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Figure S1: Expression patterns of TP53 and TGFB1 target genes in SCC and conventional 
UC, Related to Figure 2. 
(A) Expression patterns of TP53 target genes in SCC and molecular subtypes of conventional UC. 
(B) Expression patterns of TGFB1 target genes in SCC and molecular subtypes of conventional 
UC. 
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Figure S2: Survival analysis in SCC and conventional UC, Related to Figure 2. 
Kaplan Meier analysis of survival in SCC and conventional UC and log-rank testing. A p-value 
<0.05 was considered statistically significant. 
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Figure S3: Expression patterns of genes involved in the regulation of neural phenotype, 
Related to Figure 4. 
(A) Expression patterns of neural phenotype-related genes in SCC and molecular subtypes of 
conventional UC. (B) Expression patterns of transcription factors involved in neural progenitors 
development in SCC and molecular subtypes of conventional UC. 
 
 

 

 

  

 



4 
 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure S4. Molecular subtypes in 30 bladder cancer cell lines, Related to Figure 8. 
Expression pattern of luminal, basal and neural markers in 30 bladder cancer cell lines revealed by 
RNASeq analysis. 
 

 

 

 



 

Table S1: Summary of Clinical and Pathological Data for MD Anderson and TCGA Cohorts 
MDACC Small Cell Carcinoma FFPE Cohort, Related to Figure 1.   

Stage Subtype Gender F/M Number of 
samples Age, yr, mean ± SD 

Invasive     

T1 Double negative 1/0 1 N/A 
(T2 and higher) Double negative 2/31 33 67.1 ± 10.8 
Total  3/31 34 67.4 ± 10.8 
     

CONVENTIONAL UROTHELIAL CARCINOMA COHORTS   
     
MDACC FFPE Cohort       
Invasive Luminal 7/36 43 70.2 ± 11.7 
(T2 and higher) Basal 10/18 28 68.7 ± 10.9 

 Double Negative 2/11 13 67.9 ± 8.8 
Total  19/65 84 69.3 ± 11.0 
     
MDACC Tissue Microarray FFPE Cohort     
Invasive Luminal 7/33 40 69.1 ± 11.5 
(T2 and higher) Basal 10/17 27 70 ± 10.3 

 Double Negative 1/8 9 63.7 ± 6.1 
Total  18/58 76 68.8± 10.6 
     

TCGA Cohort         
Invasive Luminal 48/164 212 68.3 ± 11.0 
(T2 and higher) Basal 56/123 179 68.0 ± 10.1 

 Double Negative 3/14 17 65.6 ± 10.2 
Total  107/301 408 68.1 ± 10.6 
F, female; M, male; yr, year; SD, standard deviation  
 

 



1 2 1 2 3 4 5 6 7 8 9 10 11 12 13

UC1 UC2 SCC1 SCC2 SCC3 SCC4 SCC5 SCC6 SCC7 SCC8 SCC9 SCC10 SCC11 SCC12 SCC13

TP53 p.H179Y p.C176F p.H179Y p.C176F p.E271K p.E285K
p.N247I;p.A15
9fs p.E286K p.N210fs p.E285K p.R337C p.R213* p.P85fs p.R248W

RB1 p.R798fs p.R798fs p.I369fs
p.Y325N; 
p.R579*;p.M708K p.E398fs p.R787* p.S567L

FSCN3 p.E77Q p.L259P
PRAMEF1 p.P456L† p.S462*
BRD4 p.Q30E Splice Site

ISLR2 p.D148N
p.225_226L
P>LKRWP

MAG p.E178K p.E572Q
MAMDC2 p.FDSVLA35fs p.D131Y
TAF1D p.E256* p.E139del

CIAPIN1 p.I6N
p.P164Q;p.
K163K

ARID1A p.YP809fs p.E1297*
PKNOX1 p.G367A
C16orf61 p.V28G
CDC23 p.S311fs
PCDH18 p.Q744*
NEUROG1 p.S121*
SLC9A3R2 p.Q296*
AR p.Q488*

