reflection spectra for printed samples shown in Figure 2C of the main 

text. 

Peaks were fit to Lorentzian functions in Origin Pro with the initial starting point for iteration 
placed manually (Aside from the 25 C very thin films, rescaling the y data and restricting the 
domain to ~450 – 750 nm made the peaks very obvious). In nearly all cases the location of the 
second order peak (𝜆ଶ = 𝜆ଵ/2) was missing in the obtained spectra. When deconvoluting the 
spectra, the data to the left of the n=2 peak that was visible was cropped out and the remaining 
decay was fit as its own Lorentzian peak.  

  



 

§9. Volume Fraction Estimation 
 

The volume fraction of PDMS (Φெௌ = 0.61) was found by substituting the following data 

Table S2. Synthetic and chemical properties of polymacromonomers 

Species Mn(g/mol) DP 𝜌 ቀ
𝑔

𝑐𝑚ଷ
ቁ Density 

Citation 

PLA-NB 5100 200 1.25 34 

PDMS-NB 6200 200 0.965 33 
 

into the following equation, as per Dalsin et al.9 

𝜙ெௌ =
(𝑀,ெௌିே ∗ 𝐷𝑃ெௌିே/𝜌ெௌିே)

(𝑀,ெௌିே ∗ 𝐷𝑃ெௌିே/𝜌ெௌିே )) + (𝑀,ିே ∗ 𝐷𝑃 /𝜌ି ))
 

Here, we approximate the density of the pdms-NB macromonomer to be the same as the bulk value 
of the PDMS/PLA constituent.  



 

§10. Scanning Electron Micrographs of Printed Films 
 
Preparation of Cross-Sections 
   It was quite challenging to generate undamaged cross-sections of printed films, we suspect due 
to the very low glass transition of PDMS. The following approach was settled on after much trial 
and error with simpler methods of freeze fracture and was found to provide acceptable yield 
(~50%). Alternatively, ultramicrotome is an effective – albeit time-consuming method for 
sectioning films (thank you to Dr. Scott Robinson at the Beckman Institute at the University of 
Illinois). 
   In our scheme, a “double boiler” setup of 1 small crystallization dish was placed inside a larger 
recrystallization dish resting on a polystyrene board. Liquid nitrogen was poured into both vessels 
and allowed to equilibrate after the first boil. Samples printed on silicon wafers were carefully 
delaminated from the silicon with a new, clean steel razorblade. The lower half of each section 
was sandwiched between two pieces of copper tape and dropped into the LN2 bath and left for 25 
minutes. Meanwhile, two pairs of stainless-steel forceps (with insulation taped onto the handles) 
were placed into the ‘outer’ crystallization dish to chill them. After 25 minutes, the copper tape 
sample was picked up with 1 set of forceps and within the LN2 bath, the other set of forceps was 
scraped across the projecting sample to fracture. Then, the copper tape was separated and replaced 
lower down to expose ~0.5cm of polymer leading up to the edge for good coating of Au/Pd in the 
next step. 

 

 
Figure S19. Fractured polymer thin-film sample prior to AuPd coating. 

   To prevent charging during SEM, samples were coated for 40 seconds in the Emitech K575 with 
Au/Pd at 20 mA (~2.5 Å/s) for a total thickness of ~10 nm. Samples were first mounted in the 
‘mini-vise’ holder before coating. 
 
Scanning Electron Microscopy 
     Samples were scanned on a JEOL 7000F Analytical SEM at the Illinois Materials Research 
Laboratory. It was found that the best balance between domain contrast and resolution was 
obtained by scanning at 3-5 keV at the highest probe current. Samples were found to show 
adequate contrast without the use of an additional chemical stain. Images that follow are contrast 
enhanced in ImageJ 2 for clarity.  



 

Dropcast Samples – 25°C 

 
Figure S20. SEM of Dropcast Samples 



 

Printed Samples – cross-sections of samples shown in Figure 2C of the main text 

70°C – 30 mm/min – 30 kPa 

 
Figure S21. SEM of printed sample – 70°C – 30 mm/min – 30 kPa 

 

  



 

50°C – 30 mm/min – 30 kPa 

Figure S22. SEM of printed sample – 50°C – 30 mm/min – 30 kPa 



 

25°C – 60 mm/min – 30 kPa 

Figure S23. SEM of printed sample – 25°C – 60 mm/min – 30 kPa  



 

§11. Small-Angle X-ray Scattering Analysis of Printed Films 
     
Printed Films 
Due to their high surface roughness/curvature, samples were unsuitable for running in grazing 
incidence configuration which is more typical for thin films. Instead, small-angle X-ray scattering 
experiments were performed in transmission mode at a shallow negative angle (Figure S23). 
Experiments were performed at beamline 12-ID-B of the Advanced Photon Source (Lemont, IL) 
with beam energy 13.3 keV using the Pilatus 2M 2D detector. Five 0.1s scans were taken for each 
image shown below. 
 
 

 
Figure S24. Schematic of printed film SAXS experiments. 

 
2D Data Reduction      
     2D data reduction and scan averaging was performed using the Nika package developed by Jan 
Ilavsky51 for Igor Pro (WaveMetrics, Lake Oswego, OR, USA). Spectra were restricted to the 
region of q < ~0.4 nm-1 before peaks were deconvoluted and fit using Igor Pro’s built-in multi-
peak fitting function. Peaks were fit sequentially from weakest to strongest as voigt functions 
before refitting the entire curve. The following figures correspond to points in Figure 4C of the 
main text and contain 2D data and fitted 1-D linecuts. Not all fitted peaks were used to calculate 
domain spacing. 
 
 
 
  



 

 
Figure S25. 2D SAXS data and fitted linecut for (A) Dropcast 1 (25C) position 1 (B) Dropcast 1 

(25C) position 2 (C) Dropcast 1 (25C) position 3 
  



 

 

Figure S26. 2D SAXS data and fitted linecut for (A) Dropcast 2 (25C) position 1 (B) Dropcast 2 
(25C) position 2 (C) Dropcast 2 (25C) position 3 

 
 
 
 



 

 
Figure S27. 2D SAXS data and fitted linecut for (A) Dropcast 3 (25C) position 1 (B) Dropcast 3 

(25C) position 2 (C) Dropcast 3 (25C) position 3 
 
 
 
 
 



 

 
Figure S28. 2D SAXS data and fitted linecut for samples (A) printed at  15 mm/min, 25 C and 

(B) 15 mm/min, 25 C. 
 
 
  



 

 
 
Figure S29. 2D SAXS data and fitted linecut for samples printed at (A)15 mm/min, 50 C; (B) 15 

mm/min, 50 C; and (C) 30 mm/min , 50C 
 
 
 
 



 

 
Figure S30. 2D SAXS data and fitted linecut for samples printed at (A) 60 mm/min, 50 C; (B) 

60 mm/min, 50 C; and (C) 120 mm/min , 50C 
 
 
 
 
 



 

 
Figure S31. 2D SAXS data and fitted linecut for samples printed at (A) 180 mm/min, 50 C; 

(B) 240 mm/min, 50 C; and (C) 360 mm/min , 50C 
 
 
 
 
 



 

 
 

Figure S32. 2D SAXS data and fitted linecut for samples printed at (A) 600 mm/min, 50 C;  
(B) 15 mm/min, 70 C; and (C) 30 mm/min , 70 C 

 
 

 
  



 

Determination of the 2D out-of-plane orientation parameter 
 
   To quantify the degree of out-of-plane alignment of lamellar domains, we have calculated the 
2D out-of-plane orientation parameter37 𝑆ଶ using the equation:  
 

𝑆ଶ =< 𝑐𝑜𝑠2χ >= 2 < cosଶ χ > −1 
 
Where χ  represents the angle between the lamellar normal and the substrate normal. 𝑆ଶ varies 
between -1 and 1, with 1 representing lamellae perpendicular to the substrate, 0 representing 
isotropy, and -1 representing fully parallel lamellae.  

< cosଶ χ > can be calculated from 2D scattering data by taking sector cuts and determining the 
area of a particular peak (here we choose n=2) as a function of 𝜒 and computing the following: 

< cosଶ 𝛾 >ீூௐௌ=
∑ 𝐼(𝜒) cosଶ(𝜒) sin(𝜒) ∆𝜒

∑ 𝐼(𝜒) sin(𝜒) ∆𝜒
 

Where ∆𝜒  is the width of the ith sector.  
   We have performed this calculation for two samples: the dropcast film and the film printed at 15 
mm/min at 50 C and calculate 2D orientation parameters of -0.73 and -0.96, respectively. This 
suggests that while both cases have lamellae oriented primarily parallel to the substrate, the printed 
films are more strongly oriented. This supports the assessment we have made in the manuscript 
and suggests that domain orientation plays a more minor role compared to domain size. 
 
