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Supplementary notes 
Supplementary Note 1: Simulation studies of the effects of misdiagnosis and 
ascertainment bias on analysis results.  
Results 

For samples from neuropsychiatric disorders, a proportion of individuals from Trait 1 
group might be from Trait 2 group and vice versa, due to disease misdiagnosis. In another scenario 
of ascertainment bias, individuals with both disorders may be over-sampled into one of the two 
groups. These situations might inflate estimates of the proportion of shared risk genes. We 
designed simulation studies to test whether these scenarios could substantially impact on the 
estimates of 𝜋" and on the power of risk-gene identification. These scenarios could happen for 
both groups (bi-direction). To simplify the simulation process, we focused on the simulation 
setting where only data of Trait 1 is subject to misdiagnosis or ascertainment bias. However, 
similar approaches could be used for Trait 2 or both traits. For each combination of parameters, 
100 replicates were carried out.  

Misdiagnosed cases. We first assessed the impact of sample misdiagnosis on mTADA 
parameter estimation and risk gene discovery. We assumed that a percentage of samples from Trait 
1 group were misdiagnosed, i.e. they were actually from Trait 2 group as in Supplementary Table 
4. We simulated several possible percentages that likely occur in the real data (1%, 5% and 10%). 
In addition, a high percentage (20%) was simulated to test the impact of extreme misdiagnosis.  
Overall, when this value was less than 20%, the inflation of 𝜋"  was not high if the two tested traits 
had similar mean relative risks  (Supplementary Figure 8). Estimated values of 𝜋" were not 
affected by misdiagnosed cases if the mean relative risks of Trait 2 group were much smaller than 
those of Trait 1 group (e.g., 105/29 for the mean relative risks of Trait 1 and 12/2 for those of Trait 
2). However, if the mean relative risks of Trait 2 group were substantially higher than those of 
Trait 1 group, 𝜋"’s estimates converged to the risk-gene proportion of Trait 2 (𝜋#$)  when the 
percentage of misdiagnosed cases was very high (~ 20%, Supplementary Figure 8). This was 
because 𝜋#$ was smaller than 𝜋%$ (the risk-gene proportion of Trait 1) in our simulations (Method 
Section). Second, we tested the correlations between estimated and simulated values of 𝜋". This 
proportion was not affected when the percentage of misdiagnosed cases was less than 20%. 
However, it was underestimated when the percentage was  large (20%, Supplementary Figure 9). 
Next, we tested in depth the classification results of single traits when there were misdiagnosed 
cases. We compared AUCs between the single-trait approach (extTADA) and mTADA 
(Supplementary Figure 10). mTADA performed better than extTADA in almost all situations, 
especially when 𝜋"  increased. As expected, the performance of mTADA was much better for Trait 
2 group because this group had samples in Trait 1 group. Finally, we tested the observed FDRs 
(oFDRs) of each trait from mTADA’s results (Supplementary Figure 11). For Trait 2 group, 
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oFDRs were well calibrated (Supplementary Figure 11B). For Trait 1 group, oFDRs were also 
similar to those of Trait 1 group when the percentages of misdiagnosed cases were not high (<20%) 
or Trait-2’s mean relative risks were much smaller than Trait-1’s. However, oFDRs were inflated 
for high misdiagnosis situations (20% in Supplementary Figure 11A). The highest inflation rates 
were observed for small values of 𝜋" (0.01 or 0.015). Such situations might not be seen in real 
data because 𝜋"′𝑠 values and the percentage of misdiagnosis should be highly correlated.  

Ascertainment bias. In Trait 1 samples, some cases will happen to have the Trait 2 
phenotype, because of the comorbidity of the diseases. When the samples with comorbidity 
condition get over-sampled – ascertainment bias, this leads to a higher number of individuals with 
Trait 2 in the Trait 1 samples, than otherwise (no ascertainment bias). As a result, genes involved 
in Trait 2, i.e. Trait 2 specific risk genes and shared risk genes, may have higher DNM counts than 
otherwise. We denote 𝑅, the ratio of inflated DNM counts and the DNM counts in the absence of 
ascertainment bias. A large value of 𝑅 potentially leads to biased estimates of model parameters, 
in particular π". We derived an expression of 𝑅, as a function of comorbidity and the extent of 
ascertainment bias in Supplementary Methods. We then simulated results under possible values of 
𝑅 from 1.1 to 1.7.  