TPX2 Splice Site
CCDC158 p.S3*
ADCY8 p.K703K
LYZL4 p.Q132*
MYST2 p.S216*
TEF p.D13E
SERPINB12 p.DAPFCLN228fs
RABEP1 Splice Site
HOXB5 p.Y19*
COG1 p.Q139*
CRTAM p.S326*
PIGN p.Y227*
DLX2 p.Q195P
RNF212 p.P147S

* Stop codon; fs, Frame shift; †,  mutations present in the Conventional UC sample but not in the SCC paired sample

Paired Conventional UC/SCC SCC
Conventional UC SCC

Table S2: List of Mutations Identified in SCC (n=13) and Paired Samples of Conventional UC, Related to Figure 1.
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TRANSPARENT METHODS 

Clinical information and tissue samples 

The use of human tissue samples for this study was approved by the Institutional Review 

Board of the UT MD Anderson Cancer Center. Thirty-four archival paraffin-embedded SCC and 

84 invasive conventional bladder UC samples from the MD Anderson Cancer Center cohort were 

analyzed (Table S1).  UCs were classified according to the histologic tumor grading system of the 

World Health Organization.  Levels of invasion were defined according to the TNM staging 

system. All conventional UCs were invasive T2 and above high-grade tumors. The SCC and UC 

cohorts had similar age distributions with a male predominance. The mean age of the SCC cohort 

(31 men and 3 women) was 67 years (range, 34–90 years). The mean age of the conventional UC 

cohort (65 men and 19 women) was 69 years (range, 33–91 years). The median follow-up 

durations for the SCC and UC cohorts were 14 and 23 months, respectively. Sufficient high-quality 

DNA was available for 13 SCC cases and 2 paired SCC coexisting with conventional UC cases 

for whole-exome sequencing. Gene expression profiling was performed on 22 of the cases using 

Illumina’s DASL platform and the data were merged with those obtained from a cohort of 84 

conventional UCs.  Quantitative RT-PCR was used to analyze the miRNA expression levels in 22 

SCC samples and 80 conventional UC samples. To perform immunohistochemical validation 

studies of selected markers, we created a tissue microarray from the genomic profiling cohort 

comprising 14 of the cases of SCCs and 76 of the cases of conventional UC.  Genomic, clinical, 

and pathological data from The Cancer Genome Atlas (TCGA) Bladder Cancer (BLCA) cohort of 

408 muscle-invasive bladder cancers were used for reference.   
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DNA and RNA extraction 

Genomic DNA and total RNA were extracted from FFPE tissue samples for DNA sequencing 

and microarray experiments using the MasterPure Complete DNA and RNA Purification Kit 

(Epicenter Biotechnologies, Madison, WI) according to the manufacturer's instructions as 

previously described(Guo et al., 2019). In brief, FFPE tissue cylinders were minced, 

deparaffinized, and digested with 300 μl Proteinase K digestion buffer with 10 μl Proteinase K 

(50ug/μl, Roche Diagnostics, Mannheim, Germany) at 55 °C overnight. DNA and RNA 

concentrations and quality were determined using the ND-1000 spectrophotometer (NanoDrop 

Technologies Inc., Wilmington, DE) and the Quant-iT PicoGreen Kit (Life Technologies, 

Carlsbad, CA). Sufficient amounts of total RNA for gene expression analysis were extracted from 

all 47 SCC and 84 conventional UC samples. In addition, sufficient amount of genomic DNA were 

extracted from 13 cases of SCC, including 2 cases which also contained coexistent conventional 

precursor UC in the same specimens. DNA extracted from the peripheral blood lymphocytes or 

normal tissue of the resection specimen from the same patient was used as a control. 