Domain Spacing Analysis 

For lamellar morphology, constructive interference from successive layers causes peak spacing 
to follow 

𝑞 =
ଶగ

ௗೣ
      Equation S2 

 
Where n is the order of the diffraction peak and dx is the lamellar repeat distance. When the 

lowest order of diffraction is clearly visible, n takes the value 1, and the equation can be solved 
directly for lamellar repeat distance. In our case, the predicted domain size (~230 nm) puts the 
estimated 1st order peak at q = 0.0027 A-1, which is below the minimum q-value we can detect. By 
rearranging equation 2 in series form, however, an alternate approach can be taken based on the 
difference in peak location between successive order peaks.  

 

𝑑௫ =
ଶగ

శభି
      Equation S3 

 
Here, we present domain sizes obtained by averaging the predicted spacing from at least 4 

diffraction orders to minimize the impact of diffuse scattering in biasing the low q peak positions. 
For lamellar domains of a real symmetric block copolymers, peaks appear at integer multiples of 
the fundamental peak, with every other peak (n=2, n=4, n=6) significantly weakened52. In our case 
we predict that  ϕୈୗ~ 0.61 based on molecular weight, synthetic parameters, and the bulk 
density of the arm species (calculation shown above), and we find that for most of our spectra even 
order peaks are only visible weakly or as peak shoulders at low q. When even order peaks are 
weakly resolved, we instead fit only the stronger and highly evident odd numbered peaks and 



 

multiply the resulting peak spacing by two to reflect the true domain spacing of the lamellar 
repeat unit.  

We note that is not the approach commonly used for BBCP lamellar X-ray analysis, where 1st 
order peaks are usually experimentally measured9,17. We justify this approach in various additional 
ways below: 

 
Justification 1: Arguments based on symmetry and SAXS theory 
     As mentioned above, this argument relies on the fact that for symmetric lamellae, SAXS spectra 
should reflect a nonmonotonic (alternating) decay of peak intensity with peak order. The 
underlying theory and calculations to support this can be found in many elementary SAXS texts, 
such as Roe52. We note that this qualitative behavior is strictly true only for symmetric lamellae: 
for asymmetric lamellae a monotonic decrease in peak intensity is predicted. As noted above, we 
calculate a PDMS volume fraction of 𝜙ெௌ = 0.61, which is nearly, but not perfectly symmetric. 
Aside from the inherent uncertainty in this value due to the choice of bulk density estimates, we 
have deliberately made several choices during measurement and analysis that further reduce the 
observed even order peak signal. 
     First, all samples manifest a very intense, diffuse scattering signal along qz, requiring us to use 
a large vertical beamstop and obscure the completely vertically aligned data (where even-order 
peaks would be most evident). It is clear; however, that evenly spaced odd-order peaks are well-
resolved far from the centerline, and furthermore data obtained at moderate q is less likely to be 
biased by diffuse scattering, film refraction, etc. As a result, we must choose a region of integration 
for peak fitting that is offset from the center line, where we can consistently fit the strong, well-
resolved odd-order peaks.  
 
For reference in the following discussion: 
If 2nd order peaks are assumed to be hidden, 𝒅𝑿𝒓𝒂𝒚

𝒉 ~𝟐𝟏𝟎 𝒏𝒎. Otherwise, 𝒅𝑿ି𝒓𝒂𝒚 ~𝟏𝟎𝟓 𝒏𝒎. 

 
Justification 2: Arguments based on optical properties 
     The two indirect measurements of lamellar domain size that we can obtain from UV-Vis 
reflection measurements and cross-sectional scanning electron microscopy also support the 
assessment that even order peaks are obscured.  
 
As described in the main text, we can use the ideal Bragg-Snell equation for 1D photonic crystals 
to estimate domain size from the peak reflected wavelength observed.  
 

𝜆 = 2(𝑛ଵ𝑑ଵ + 𝑛ଶ𝑑ଶ)     Equation S4 
 
Table S3. Parameters and source for substitution into the Bragg-Snell equation. 

Parameter 
Peak reflected 

wavelength 
(nm) 

Refractive 
index of 
PDMS 

Refractive 
index of PLA 

Domain size 
of PDMS 

Domain 
size of 
PLA 

Symbol 𝜆 𝑛ଵ 𝑛ଶ 𝑑ଵ 𝑑ଶ 

Value Measured 1.40 1.46 To be solved 
To be 
solved 

Reference - 33 34 - - 
 



 

 
We can relate the thickness of each layer based on our estimated volume fraction (𝜙) by assuming 
constant cross-sectional area. 

𝜙ଵ =  
భ

భାమ
=

∗ௗభ

(∗ௗభ)ା(∗ௗమ)
=

ௗభ

ௗభାௗమ
    Equation S5 

Substituting in the value of 𝜙ெௌ = 0.61 and rearranging to solve for 𝑑ଵ gives us: 

𝑑ଵ = 1.57 ∗ 𝑑ଶ     Equation S6 

Now we can substitute this relation into our Bragg-Snell equation  
 

𝜆 = 2(𝑛ଵ ∗ 1.57𝑑ଶ + 𝑛ଶ ∗ 𝑑ଶ)  35  Equation S7 
and rearrange to solve for 𝑑ଶ 
 

𝑑ଶ =
ఒ

ଶ∗(ଵ.ହ∗భାమ)
     Equation S8 

 
Now we note that the X-ray domain spacing, 𝑑் is equal to the sum of the thicknesses of each 
layer, that is: 

𝑑் = 𝑑ଵ + 𝑑ଶ = 1.57 𝑑ଶ + 𝑑ଶ = 2.575 ∗ 𝑑ଶ   Equation S9 
 

By substituting in the relation for 𝑑ଶ and our material properties we finally obtain: 

𝑑் =
ଶ.ହ∗ఒ 

ଶ∗(ଵ.ହ∗భାమ)
=   0.351 ∗ 𝜆    Equation S10 

Our measured peak reflection of 403 nm – 626 nm, thus corresponds to estimates of 𝑑் = 141.4 
to 219.7 nm. As shown in Figure 4c, right of the main text (reproduced below), this agrees quite 
well with our X-ray values when hidden peaks are accounted for. 

 
Figure S33. Calculated lamellar period versus printing speed. Where present, error bars on colored 
points represent the range of two sample scans. Error bars for dropcast (DC) sample represent the 
standard deviation of nine measurements across three samples. The dashed line represents the 
contour length of the bottlebrush estimated with a fixed backbone contour length of 0.62 nm per 



 

norbornene repeat unit as per Dalsin et al.9 Solid lines represent the domain size estimated from 
the optical data shown in Figure 3 of the main text. 
 
Justification 3: Arguments based on SEM-Cross sections 
     While we acknowledge the uncertainty of domain size measurements from cryo-fractured SEM 
cross-sections (detailed in the main text), it is useful to get a ‘ballpark’ value of domain size from 
the SEM as this technique is the most unambiguous way to determine domain size. The following 
analysis is performed using the free software ImageJ250.  
 
Taking the image for which we have the best SEM contrast and most X-ray data (dropcast sample), 
we can directly measure the domain size (A+B layer repeat unit) as shown below. We first set the 
scale using the inset scale bar, and then use the measure tool. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure S34: Annotated SEM of DC sample 
 
The SEM measured domain size (𝑑ௌாெ = 215.27 ±  12 nm) compares quite favorably to our X-
ray value accounting for hidden peaks (𝑑ೝೌ

 ~210 𝑛𝑚).  

 
Justification 4: Further Numerical analysis of X-ray data supports hidden peaks 
Finally, it is possible to support the proposed method purely through numerical analysis of the X-
ray data. Our strategy is as follows: first, we return to the equation for the location of a lamellar 
scattering peak in q-space.  

𝑞 =
ଶగ

ௗೣ
      Equation S11 

 
By rearrangement, we can identify the order of a measured peak based on the domain size 
calculated from the inter-peak spacing. 

𝑛 =  
∗ௗೣ

ଶగ
      Equation S12 

 
The calculated values of n should take on integer values (n = 1, 2, 3, …), however the calculated 
values of n for experimentally determined peaks always exhibit some remainder, which reflects 

MSMT 
Length 
(nm) 

Length/5 (nm) 

1 1130 226 
2 1161 232 
3 973 195 
4 1041 208 
5 1077 215 
Avg 1076 215 
St. dev. 66 12 



 

the accuracy of our peak fitting strategy. That is, an approach that leads to experimentally 
determined orders of n ~1,2,3,4 is more accurate than one that leads to orders of n ~1.5,2.5,3.5 etc. 
 
Thus, by defining the cumulative error as the sum of the distances between the calculated order 
and its nearest integer, we can numerically compare the quality of the peak fitting approach when 
only the strong peaks are fit versus when the hidden peaks are considered. Figure S35 plots the 
cumulative error of each approach for the first 5 peak orders of all of the samples printed at 50C. 

 

 
Figure S35. Cumulative error vs printing speed for X-ray samples printed at 50C with domain 

sizes calculated by each method. 
 