Whole-exome sequencing and processing pipeline 

Genomic DNA from 13 cases of SCC and two cases of paired conventional UC were used for 

whole exome sequencing, which was performed on the HiSeq 2000 platform (Illumina, San Diego, 

CA, USA) at MD Anderson Cancer Center’s Genomic Core. The TCGA data on 408 muscle-

invasive conventional UC of the bladder were used as a reference set for mutational analyses. 

BWA-MEM (version 0.7.12) was used to align reads to the hg19 reference genome. Samtools 

(version 1.4) and Picard (version 2.5.0) were used to sort and convert between formats and remove 

duplicate reads(Etherington et al., 2015; Li et al., 2009). The Genome Analysis Toolkit 

(version3.4-46) was used to generate realigned and recalibrated BAM files(McKenna et al., 2010; 
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Van der Auwera et al., 2013). Somatic variants relative to the normal reference sample were 

detected by MuTect2(Cai et al., 2016; Callari et al., 2017). Oncotator (version 1.8.0.0) was used 

to produce gene-based and function-based annotations of the single nucleotide variants (SNVs) 

and insertions/deletions(Ramos et al., 2015). Similar analyses were performed for the genome-

wide expression data from the TCGA cohort (n=408), and tumors were assigned to specific 

molecular subtypes by applying the sets of luminal and basal markers as described previously(Choi 

et al., 2014). Mutational data were downloaded from the TCGA portal (https://tcga-

data.nci.nih.gov/tcga/). MutSigCV (version1.4; https://www.broadinstitute.org/cancer/cga/mutsig 

) and used to identify genes that were mutated more often than expected by chance given the 

background mutation processes(Lawrence et al., 2013). The significant gene list was obtained 

using a false discovery rate (FDR) cutoff 0.05. The statistical significance of associations between 

the mutations and the molecular subtypes was assessed by the Fisher's exact test. 

Mutagenesis signatures 

We used 432 SNVs identified in at least one sample and segregated them into six types of 

mutations corresponding to the following base pair substitutions: C>A, C>G, C>T, T>A, T>C, 

T>G. The Fischer’s exact test was used to determine the distribution of these mutations in the three 

groups of samples corresponding to conventional UC in the TCGA cohort, paired UC and SCC 

cohort. The genomic context of SNVs, referred to as fingerprints which included the two flanking 

bases on 5’ and 3’ sides to each position for a total of 96 possible mutational fingerprints, was 

assembled. Wilcoxon Rank Sum tests were used to test the hypothesis of no difference in the 

frequency of any fingerprint between any two groups of mucosal samples. The Benjamini and 

Hochberg method was applied to control the FDR. For each sample, we used its mutational 

fingerprints (V) and the quadratic programming method to compute a weight score (H) for each of 

https://tcga-data.nci.nih.gov/tcga/
https://tcga-data.nci.nih.gov/tcga/
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30 canonical mutational signatures (W) available from the Sanger Institute 

(http://cancer.sanger.ac.uk/cosmic/signatures).  We applied the 96-by-30 matrix of canonical 

signatures (W) and given the 96-by-1 mutational profile of a sample (V), we computed the 30-by-

1 vector (H) for each of the canonical signatures’ relative contributions to the sample profile by 

solving the following optimization formula: 

minH (WH – V)T(WH – V) such that hi ≥ 0 and Σi hi = 1. 

The optimization problems were solved using “quadprog” (version 1.5-5). Kruskal-Wallis test 

was used to test against the null hypothesis of no difference in weight scores among three groups 

of samples: conventional UC, paired UC and SCC. 

mRNA expressions and data processing 

RNAs from SCCs (n=22), and conventional UCs (n=84) were assessed using Illumina 

HumanHT-12 DASL Expression BeadChips as per the manufacturer’s instructions, and Illumina 

BeadStudio v3.1.3 (Gene Expression Module V3.3.8) was used for transformation and 

normalization of the data. Comparisons were carried out using Welch’s t-tests and Benjamini-