It is apparent that by considering hidden peaks, we can drastically improve the quality of our fitted 
peak orders, providing further support for this decision.  
 
 
 

  



 

§12. Topographical Mapping and Commensurability 
 
Topography plots and selected correlations (to accompany the discussion in the main text) 

 
Figure S36. Topographical analysis of printed lines. (A) Surface profiles obtained using laser 
confocal optical profiling for samples printed at various speeds. (B) Compiled topographical data 
for each printing speed and temperature. Vertical error bars in the top panel reflect the rms 
roughness of the film. Solid lines on the bottom panel indicate expected scaling of cross section 
with printing speed for a Newtonian fluid. (C) Correlating the peak reflected wavelength and full-
width half max to the film thickness. Horizontal error bars indicate RMS roughness. Vertical error 
bars indicate standard error of the optical peak fit. 

 
Profile Data Collection Parameters     
   Optical profiling was performed using the Keyence VK-X1000 3D Laser Scanning Confocal 
microscope at the Illinois Materials Research laboratory. This technique was chosen after the 
sample was judged to be a poor fit for both stylus profilometry (Sloan instruments Dektak3ST) 
and atomic force microscopy (Asylum Research MFP-3D) due to its softness and 
waxiness/stickiness. Comparisons between film thicknesses obtained via optical profiling vs. 
stylus profilometry generally show only minor variation in average film thickness (< 5%). 
Film profiles were measured in laser confocal, “film top” mode with high brightness and a medium 
noise filter. Samples were scanned with substrate on both sides and plane leveled. RMS roughness 
values were evaluated using “stylus mode” with a tip radius of 5 microns.  
 
Data analysis considerations (statistical analysis, spurious peak removal). 
   For film thickness and rms roughness measurements, a large (~𝑚𝑚ଶ) region was scanned. 
Within this region, 61 profiles were drawn perpendicular to the printing direction. For each profile, 
an average thickness and rms roughness are calculated. Then, the average of each of these 61 
values per sample is reported as X-axis values and error bars, respectively,  in Figure S36. The 



 

full data set of film thickness, rms roughness, and standard deviations of each are reported in Table 
S4 and Figure S39 below.  
   We note that there was some initial difficulty scanning these semi-transparent samples due to 
the strong substrate reflection through the film. This manifests as spurious peaks [spikes] that are 
especially significant for thinner films. Scanning at sufficiently high magnification and slow speed 
helps reduce the number of spurious peaks. 

We further mitigate errors caused by these peaks via three approaches:  
1. Thresholding. The acquisition software can identify and remove data points that lay 

far away from the local mean value in each region. Because spurious peaks are very 
sharp and have thickness values near zero, this technique can very easily eliminate 
most spurious peaks. The software then interpolates thicknesses from surrounding 
pixels. 

2. Manual removal of remaining low intensity peaks. These peaks have orders of 
magnitude lower intensity than surrounding regions are easily identified. Any 
remaining obvious spurious peaks (usually < 10 peaks) are removed manually and 
thickness in that region interpolated from surrounding pixels.  

3. Averaging of many profiles. Spurious peaks generally occupy small, localized regions 
of the total scanned data. After steps 1 and 2, we then average 61 profiles spaced 
apart to cover the entire scanned region along the printed line). Even if some spurious 
peaks remain, their impact on the final thickness and rms roughness is thus very 
small.  

 
Figure S37. Sample optical profiling data. 

  



 

 
Figure S38. Raw optical profiling data for printed lines. Bed temperature is listed along the top 

(columns) and printing speed on the side (rows) Note: Horizontal and vertical axes are not at equal 

scale. 

  



 

Table S4. Printed film thickness/roughness and standard deviations. 

TEMP 
(°𝑪) 

PRINTING 
SPEED 

(mm/min) 

THICKNESS 
(𝝁𝒎) 

STD. 
DEV 
(𝝁𝒎) 

RMS 
ROUGHNESS 

(𝝁𝒎) 

STD. 
DEV. 
(𝝁𝒎) 

25 15 23.74 1.02 4.91 0.47 
25 30 14.17 0.58 3.03 0.35 
25 60 8.76 0.13 2.67 0.05 
25 120 5.83 0.18 1.41 0.04 
25 180 3.65 0.09 0.89 0.02 
25 240 2.17 0.06 0.62 0.03 
25 360 1.44 0.20 0.59 0.03 
25 480 1.51 0.08 0.39 0.04 
25 600 1.45 0.10 0.52 0.03 
70 15 58.17 0.34 9.57 0.23 
70 30 45.04 5.99 6.73 0.37 
70 60 11.30 0.36 2.96 0.04 
70 120 9.47 0.17 3.38 0.05 
70 180 5.35 0.21 1.79 0.07 
70 240 3.36 0.69 0.55 0.05 
70 360 1.65 0.29 0.45 0.02 
70 480 2.15 0.12 0.38 0.03 
50 15 34.52 0.34 6.41 0.12 
50 30 23.67 1.02 4.36 0.58 
50 60 13.43 0.27 2.00 0.11 
50 120 6.89 0.69 0.90 0.10 
50 180 5.99 0.07 1.28 0.07 
50 240 4.91 0.12 0.50 0.04 
50 360 4.67 0.04 0.83 0.03 
50 480 3.91 0.04 0.68 0.02 

 

  
Figure S39. Plots of film thickness (left) and roughness (right) for printed meanderline patterns. 



 

Discussion on Evaluating Commensurability arguments 

To evaluate the importance of commensurability (balance of elastic and surface tension forces) in 
controlling domain d-spacing, we first plot domain size (estimated from optical measurements) 
versus film thickness. 

  

Figure S40. Left: Domain size estimated from optical measurements versus film thickness. Error 
bars denote film average roughness (X-error) and propagated error of optical peak fitting (Y-axis). 
Right: Number of PDMS-PLA layers versus film thickness. 

 

Figure S41. Measured wavelength plotted against both thickness (left panel, reproduced from 
Figure S36) and number of layers (2* thickness/D0). In the right panel, triangles, circles, and 
squares represent division by 𝐷,௧ and stars represent division by 𝐷,ି௬. X-error bars 
represent error propagated from the uncertainty in thickness measurements and optical 
measurements.  
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§13. High Speed/High Pressure Printing Experiments 
     To gauge the impact of fluid flow driven assembly, experiments were performed in which both 
printing speed and pressure were increased. In this way, the wet film geometry could be kept 
constant, minimizing the impact of changing evaporation rates and any confinement effects. To 
determine the appropriate scaling between printing speed and pressure without performing in depth 
measurements to determine viscosity vs shear rate, a simple scaling experiment was performed. A 
long meanderline pattern was printed onto glass in which the printing speed was scaled by a factor 
of 1.41 for every pair of lines, and the pressure was scaled by a factor of 1.24. This scaling reflects 
the shear-thinning behavior of the fluid and was determined by trial and error to obtain the sample 
shown in Figure S42. 

Figure S42. Meanderline pattern with increasing pressure and printing speed. 
 
Here, despite an extremeley large change in the printing speed and pressure, there is not a dramatic 
change in color until reaching very high pressures and speeds that were beyond the range used for 
the experiments in the main text. 
 
To more quantitatively assess this phenomenon, three meanderline samples were printed at 
different speeds and pressure using this scaling relationship and their reflectivity was compared 
(Figure S43). 
 

 
Figures S43. Meanderline patterns printed onto silicon wafers. Despite a large increase in printing 
speed and pressure, there is very little change in the peak location observed. 



 

§14. In Situ monitoring of printing and assembly kinetics 
 
Discussion of the role of refractive index and domain size on reflected film color and 
intensity 
 

By ascribing the structural color observed to lamellar domains, as observed in both SAXS and 
SEM, we can relate the measurable optical properties at normal incidence (Hue and Value) to the 
microstructural evolution through the equations for reflected wavelength (𝜆) and the reflected 
intensity (R) for a 1D lamellar stack (Equation S13,S14)1. 