Hochberg -controlled FDR-adjusted p values (<0.05) and fold changes. Unsupervised hierarchical 

clustering of log ratios was performed in R (Version 3.5.2), and the results were visualized with R 

package ComplexHeatmap. Pearson's correlation, mean centering, and average linkage were 

applied in all clustering applications. Genes within 0.5 standard deviations of the log-transformed 

ratios were discarded. To select specific and robust gene sets associated with SCC, we used the 

combination analysis with Welch's t-test and fold-change; genes having FDR-adjusted p-values 

<0.05 and showing fold-change >2.0 were selected. IPA software (Ingenuity Systems, Redwood 

City, CA) was used to determine dysregulated canonical pathways and predicted upstream 

http://cancer.sanger.ac.uk/cosmic/signatures)
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regulators by calculating z-scores and –log10 p values(Jimenez-Marin et al., 2009; Kramer et al., 

2014). GSEA was used to evaluate the enrichment probability of the top canonical pathways and 

upstream regulators identified by IPA(Subramanian et al., 2005). Both SCC and UC samples were 

classified into luminal, and basal intrinsic molecular subtypes using an algorithm described 

previously.(Ochoa et al., 2016) 

Immune gene expression signatures for SCC and conventional UC were established using 

unsupervised hierarchical clustering (Pan et al., 2019). Gene dendrogram nodes corresponding to 

genes characteristically expressed in specific immune cell types were identified and validated 

through DAVID functional annotation clustering and Ingenuity Systems Analysis 

(www.ingenuity.com). Immune gene signatures were used as previously reported (De Simone et 

al., 2016; Iglesia et al., 2014; Sherman et al., 2007; Torri et al., 2010). The immune expression 

signature was quantitatively assessed by calculating the immune scores for the expression profile 

of 128 genes shown in Figure 4. Specifically, the immune score for the ith sample was defined as 

mi-(1/n) ∑ 𝑚𝑚𝑖𝑖
𝑛𝑛
𝑗𝑗=1 , where mi is the median expression level across the ith sample’s immune 

expression profile and (1/n) ∑ 𝑚𝑚𝑖𝑖
𝑛𝑛
𝑗𝑗=1  is the grand mean of medians across all n samples. Additional 

analysis of immune infiltrate was performed by the CIBERSORT algorithm 

(http://cibersort.standford.edu/runcibersort.php). The expression profile of 547 genes using 

normalized mRNA levels with absolute mode and default parameters was used to assess the 

presence of 22 immune cell types in the conventional UC and SCCs.(Chen et al., 2018; Gentles et 

al., 2015) An empirical p-value was calculated using 500 permutations to test against the null 

hypothesis that no cell type is enriched in each sample. Then a Fisher’s exact test was used to test 

against the null hypothesis of no association between sample types and their statistical 

significance. 

http://cibersort.standford.edu/runcibersort.php
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To quantitatively assess the level of EMT (Garg and Singh, 2019; Mak et al., 2016), we 

calculated the EMT score based on a 76-gene expression signature reported in Byers et al. For 

each tumor sample, the score was calculated a weighted sum of 76 gene expression levels: 

∑ 𝑤𝑤𝑖𝑖76
𝑖𝑖=1 𝐺𝐺𝑖𝑖𝑗𝑗, where 𝑤𝑤𝑖𝑖 is the correlation coefficient between the ith gene expression in the signature 

and that of E-cadherin and 𝐺𝐺𝑖𝑖𝑗𝑗 is the ith gene’s normalized expression in the jth tumor sample. We 

centered the scores by subtracting the mean across all tumor samples so that the grand mean of the 

score was zero.  

miRNA analysis 

miRNA analysis was performed on 22 SCC samples and 80 conventional UC samples (Dong et 

al., 2017).  For miRNA cDNA synthesis, 400 ng of total RNA was reverse-transcribed using a 

miRNA reverse transcription kit (Applied Biosystems; catalogue No. 4366596) in combination 

with the stem-loop Megaplex primer pool (Applied Biosystems). For each cDNA sample, 381 

small RNAs were profiled using TaqMan Human MicroRNA A Cards (Applied Biosystems; 

catalogue No. 4398965). Fold-change for each microRNA was determined using the ∆Ct method 

and examined using Welch’s t-test.  An adjusted p value with FDR <0.05 was considered 

significant. 