𝜆 = 2(𝑛ଵ𝑑ଵ + 𝑛ଶ𝑑ଶ)   Equation S13 

𝑅 = 
ଵିቀ

మ
భ

ቁ
మಿ

ଵାቀ
మ
భ

ቁ
మಿ൩    Equation S14 

Where 𝑛ଵ, 𝑛ଶ, 𝑑ଵ, 𝑑ଶ represent the refractive indices of each layer and their corresponding 
thicknesses, and N represents the number of layers.   
     We note that these equations quantitatively describe only the observed reflectance from perfect 
1D stacking under normally incident illumination and observation. As the film assembles/dries, 
this criterion is increasingly valid; however, in the initial stages it is likely that domains form at a 
variety of angles before reaching their final orientation, predominately parallel to the substrate as 
indicated by SAXS and SEM analysis.  For dropcast samples where domains adopt a range of 
orientations, we note that at angles less than normal incidence, the apparent color of domains will 
be always be blue-shifted vs. that predicted by equation 1, but color evolution will follow the same 
trend during drying as the remainder of the film (initial red shift, followed by blue shift). A more 
accurate (quantitative) model of the color and intensity over time could be achieved by coupled  
finite-difference time-domain (FTDT), mass transport, and phase separation simulation which is 
out of the scope of this work. As a result, we use equations S13 and S14 above only for qualitative 
guidance and to not attempt to match results quantitatively.  
     During deposition, all three quantities (n, d, N) may vary, but by gauging their relative 
magnitudes it is possible to decouple their influence. For this system, the relevant refractive indices 
are 𝑛ெௌ = 𝑛்ுி = 1.40 and 𝑛 = 1.46. For solutions of polymer and solvent, the refractive 
index of the mixture lies between the two limiting refractive indices (of pure solvent and pure 
polymer), During the drying process, the refractive index of the PDMS layer remains unchanged 
(as it matches the solvent) and the refractive index of the PLA layer can change by only a maximum 
of ~4% as it goes from ~𝑛்ுி to 𝑛. By inspection of Equation 1, we can therefore note that the 
impact of refractive index change on wavelength during drying is a small redshift. We can then 
state that both the large red shift during the initial stages of drying, and the slight blue shift during 
the final stage are caused primarily by domain size variation. The increase in reflected intensity 
during drying is attributable to both an increase in the number of domains, and the influence of 
solvent removal on refractive index. As solvent dries, the refractive index of the PLA layer 
approaches its pure value (maximizing refractive index contrast) and the degree of microphase 
separation (number of domains) increase, with both phenomena possibly contributing to the 
observed saturation of intensity.  
 
 
  



Methods 
   In situ optical microscopy was taken using an XIMEA xiQ USB3 camera connected to a high 
magnification Navitar lens system purchased from W. Nuhsbaum, Inc. Videos were obtained at 
moderate framerate (~45 fps) and analyzed frame-by-frame using a script written for MATLAB 
(The MathWorks, Inc., Natick, Massachusetts, United States). The following image shows the 
camera and lighting setup. All experiments in this series were carried out at room temperature with 
the same lighting/ fume extractor setup shown below. 

Figure S44. Experimental apparatus for in situ printing videos 
  We note that the conditions for these two sets of videos, while self-consistent, do not exactly match the 
printing conditions for those experiments from Figure 2C of the main text, as a high intensity light source was 
needed to ensure high framerate. This caused local heating and some added nonuniformity in the printed films; 
however, the films printed for these experiments show the same qualitative trend.  Unfortunately, it was not 
possible to collect side view videos at sufficient resolution/framerate for analysis at speeds higher than 240 mm/
min. Photograph courtesy of Bijal Patel, University of Illinois.  

Figure S45. Microscope images of samples printed for different sets of experiments. “Top View” 
and “Side View” are for the corresponding kinetics videos under strong lighting, “10/3 batch” 
correspond to those samples used for peak quantification. Empty cells for top view 120,240 
mm/min were samples that accidently disposed of before images could be taken. 



 

Videos used for the following analysis are compiled in Supplemental Videos 5 and 6 as 
detailed at the beginning of the SI 

Supplemental plot: Hue and intensity from top-view (reflection) printing videos. 

   Imaging difficulties prevent the use of Hue measurements as evidence for the mechanism. As 
the printed meniscus was very small, cameras and illumination had to be set up at extremely high 
brightness and away from normal incidence, using a different microscope camera than the drop-
casting case (due to the printing nozzle). As a result, we find that the recorded video has a 
substantial red cast compared to the reflection (for example the final film shown below Figure 5C, 
S45 actually appears green and not orange as in the video). 

 

Figure S46. Calculated Hue and Intensity (normalized) curves from top-view (reflection) videos 
during printing. The limitations of the hue measurement are described in the main text.  

Top View Analysis Strategy 
Top view videos show the movement of the printing nozzle past a point on the substrate and track 
evolution of color of the printed line over time (Supplemental Video 5). 
Videos were analyzed in MATLAB (analysis code follows). The analysis procedure is as follows:  

 Step 0: Initialization of data directories. 
 Step 1: Video file selected and export directories created 
 Step 2: Video loaded into ram 
 Step 3: Video converted to frames and exported. 
 Step 4: The first frame for integration was chosen as the point at which the nozzle crosses 

the center of the field of view and an integration region (mask) is drawn.  
 Step 5: Identify frame Tzero when needle enters mask for time correction 
 Step 6: The program then iterates through all frames after time t=0, calculating the summed 

R,G,B, total, intensities within the masked region. If intensity exceeds threshold, value is 
set to NaN 

 Step 7: Finally, the code exports this data and generates several useful plots (shown below). 



 

 
 
Top View MATLAB Code 

%Computes RGB/HSV Intensity from select region in videos 
  
%% Step 0 - Initialize 
    disp('Step 0: Initializing...') 
    clear all 
    close all 
     
    % For rejecting oversaturated reflections from liquid       
    % surface. BWThreshold is the ratio versus the average pixel intensity   
    %within masked region, above which the pixel is omitted from analysis.    
    %Determine by trial and error. White pixels should be completely removed.     
    BWThreshold = 1.6;  
     
    %Get current date/time 
    dateTime = datestr(datetime(now,'ConvertFrom','datenum')); 
    dateTime = strrep(dateTime,":","_"); 
    dateTime = strrep(dateTime,"-","_"); 
    dateTime = strrep(dateTime," ","_"); 
     
    %ENTER FOLDER PATH WITH ORIGINAL VIDEOS HERE 
    filedir=strcat('C:\Users\...,'\'); 
       % or default to userdir 
       % filedir=strcat(userpath,'\'); 
        
    newAnalysis = 0; 
     
    disp('Choose Video File...') 
    [filenameext, filedir]=uigetfile(strcat(filedir,'*.*')); 
    [~,filename,fileext]=fileparts(strcat(filedir,filenameext)); 
    disp('Video File Chosen!') 
     
    %Prompt for new analysis or not, if so, find log file 
    inp = input("First Analysis? (Y/N): ",'s'); 
    if (strcmp(inp,'Y')) 
        newAnalysis = 1; 
 
        %Make specific folders for data/frame export 
        expDir = strcat(filedir,'MATLABexport\',filename,"\"); 
        rawFramesDir = strcat(expDir,'frames\raw\'); 
        threshFramesDir = strcat(expDir,'frames\BrightThresholded\'); 
        calcDataDir = strcat(expDir,'calcData\',dateTime,'\'); 
         
        mkdir(expDir); 
        mkdir(rawFramesDir); 
        mkdir(threshFramesDir); 
        mkdir(calcDataDir); 
        
         
    else 
         



 

        disp('Choose Log File') 
        [logFileNameExt, logFiledir]=uigetfile(strcat(filedir,'*.*')); 
        disp('Loading from Log File...') 
        loadedData = readLog(strcat(logFiledir,logFileNameExt)); 
        loadParams = loadedData(:,1); 
        loadedVals = loadedData(:,2); 
         
        expDir = loadedVals(2); 
        rawFramesDir = loadedVals(3); 
        threshFramesDir = loadedVals(4); 
        calcDataDir = strcat(expDir,'calcData\',dateTime,'\'); 
        framerate = str2num(loadedVals(6)); 
        maskFrame = str2num(loadedVals(7));         
        disp('Data Loaded from Log File...') 
    end  
     
    calcDataDir = strcat(expDir,'calcData\',dateTime,'\'); 
    logParams = ["1. Export Directory" "2. RawFramesDirectory" "3. 
ThresholdFramesDirectory" "4. CalculatedValuesDirectory"]; 
    logVals = [expDir rawFramesDir threshFramesDir calcDataDir]; 
    disp('Step 0: Initializing Complete!') 
  
%% Load Video to RAM 
    % If new analysis, will import video to RAM 
    loadToRAM = input("Frame Export Required? (Y/N): ",'s'); 
    if (strcmp(loadToRAM,'Y')) 
        disp('Importing Video to RAM...') 
        obj = VideoReader(strcat(filedir,filenameext)); 
        vid = read(obj); 
        frames = obj.NumberOfFrames; 
        framerate = obj.FrameRate; 
         
        logParams = [logParams "Framerate"]; 
        logVals = [logVals framerate]; 
        disp('Import Video Complete!') 
    else 
        disp('Skipping Loading Video to RAM') 
        frames = size(dir(fullfile(rawFramesDir, '*.jpg')),1); 
    end 
    
  
%% Convert Video file to frames and export 
    if(strcmp(loadToRAM,'Y')) 
        disp('Export Raw Frames to File...') 
        %Ask user if frames need to be output 
        inp = input("     Output Frames? Y/N: ",'s'); 
  
        %if needs output, do so, else skip 
        if (strcmp(inp,'Y')) 
            for x = 1:1:frames 
                
imwrite(vid(:,:,:,x),strcat(rawFramesDir,filename,'_raw_',num2str(x),'.jpg'))
; 
                fprintf('\tExporting frame: %d out of %d.\n',x,frames); 
            end 



 

            disp('Export Raw Frames Complete!') 
            beep 
        else 
            disp('Skipping Frame Export') 
        end 
    else 
        disp('Skipping Frame Export') 
    end 
     
%% Draw mask 
    disp('Masking') 
    inp = input("     Draw New Mask? Y/N: ",'s'); 
     
    if(newAnalysis || strcmp(inp,'Y')) 
        disp('Choose Frame to draw mask from.') 
        %Choose frame to look at for drawing mask 
        maskFrame = 
chooseFrame(20,frames,rawFramesDir,strcat(filename,'_raw'),-1); 
         
            %Export Frame 
            expTail = strcat(filename,'_maskFrame.jpg'); 
            expPath = strcat(calcDataDir,expTail); 
            saveas(gcf,expPath); 
  
        disp("     Mask Frame chosen! Now Draw Mask"); 
  
        %Size of frame image 
        
imsize=size(imread(strcat(rawFramesDir,filename,'_raw','_1','.jpg'))); 
  
        %Draw polygon mask 
        %mx and my are the vertex positions of your mask 
        %left click for points, right click to close loop 
        %right click a vertex to create mask 
        [mask, mx, my]=roipoly; 
  
        %name image of frame to mask 
        im 
=imread(strcat(rawFramesDir,filename,'_raw_',num2str(maskFrame),'.jpg')); 
  
        %Display mask overlayed onto image   
        imshow(imoverlay(mat2gray(im),mask,[0.1 0.8 0.1])); 
  
       %Save masked image 
            %Export Frame 
            expTail = strcat(filename,'_maskedFrame.jpg'); 
            expPath = strcat(calcDataDir,expTail); 
            saveas(gcf,expPath); 
  
        %Save mask itself 
        %Save mask to file 
  
  
            maskPath = strcat(expDir,'_',dateTime,'_mask.mat'); 



 

            save(strcat(calcDataDir,'mask_',dateTime,'.mat'),'mask'); 
  
        %uncomment for no mask 
        %mask=logical(ones(imsize(1:2)));   
    else %Load Mask from File 
        disp('Choose Mask'); 
        [maskfilenameext, maskfiledir] = uigetfile(strcat(filedir,'*.*')); 
        maskPath = strcat(maskfiledir,maskfilenameext); 
        load(maskPath); 
        save(strcat(calcDataDir,'mask_',dateTime,'.mat'),'mask'); 
    end    
     
    logParams = [logParams "MaskFrame"]; 
    logVals = [logVals maskFrame]; 
     
    disp('Get Mask Complete!') 
     
  
%% Identify first frame to calculate 
    disp('Choose first frame to calculate values for (NOT tZERO)') 
  
    %Choose frame for t=0 
   calcStartFrame = 
chooseFrame(maskFrame,frames,rawFramesDir,strcat(filename,'_raw'),mask); 
        %Export start Frame 
        expTail = strcat(filename,'_MaskedCalcStart.jpg'); 
        expPath = strcat(calcDataDir,expTail); 
        saveas(gcf,expPath); 
  
    disp('Frame for calculation start chosen!') 
  
 %%Identify frameTzero time correction 
    disp('Choose frame for time zero...') 
  
    %Choose frame for t=0 
    frameZero = 
chooseFrame(maskFrame,frames,rawFramesDir,strcat(filename,'_raw'),mask); 
        %Export Masked Frame 
        expTail = strcat(filename,'_MaskedTzero.jpg'); 
        expPath = strcat(calcDataDir,expTail); 
        saveas(gcf,expPath); 
  
    disp('tzero Frame Chosen!') 
  
%% Evaluate mean RGB intensity in masked region 
    fstart=calcStartFrame;%number of starting frame 
    fspace=1;%number of frames to increment by 
  
    numFramestoCalc = frames-fstart; %number of frames to calc 
    %Preallocate arrays 
    Int_RGB = zeros(1,numFramestoCalc); 
    frameAvg_Gint = zeros (1,numFramestoCalc); 
    frameAvg_Rint = zeros (1,numFramestoCalc); 
    frameAvg_Bint = zeros (1,numFramestoCalc); 



 

    frameAvg_HSV = zeros (1,numFramestoCalc); 
     
    %Folder for thresholded images 
    threshfolder = 
strcat(expDir,'frames\BrightThresholded\',num2str(BWThreshold),'\'); 
    mkdir(threshfolder); 
     
    for k=fstart:fspace:frames 
        
I_RGB=imread(strcat(rawFramesDir,filename,'_raw_',num2str(k),'.jpg')); 
         
        %extract R, G, and B maps values separately 
        R=double(I_RGB(:,:,1)); 
        G=double(I_RGB(:,:,2)); 
        B=double(I_RGB(:,:,3)); 
         
        %NaN values outside of region of interest 
        R(mask==0)=nan; 
        G(mask==0)=nan; 
        B(mask==0)=nan; 
                    
  
  
        %Get avg RGB values for this frame within mask 
        frameAvg_Rint(k-fstart+1)= nanmean(nanmean(R)); 
        frameAvg_Gint(k-fstart+1)= nanmean(nanmean(G)); 
        frameAvg_Bint(k-fstart+1)= nanmean(nanmean(B)); 
         
        %Mean intensity calculated from R,G,B. 
        Int_RGB(k-fstart+1)=mean([frameAvg_Rint(k-fstart+1),frameAvg_Gint(k-
fstart+1),frameAvg_Bint(k-fstart+1)]); 
  
        %NAN overexposed pixels (white) from light source reflection 
        %White pixels are those above threshold value 
        [lengthX, lengthY, rgb] = size(I_RGB); 
        for column = 1:lengthY 
           for row =1:lengthX 
              if (sum([R(row,column) G(row,column) B(row,column)]) > 
BWThreshold* 3*Int_RGB(k-fstart+1)) 
                  R(row,column)= nan; 
                  G(row,column)= nan; 
                  B(row,column)= nan; 
              end 
           end 
        end  
         
        %Export Thresholded Frame 
  
       
imwrite(uint8(cat(3,R,G,B)),fullfile(threshfolder,strcat(num2str(k),".jpg")))
; 
          
         



 

        fprintf('\tOn frame: %d out of %d processed.\n',k-fstart+1,frames-
fstart);  
    end 
    logParams = [logParams "Pixel Threshold"]; 
    logVals = [logVals BWThreshold]; 
     
    disp('Step 6: Calc Mean RGB Complete!') 
%% Step 7 - Convert to HSV and Plot data 
    disp('Step 7: Converting to HSV and Plotting Results...')   
     
    %Time management 
  
        %frame number array 
        xFrame=fstart:fspace:frames; 
  
        %time array 
        %calc time with first frame at t = 0s 
            xTime=(xFrame-frameZero)./framerate;%seconds 
        %calc actual time of frame zero 
            timeZero = frameZero/framerate;%seconds 
        %correct xtime to account for timeshift 
            xTime = xTime + timeZero; 
  
        xvar=xTime; 
  
    %Plotting mean RGB vs time 
        subplot(2,3,1); 
        plot(xvar,Int_RGB,'k') 
        title('Mean RGB Intensity') 
        xlabel('Time elapsed(s)') 
        ylabel('Intensity (Arb)') 
        set(gcf,'color','w'); 
        box on 
  
    %Plotting R, G, B, individually and mean vs frame 
        subplot(2,3,4); 
        hold on 
        plot(xFrame,Int_RGB,'k','Linewidth',1.5) 
        plot(xFrame,frameAvg_Rint,'r','Linewidth',1.5) 
        plot(xFrame,frameAvg_Gint,'g','Linewidth',1.5) 
        plot(xFrame,frameAvg_Bint,'b','Linewidth',1.5) 
     
        %add thick vertical lines every 10/100/1000 frames 
        if (frames > 1000) 
            for i=0:100:frames 
                xline(i,'k');  
            end 
  
        elseif (frames > 10000) 
            for i=0:1000:frames 
                xline(i,'k');  
            end   
        else 
            for i=0:10:frames 
                xline(i,'k');  



 

            end 
        end 
     
        title('RGB Separated Intensity Values') 
        xlabel('Frame') 
        ylabel('Intensity (Arb)') 
        set(gcf,'color','w'); 
        hold off 
        box on 
  
    %Plotting R, G, B, individually and mean vs time 
        subplot(2,3,[2 3]); 
        hold on 
        plot(xvar,Int_RGB,'k','Linewidth',1.5) 
        plot(xvar,frameAvg_Rint,'r','Linewidth',1.5) 
        plot(xvar,frameAvg_Gint,'g','Linewidth',1.5) 
        plot(xvar,frameAvg_Bint,'b','Linewidth',1.5) 
        title('RGB Separated Intensity Values') 
        xlabel('Time elapsed (s)') 
        ylabel('Intensity (Arb)') 
        set(gcf,'color','w'); 
        box on 
        hold off 
        set(gcf, 'Position',  [100, 100, 1000, 500]) 
         