Regulon analysis 

We performed regulon analysis to infer the relative activity of two sets of candidate 

transcription factors (TFs)(Castro et al., 2016). For a given TF, the set of its putative target genes 

is defined as a regulon. The first set of TFs were previously reported to be associated with bladder 

cancer and analyzed for the gene regulatory network: FOXA1, RXRA, FGFR3, RXRB, ERBB3, 

AR, GATA3, ESR2, ERBB2,PPARG, RARA, FGFR1, PGR, RARB, TP63, ESR1, GATA6, 
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STAT3, FOXM1, KLF4, EGFR, and HIF1A(Robertson et al., 2017). The second set of TFs were 

those reported to be related to neuronal phenotyping and manually curated based on the literature, 

including ASCL1, PROM1, NR2F1, MSX1, SOX2, SOX9, SOX11, NCAM1, NEUROD1, CHD7, 

MSI1, MSI2, E2F1, E2F2, and SOX4.  

To construct the regulons for the TFs of interest, we employed the method developed and 

implemented in R package RTN1(Castro et al., 2016; Fletcher et al., 2013). In addition, we utilized 

the IPA to supplement the list of target genes of a TF if the number of target genes identified by 

the RTN method was too small to allow reliable downstream analyses.  

We analyzed each regulon using the two-tailed GSEA(Castro et al., 2016; Subramanian et al., 

2005). This method first divided the set of target genes for each TF into positive and negative 

targets associated with the phenotype of interest (for example, conventional UC vs SCC) using 

Spearman’s correlation coefficient. The distribution of the positive and negative targets was tested 

respectively, producing enrichment scores (ES) for each sample. The difference between positive 

ES and negative ES resulted in the differential enrichment score (dES). For further analysis of the 

difference between the conventional UC and SCC, we extracted the dES for each sample. We 

assessed how the regulons were associated with bladder cancer subtypes by analyzing the dES 

with heatmaps and two-tailed GSEA. 

Validation studies 

Tissue microarrays, immunohistochemistry, and western blotting. The expression levels of 

selected genes were validated on parallel tissue microarrays (TMAs) comprising FFPE samples 

from 76 UCs and 14 SCCs. The TMAs were designed and prepared as described previously and 

profiled by genomic platforms(Sanfrancesco et al., 2016). In brief, TMAs (two 1-mm cores per 
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case) were constructed with a manual tissue arrayer (Beecher Instruments, Silver Spring, MD). 

Tissue sections from the TMAs were stained with hematoxylin and eosin to confirm the presence 

of tumor tissue. Immunohistochemical staining was performed with mouse monoclonal antibodies 

against human GATA3 (HG3-31 clone, 1:100 dilution; Santa Cruz Biotechnology Inc., Santa 

Cruz, CA), cytokeratin 5/6 (clone D5/16B4, 1:50 dilution, Dako, Carpinteria, CA), cytokeratin 14 

(LL002 clone, 1:50 dilution; BioGenex, Fremont, CA), Synaptophysin, (clone 27G12, 1:600 

dilution, Novocastra), Chromogranin (clone LK2H10, 1:600 dilution, Chemicon), and 

INSM1(clone A-8, 1:300 dilution, Santa Cruz Biotechnology Inc., Santa Cruz, CA). TMAs were 

also stained with antibodies specific for CD3 (rabbit polyclonal, 1:100 dilution, Dako, Carpinteria, 

CA), and CD8 Ab-1 (mouse clone C8/144B, 1:50 dilution, Thermo Scientific, Kalamazoo, MI). 