    %Convert RGB to HSV 
        frameAvg_RGB = [frameAvg_Rint' frameAvg_Gint' frameAvg_Bint']./255; 
        frameAvg_HSV = rgb2hsv(frameAvg_RGB); 
        %Separate out hue / saturation/ Value 
        frameAvg_H = frameAvg_HSV(:,1)*360; 
        frameAvg_S = frameAvg_HSV(:,2); 
        frameAvg_V = frameAvg_HSV(:,3); 
        %"Unwrap" H circle so red values dont appear on both top and bottom 
        %of axis 
        for hValIndex = 1:size(frameAvg_H) 
           if (frameAvg_H(hValIndex)>320) 
             frameAvg_H(hValIndex) = frameAvg_H(hValIndex)-360; 
           end 
        end 
         
         
     
        %Plotting H and V vs time 
        subplot(2,3,[5 6]); 
        hold on 
        yyaxis left 
        ylabel('Hue') 
        plot(xvar,frameAvg_H,'k','Linewidth',1.5) 
        yyaxis right 
        plot(xvar,frameAvg_S,'b','Linewidth',1.5) 
        plot(xvar,frameAvg_V,'r','Linewidth',1.5) 
        title('Hue and Value over time') 
        xlabel('Time elapsed (s)') 
        ylabel('Value') 
        set(gcf,'color','w'); 
        box on 



 

        hold off 
        set(gcf, 'Position',  [100, 100, 1000, 500]) 
        legend("Hue","Saturation","Value"); 
         
    %Concatenate results into matrix [frame xtime(s) Mean1(Arb) Mean2(Arb) 
Rint(Arb) Gint(Arb) Bint(Arb)] 
    m = [transpose(xFrame) transpose(xTime) transpose(Int_RGB) ... 
        transpose(frameAvg_Rint) transpose(frameAvg_Gint) ... 
        transpose(frameAvg_Bint) frameAvg_H frameAvg_S ... 
        frameAvg_V]; 
     
    %Export Text 
        expTail = strcat(filename,'_Data.txt'); 
        expPath = strcat(calcDataDir,expTail); 
     
        %Write data file headers 
        fid = fopen(expPath, 'w'); 
        fprintf(fid, "Frame,TimeElapsed(s),Mean Intensity,Red Intensity,Green 
Intensity,Blue Intensity, Hue (degrees), Saturation (0-1), Value (0-1)\n"); 
        fclose(fid); 
         
        %Write data 
        dlmwrite(expPath,m,'-append','delimiter',','); 
         
       disp('Step 7 Complete!')  
  
   
  
  
%% Step 8:  Write Log File 
   disp('Step 8 Writing Log File...!') 
    
    %Write Log File    
     
    if(writeLog(expDir,logParams, logVals)) 
        disp('Log File Written'); 
    else  
        disp('Log Failed'); 
    end 
  
%%  
     
    %% END 
  
  
disp('Sequence Complete!') 
  
  
%% Local functions 
%Writes parameters to log file 
function logged = writeLog(expPath,params, vals) 
    %Get current date/time 
    dateTime = datestr(datetime(now,'ConvertFrom','datenum')); 



 

    dateTime = strrep(dateTime,":","_"); 
    dateTime = strrep(dateTime,"-","_"); 
    dateTime = strrep(dateTime," ","_"); 
     
    logName = strcat(expPath,'\AnalysisLog_',dateTime,'_.txt'); 
    logFileID = fopen(logName,'w'); 
    fprintf(logFileID, 'Log Entry - Generated \n%s\n',dateTime); 
    outputs = [params;vals]; 
    fprintf(logFileID, '%s\n',outputs); 
    fclose(logFileID); 
    logged = 1;     
end 
  
%Loads parameters from log file 
function data = readLog(logFilePath) 
    logFid   = fopen(logFilePath); 
    txt = textscan(logFid,'%s','delimiter',',\n'); 
    fclose(logFid); 
    txt = txt{1}; %Pull first element of cell aray 
    txt = string(txt); %convert to string array 
    %Convert to n x 2 array of param-val pairs 
    data = [txt(1:2:end) txt(2:2:end)]; 
end 
  
  
%Allows user to choose a frame 
function pickedFrame = chooseFrame(frame, maxFrames, framesDir, 
filename,mask) 
    currentFrame = frame; 
    pickedFrame = 0; 
    done = 0; 
     
    while (done ~= 1) 
        %display masked, if mask given 
         
        im 
=imread(strcat(framesDir,filename,'_',num2str(currentFrame),'.jpg')); 
         
        if (mask~=-1) 
            imshow(imoverlay(mat2gray(im),mask,[0.0 0.5 0.0])); 
        else 
            imshow(im); 
        end 
         
         
         
        cmd = input('     q for done, asd+fgh for -(10/5/1)+(1/5/10), frames: 
','s'); 
        switch cmd 
            case 'q' 
                done = 1; 
                pickedFrame = currentFrame; 
            case 'd' 
                if (currentFrame > 1) 
                    currentFrame = currentFrame-1; 



 

                end 
            case 's' 
                if (currentFrame > 6) 
                    currentFrame = currentFrame-5; 
                end 
            case 'a' 
                if (currentFrame > 101) 
                    currentFrame = currentFrame-100; 
                end 
            case 'f' 
                if (currentFrame < maxFrames) 
                    currentFrame = currentFrame+1; 
                end 
            case 'g' 
                if (currentFrame < maxFrames-5) 
                    currentFrame = currentFrame+5; 
                end 
            case 'h' 
                if (currentFrame < maxFrames-100) 
                    currentFrame = currentFrame+100; 
                end 
            otherwise 
                disp('Unrecognized input\n');           
        end 
         
    end 
end 
 
  



 

Side View Analysis Strategy 
Side view videos show the movement of the printing nozzle past a point on the substrate and track 
the meniscus height over time (Supplemental Video 6).  
Videos were analyzed in MATLAB (analysis code follows). The analysis procedure is as follows:  

 Step 0: Initialization of data directories. 
 Step 1: Video file selected and export directories created 
 Step 2: Video loaded into ram 
 Step 3: Video converted to frames and exported. 
 Step 4: User selects a frame and sets the Black/White threshold and noise filter strength to 

make the liquid film black and free space above it white. These can be set to be different 
for the early frames (usually these have different contrast to the following). 

 Step 5: User sets the horizontal baseline manually. 
 Step 6: User chooses what column should be used for height measurement (the highest 

black pixel in this column will be chosen as the meniscus height). User also selects the first 
frame for analysis. 

 Step 7: User calibrates length based on a chosen standard in the field of view (i.e., width 
of the nozzle). This allows the code to report height values in real measurements. 

 Step 8: Iterate through all frames and compute meniscus height at each location.  
 Step 9. Compile data, export as plots and to file. 

  
Side View MATLAB Code 
 
%Meniscus Height profile from video calculator 
% 12/19/2018 - JK 
% 02/19/19 - BP 
 
%% Step 0 - initialize 
    disp('Step 0: Initializing...') 
    clear all 
    close all 
         
     %ENTER FOLDER PATH WITH ORIGINAL VIDEOS HERE 
     filedir=strcat('C:\Users…','\'); 
     %or default to userdir 
     %filedir=strcat(userpath,'\'); 
     disp('Step 0 complete: Initialized gotten!') 
  
    %Export directory 
    expDir = strcat(filedir,'exportSide\'); 
    framesDir = strcat(expDir,'frames\'); 
    dataDir = strcat(expDir,'calcData\'); 
    disp('Step 0: Initializing Complete!') 
     
%% Step 1 - Get Video file 
    disp('Step 1: Get Video File...') 
    [filenameext, filedir]=uigetfile(strcat(filedir,'*.*')); 
    [~,filename,fileext]=fileparts(strcat(filedir,filenameext)); 
    disp('Step 1: Get Video File Complete!') 
     
    %Make specific folder for data export 
    dataExpDir = strcat(dataDir,filename,'\'); 



 

    mkdir(dataExpDir); 
     
    %Make specific folder for frame export 
    framesExpDir = strcat(framesDir,filename,'\'); 
    mkdir(framesExpDir); 
     
     
%% Step 2 - Load Video to RAM 
    disp('Step 2: Import Video to RAM...') 
    obj = VideoReader(strcat(filedir,filenameext)); 
    vid = read(obj); 
    frames = obj.NumberOfFrames; 
    disp('Step 2: Import Video Complete!') 
     
%% Step 3 - Convert Video file to frames and export 
     disp('Step 3: Export Frames to File...') 
     %Ask user if frames need to be output 
     inp = input("     Output Frames? Y/N: ",'s'); 
     
     if(inp=='Y') 
         for x = 1:1:frames 
            
imwrite(vid(:,:,:,x),strcat(framesDir,filename,'\',filename,'_',num2str(x),'.
jpg')); 
            fprintf('On frame: %d out of %d saved.\n',x,frames); 
             
         end 
     else 
          disp('     Step 3 skipped!') 
     end 
     
imsize=size(imread(strcat(framesDir,filename,'\',filename,'_','1','.jpg'))); 
     beep 
     disp('Step 3 complete: Frames Exported!') 
  
%% Step 4 - SET BW Threshold and filtering 
%Choose a frame then pick a BWthresh value. Iterate to find best value 
     
    disp('Step 4 Set Black/White Threshold...') 
    framenum= chooseFrame(20,frames,framesDir,filename,-1); 
  
    %BWthresh is used to determine when converting from raw grayscale images    
    %to black and white, so that we can identify the first black pixel in a   
    %column as the top surface of the meniscus. Values range from 0 to 1. As  
    %a first guess, the threshold is initialized at 0.4, but the user will  
    %iteratively vary this until a clean image is obtained. 
    BWthresh=0.4; 
     
    %WF values reflect the strength of noise filtering applied to the image 
    %Begin with a high value and reduce until the region above the meniscus  
    %has no stray black pixels. The user will iteratively modify this at  
    %runtime until a clean image is obtained. 
 
    WF = 1;  
    WF1=0; 



 

    
I1test=imread(strcat(framesDir,filename,'\',filename,'_',num2str(framenum),'.
jpg')); 
    Imid = 
imread(strcat(framesDir,filename,'\',filename,'_',num2str(framenum+round(0.3*
(frames-framenum))),'.jpg')); 
    Ifinal=imread(strcat(framesDir,filename,'\',filename,'_',num2str(frames-
5),'.jpg')); 
     
    BWtest=rgb2gray(I1test); 
    I2mid=rgb2gray(Imid); 
    I2final=rgb2gray(Ifinal); 
     
    montage({I1test,Imid,Ifinal,BWtest,I2mid,I2final}, 'Size', [2 3]); 
  
    %let user enter BW and refresh image until they enter -1 for quit 
    done = 0; 
    while (done ~= 1) 
  
        fprintf("Current Filter setting: BW %d, Filterx %d\n",BWthresh,WF); 
        inp = input("Vary BWthresholdInit20/Final (A,B) or Filter (C/D): 
",'s'); 
         
         
        switch(inp) 
            case 'A' 
                inp = input("Enter BWinitial threshold from 0 to 1 [no stray 
black pixels], -1 to save: ",'s'); 
                inp = str2num(inp); 
                BWthresh1 = inp; 
            case 'B' 
                inp = input("Enter BW threshold from 0 to 1 [no stray black 
pixels], -1 to save: ",'s'); 
                inp = str2num(inp); 
                BWthresh = inp; 
            case 'C' 
                inp = input("Enter number of times to run WFilter on 1st 20 
frames: ",'s'); 
                inp = str2num(inp); 
                WF1 = inp; 
            case 'D' 
                inp = input("Enter number of times to run WFilter on rest of 
frames: ",'s'); 
                inp = str2num(inp); 
                WF = inp; 
            case 'q' 
                done = 1; 
            otherwise 
        end 
  
        %Display new setting 
        
I1test=imread(strcat(framesDir,filename,'\',filename,'_',num2str(framenum),'.
jpg')); 
        Imid = 
imread(strcat(framesDir,filename,'\',filename,'_',num2str(framenum+round(0.3*
(frames-framenum))),'.jpg')); 



 

        
Ifinal=imread(strcat(framesDir,filename,'\',filename,'_',num2str(frames-
5),'.jpg')); 
  
        I2test=rgb2gray(I1test); 
        I2mid=rgb2gray(Imid); 
        I2final=rgb2gray(Ifinal); 
  
        BWtest=imbinarize(I2test,BWthresh1); 
        I2mid=imbinarize(I2mid,BWthresh); 
        I2final=imbinarize(I2final,BWthresh);  
         
        %Denoise with Weiner2 filter 
        for (i=1:1:WF1) 
            BWtest = wiener2( BWtest,[5 5]);  
        end 
        
        for (i=1:1:WF) 
            I2mid = wiener2( I2mid,[5 5]); 
            I2final = wiener2( I2final,[5 5]);    
        end 
       montage({I1test,Imid,Ifinal,BWtest,I2mid,I2final}, 'Size', [2 3]); 
       str_caption = sprintf("F%d BW1%.2d WF1%.2d BW%.2d 
WF%.2d",framenum,BWthresh1,WF1,BWthresh,WF); 
       title(str_caption); 
       %Export Frame 
        expTail = strcat(filename,'_ImgSettings.jpg'); 
        expPath = strcat(dataExpDir,expTail); 
        saveas(gcf,expPath); 
    end 
    disp('Step 4 complete: BW threshold set!'); 
  
%% Step 5 - Select Baseline 
    
    disp('Step 5 Set Baseline...') 
    %Choose a frame for baseline selection 
    disp('     Choose Frame for Baseline Set') 
    framebase=chooseFrame(framenum,frames,framesDir,filename,-1); 
     
    
I1test=imread(strcat(framesDir,filename,'\',filename,'_',num2str(framebase),'
.jpg')); 
    
     
     
     
     
    disp('     Choose Baseline Set') 
    [~,row]=ginputc(1,'Color','r','LineStyle',':'); 
    baseline=round(row); 
    disp('Step 5 Complete: Baseline set!') 
   
%% Step 6 Choose Column and 1st frame to analyze height for  
close all 
  
    disp('Step 6 Set Column') 
    %Choose a frame and click on image to select which column of pixels to 



 

    %use. Or assign pixel column number in next section instead. 
     
    disp('     Choose Column for Height MSMT') 
    framenum=chooseFrame(framenum,frames,framesDir,filename,-1); 
  
  
    
I1test=imread(strcat(framesDir,filename,'\',filename,'_',num2str(framenum),'.
jpg')); 
    I2test=rgb2gray(I1test); 
    colFrame=imbinarize(I2test,BWthresh1); 
     %Denoise with Weiner2 filter 
     for (i=1:1:WF) 
            colFrame = wiener2( colFrame,[10 20]); 
  
     end 
    imshow(colFrame) 
    [col,~]=ginputc(1,'Color','r','LineStyle',':'); 
    col=round(col); 
  
    %Create labeled image 
    str_caption = sprintf("F%d BW1%.2d WF1%.2d BW%.2d WF%.2d Col%d 
Base%d",framenum,BWthresh1,WF1,BWthresh,WF,col,baseline); 
    colFrame(:, col) = 255; % White = 255, can pick any intensity. 
    colFrame(:, col-1) = 255; 
    colFrame(:, col+1) = 255; 
    colFrame(baseline, :) = 255; 
    colFrame(baseline-1, :) = 255; 
    colFrame(baseline+1, :) = 255; 
    imshow(colFrame) 
    title(str_caption); 
  
     
disp('Step 6 complete: column set!') 
     
%% Step 7 - Calibrate Length (optional) 
    
    disp('Step 7 Calibrate Length...') 
     
     %Ask user if length needs to be calibrated 
     inp = input("     Calibrate Length? Y/N: ",'s'); 
     if(inp=='Y') 
          lengthCalib=1; 
          disp(     'Draw rectangular mask around reference length [left edge 
first!]'); 
           
          %show the original image at current framenum 
          
imshow(imread(strcat(framesDir,filename,'\',filename,'_',num2str(framenum),'.
jpg'))); 
           
           
          %Draw polygon mask 
          %mx and my are the vertex positions of your mask 
          %left click for points, right click to close loop 
          %right click a vertex to create mask 
           



 

           
          [mask, mx, my]=roipoly; 
            
          refPix = ((mx(3)-mx(2))+(mx(4)-mx(1)))/2; 
           
          %Display mask overlayed onto image 
          imshow(imoverlay(mat2gray(colFrame),mask,[0.1 0.8 0.1])); 
         
          refLength = input("     Enter Reference Length(um): ",'s'); 
          pSpeed = str2num(input("     Enter Printing speed(mm/min): ",'s')); 
          mmPerPix = str2num(refLength)/1000/refPix; 
          disp('Step 7 Complete: Length Calibrated!')     
     else 
          lengthCalib=0; 
          disp('Step 7 skipped! - No Length param. set') 
     end 
  
        %Export Frame 
        expTail = strcat(filename,'_maskEDFrame.jpg'); 
        expPath = strcat(dataExpDir,expTail); 
        title(filename); 
        saveas(gcf,expPath); 
     
%% Step 8: Find meniscus height position for each frame 
disp('Step 8: Obtain Meniscus Height at each frame...') 
  
fstart=1; %start before needle appears, make sure col is at position before 
needle passes 
fspace=1; 
fend=frames; 
ypos=NaN([1,fend-fstart+1]); 
  