Immunostaining was performed using the Bond-Max Autostainer (Leica Biosystems, Buffalo 

Grove, IL). The staining intensities were scored by two pathologists (CCG and BAC) as negative 

and mildly, moderately, or strongly positive. In addition, the levels of Synaptophysin (D8F6H 

clone, 1:1000 dilution, Cell Signaling Technology), MSI1 (D46A8 clone, 1:1000 dilution, Cell 

Signaling Technology), E2F1 (Polyclone, 1:1000 dilution, Cell Signaling Technology), E-

Cadherin (4A2 clone, 1:1000 dilution, Cell Signaling Technology), and ADORA2A (7F6-G5-A2 

clone, 1:200 dilution, Santa Cruz Biotechnology Inc., Santa Cruz, CA) in SCC were confirmed on 

selected frozen tumor samples by western blotting.  

Locked Nucleic Acid Ablation of miR-17-5p. We first analyzed genomic mRNA profile from 30 

bladder cancer cell lines. In brief, total RNA was isolated using the mirVana miRNA isolation kit 

(Ambion, Inc). RNA purity and integrity were measured by NanoDrop ND-1000 and Agilent 

Bioanalyzer and only high-quality RNA was used for the cRNA amplification. Direct 

hybridization assays were performed using the Illumina RNA amplification kit (Ambion, Inc, 



9 
 

Austin, TX) and Illumina HT12 V4 chips (Illumina, Inc., San Diego, CA). Slides were scanned 

with Bead Station 500X and signal intensities were quantified with GenomeStudio (Illumina, Inc.). 

Quantile normalization in the Linear Models for Microarray Data (LIMMA) package in the R 

language environment was used to normalize the data. For the purpose of locked nucleic acid 

ablation of miR-17-5p experiment we focused our analysis on the expression pattern of luminal, 

basal, and neural markers. The basal urothelial carcinoma cell line UC6 was selected for the 

ablation of miR-17-5p. UC6 cells were grown to 70% confluency and were transfected using 

Lipofectamine 2000 (Thermo Fisher) in triplicates with 20 nM LNA for miR-17-5p (assay ID 

YI04100215-ADA) and negative control A-LNA (assay ID YI00199006-ADA) (Qiagen). After 

24 hours, the cells were washed with PBS and RNA was isolated using Trizol (ThermoFisher).  

Gene expression profiles of the miR17-5p-LNA and negative control A-LNA in transfected and 

control UC6 cells were analyzed by RNASeq on an Illumina HiSeq2000. RNA was extracted as 

before then 76 bp libraries were constructed. mRNA expression profiles were mapped to the hg19 

genome using MapSplice (de Matos Simoes et al., 2015). Gene expression was determined by 

RSEM and normalized with to the upper quartile. 

For selected RNAs, expression levels after miR17-5p-LNA transfection were measured by 

quantitative PCR on an ABI 7900.  For miRNA, each sample was reverse transcribed using 

TaqMan microRNA Reverse Transcription kit with the target specific primer.  PCR was then 

performed to quantify miR-17-5p with miR-125a-3p as control and RNU48 as reference. To 

determine fold-changes in E2F1, RNA from miR17-5p-LNA and negative control A-LNA 

transfected UC6 cells were reverse transcribed. PCR was performed for E2F1 and human β actin 

was used as a reference (Applied Biosystems, Foster City, CA). Software defaults were used to 
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compute the relative change in expression by the ΔCt method. GraphPad 8.0.0 Prism was used to 

plot RQ and calculate p value using an unpaired t-test. 

General statistical analysis 

Survival analyses were performed by Kaplan–Meier analysis and log-rank testing. For genome-

wide mRNA and miRNA differential expression analysis, the Benjamini and Hochberg(BH) 

method was applied to control the false discovery rate(FDR). An adjusted p value with FDR <0.05 

was considered statistically significant.  
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