%Early frames diff protocol 
for k=fstart:fspace:20 
    I1=imread(strcat(framesDir,filename,'\',filename,'_',num2str(k),'.jpg')); 
    I2=rgb2gray(I1); 
    BW=imbinarize(I2,BWthresh1); 
     
    %Denoise with Weiner2 filter 
    for (i=1:1:WF1) 
       BW = wiener2(BW,[20 30]); 
    end 
    BWcol=BW(:,col); 
     
    %height 
    hpos = find(~BWcol,1,'first'); 
    if(isempty(hpos)) 
        ypos(k)=0; 
    else 
        ypos(k)=find(~BWcol,1,'first'); 
    end 
    fprintf('On frame: %d out of %d processed.\n',k-fstart+1,frames-fstart); 
end 
  
if(k < 20) 
        BW=imbinarize(I2,BWthresh1); 
    else 



 

end 
  
  
for k=21:fspace:fend 
    I1=imread(strcat(framesDir,filename,'\',filename,'_',num2str(k),'.jpg')); 
    I2=rgb2gray(I1); 
        BW=imbinarize(I2,BWthresh); 
     
    %Denoise with Weiner2 filter 
    for (i=1:1:WF) 
       BW = wiener2(BW,[20 30]); 
    end 
     
     
    BWcol=BW(:,col); 
    ypos(k)=find(~BWcol,1,'first'); 
    fprintf('On frame: %d out of %d processed.\n',k-fstart+1,frames-fstart); 
end 
disp('Step 8 complete: Meniscus height obtained!') 
  
%% Step 9: Calculate meniscus profile 
disp('Step 9: Calculate Meniscus Profiles...') 
  
[~,minindex]=min(ypos);%get frame that needle first enters view 
  
menheight=baseline-ypos; %substract baseline to get height of meniscus in 
pixels 
  
%mmPerPix=0.23/520;%real world length per pixel for conversion, from needle 
width or another reference 
if (lengthCalib==1) 
    menheightreal=menheight.*mmPerPix; 
end 
  
%Average frame rate of video file for calculation. If frame rate is 
inconsistent or 
%there are dropped frames then you must find the time of each individual 
%frame instead 
framerate=obj.FrameRate; 
  
%frame number array 
xframe=1:fspace:fend; 
%time array 
xtime=(xframe-fstart)./framerate;%seconds 
  
tOffset = minindex/framerate;%time needle first enters view 
xtime = xtime-tOffset; %corrected time so 0 is when needle enters 
  
%Use printing speed to scale distance 
xDist = xtime*pSpeed*60; %mm 
  
%Plotting 
close all; 
  
figure (1); 
  
%Plotting realheight vs distance 



 

    subplot(2,3,1); 
    plot(xDist,menheightreal,'k','Linewidth',1.5) 
    title('Meniscus Length') 
    xlabel('Distance from Nozzle(mm)') 
    ylabel('Height(mm)') 
    set(gcf,'color','w'); 
    box on 
  
%Plotting arb. axes vs frame 
    subplot(2,3,4); 
    plot(xframe,menheight,'k','Linewidth',1.5) 
     
    %add thick vertical lines every 10/100/1000 frames 
    if (frames > 1000) 
        for i=0:100:frames 
            xline(i,'k');  
        end 
         
    elseif (frames > 10000) 
        for i=0:1000:frames 
            xline(i,'k');  
        end   
    else 
        for i=0:10:frames 
            xline(i,'k');  
        end 
    end 
     
    title('Raw Calculations') 
    xlabel('Frame') 
    ylabel('Height (pixels)') 
    set(gcf,'color','w'); 
    hold off 
    box on 
  
    %Plot realheight vs time 
    subplot(2,3,[2 3 5 6]); 
    hold on 
    plot(xtime,menheightreal,'k','Linewidth',1.5) 
    xlabel('Time elapsed (s)') 
    ylabel('Height(mm)') 
    set(gcf,'color','w'); 
    box on 
    hold off 
    set(gcf, 'Position',  [100, 100, 1200, 500]) 
     
    %Export Figure 1 
        expTail = strcat(filename,'_allPlots.jpg'); 
        expPath = strcat(dataExpDir,expTail); 
        saveas(gcf,expPath); 
     
         
    figure(2) 
    hold on 
    plot(xtime,menheightreal,'k','Linewidth',1.5) 
    title(filename) 
    xlabel('Time elapsed (s)') 



 

    ylabel('Height (mm)') 
    set(gcf,'color','w'); 
    box on 
    set(gcf, 'Position',  [100, 100, 700, 500]) 
        %Export Figure 2 
        expTail = strcat(filename,'_HvsT.jpg'); 
        expPath = strcat(dataExpDir,expTail); 
        saveas(gcf,expPath);     
         
         
    %Export Data to File 
     
    %Concatenate results into matrix [frame xtime(s) xDist(mm) 
menheight(pixel) menheightreal(mm)] 
    m = [transpose(xframe) transpose(xtime) transpose(xDist) 
transpose(menheight) transpose(menheightreal)]; 
     
    expTail = strcat(filename,'_Data.txt'); 
    expPath = strcat(dataExpDir,expTail); 
     
    %Write data file headers 
    fid = fopen(expPath, 'w'); 
    fprintf(fid, "Frame,TimeElapsed(s),Distance from nozzle 
(mm),Height(pixel),Height(mm)\n"); 
    fclose(fid); 
         
    %Write data 
    dlmwrite(expPath,m,'-append','delimiter',','); 
    disp('Step 7 Complete!') 
     
         
         
    disp('Step 9 complete: Sequence Complete!') 
  
  
%% Local functions 
function pickedFrame = chooseFrame(frame, maxFrames, framesDir, 
filename,mask) 
    currentFrame = frame; 
    pickedFrame = 0; 
    done = 0; 
     
    while (done ~= 1) 
        %display masked, if mask given 
         
        im 
=imread(strcat(framesDir,filename,'\',filename,'_',num2str(currentFrame),'.jp
g')); 
         
        if (mask~=-1) 
            imshow(imoverlay(mat2gray(im),mask,[0.0 0.5 0.0])); 
        else 
            imshow(im); 
        end 
         
         
         



 

        cmd = input('Choose Frame: q for done, asd+fgh for -
(10/5/1)+(1/5/10), frames: ','s'); 
        switch cmd 
            case 'q' 
                done = 1; 
                pickedFrame = currentFrame; 
            case 'd' 
                if (currentFrame > 1) 
                    currentFrame = currentFrame-1; 
                end 
            case 's' 
                if (currentFrame > 6) 
                    currentFrame = currentFrame-5; 
                end 
            case 'a' 
                if (currentFrame > 101) 
                    currentFrame = currentFrame-100; 
                end 
            case 'f' 
                if (currentFrame < maxFrames) 
                    currentFrame = currentFrame+1; 
                end 
            case 'g' 
                if (currentFrame < maxFrames-5) 
                    currentFrame = currentFrame+5; 
                end 
            case 'h' 
                if (currentFrame < maxFrames-100) 
                    currentFrame = currentFrame+100; 
                end 
            otherwise 
                disp('Unrecognized input\n');           
        end 
         
    end 
end 

 
 

 
  



 

§15. Solvent Vapor Annealing Study 
     The apparatus for annealing during in situ microscopy comprised a small glass petri dish sitting 
(base down) within a larger petri dish (also base down) on a hot plate set to the target temperature 
underneath a microscope camera. 
     In the absence of solvent vapor, structural rearrangement is not evident after several hours even 
at the highest modest temperature used (65°C). Into the small petri dish were placed a metal weight 
and the desired sample.  An excess of THF solvent was injected into the larger petri dish and the 
system was partially capped with a glass petri dish cover (preheated to 150°C to avoid 
condensation) and held closed for 300 seconds. Then the dish is uncapped and the remaining THF 
solvent was removed via syringe pump from the reservoir and the sample could deswell. All 
experiments took place in a fume hood with strong forced convection. 
 
Microscope camera images of solvent-vapor annealed samples discussed in the main text. 
 

Figure S47 Printed at 25C, annealed at 25C. 

 



 

 

Figure S48 Printed at 25C, annealed at 50C. 

 

Figure S49. Printed at 50C, annealed at 50C. 



 

 

 
Figure S50. Printed at 50C, annealed at 65C. 

  



 

Microscope Images of Dropcast Solvent Annealed Samples 

 
Figure S51. Images and peak reflected wavelength for dropcast samples prepared at 25 C and then 

solvent vapor annealed at the indicated temperatures. 

  



 

§16. Thermal Annealing  
The following result is from compression/annealing of the as-synthesized polymer between glass slides in 
a vacuum oven for 3 hours at 150 C. We see that after thermal annealing, the peak reflected wavelength is 
~605 nm, (corresponding to optically estimated d-spacing of 212 nm, see SI page 40). This is well above 
that of the majority of our printed films and suggests that the printed films are indeed trapped in a metastable 
conformation.  

 

Figure S52. Thermal Annealing results. (A) Microscope camera image of annealed film under a ring light.  
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