There was not inflation for 𝜋" when 𝑅  was <1.5. When 𝑅 was ≥ 1.5, slightly overestimates 
were observed for this measurement (Supplementary Figure 12). As a result, 𝜋%  was not strongly 
affected by this bias (Supplementary Figure 13). mTADA also performed better than extTADA in 
the risk-gene classification: mTADA’s AUCs were higher than extTADA’s AUCs (Supplementary 
Figure 14). Finally, oFDRs were well calibrated with PPs for both groups (Supplementary Figure 
15A and B). 

 

Methods 
Simulation studies 

Misdiagnosed cases. We assumed that a percentage of Trait 1 group was from Trait 2 group; 
therefore, gene-level DNMs of these samples followed the same statistical models as those of Trait 
2 samples. Details of the simulation process are described in Supplementary Table 4.  

Ascertainment bias.  We formulated an expression to calculate the inflation ratio, R, of gene-
level DNMs when there was ascertainment bias. Our goal is to estimate the expected number of 
mutations of a gene in the data of Trait 1, when there is ascertainment bias. Consider one sample 
at a time: let 𝑋 be the mutation status of the gene of interest (1 if the gene has a mutation and 0 
otherwise); and 𝑌%, 𝑌# be the phenotype status of two traits. Let sample size of trait 1 be 𝑁% and 𝜋 
be the proportion of samples with both traits in Trait 1 group. The expected number of mutations 
in the gene is given by:  

𝐸 = 𝑁%𝜋𝑃(𝑋 = 1|𝑌% = 1, 𝑌# = 1) + 𝑁%(1 − 𝜋)𝑃(𝑋 = 1|𝑌% = 1, 𝑌# = 0)   (1) 

where the first term comes from comorbid samples and the second from samples with only trait 1. 
When the two traits are unrelated, we should have 𝑃(𝑋 = 1|𝑌% = 1, 𝑌# = 1) = 𝑃(𝑋 = 1|𝑌% = 1), 
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which reduces to the standard mTADA model. However, when there is comorbidity, this equality 
may not hold.  

We first estimate 𝑃(𝑋 = 1|𝑌% = 1, 𝑌# = 1). In particular, we are interested in comparing this with 
𝑃(𝑋 = 1|𝑌% = 1). If the ratio is substantially higher than 1, it means that in samples with both 
phenotypes, the rate of mutation would be higher, comparing with samples with 𝑌% = 1 only. Using 
Bayes rule, we write 𝑃(𝑋 = 1|𝑌% = 1, 𝑌# = 1) as:  

 𝑃(𝑋 = 1|𝑌% = 1, 𝑌# = 1) = ;(<=>%,<?>%,@>%)
;(<=>%,<?>%)

= 𝑃(𝑋 = 1) ;(<=>%|@>%)
;(<=>%)

;(<?>%|<=>%,@>%)
;(<?>%|<=>%)

	(2) 

Because the product of the first two terms is just 𝑃(𝑋 = 1|𝑌% = 1); therefore, we have this ratio: 

 ;(@>%|<=>%,<?>%)
;(@>%|<=>%)

= 	 ;(<?>%|<=>%,@>%)
;(<?>%|<=>%)

= 𝜆     (3) 

We note this ratio depends on the risk gene status. When the gene is not a risk gene of Trait 
2 (𝐻D or 𝐻%), 𝜆 should be 1. When the gene is a risk gene of Trait 2 (𝐻# or 𝐻"), the ratio may be 
higher than 1. This will be discussed later.  

To compute 𝑃(𝑋 = 1|𝑌% = 1, 𝑌# = 0), we introduce an additional parameter:  

𝑃(𝑌# = 1|𝑌% = 1) = 𝑐;     𝑃(𝑌# = 0|𝑌% = 1) = 1 − 𝑐    (4) 

 
The parameter 𝑐 captures the extent of comorbidity of two disorders in the general population. 
Note that c and 𝜋 (actual proportion in our Trait 1 samples) may differ, reflecting ascertainment 
bias. We use the Bayes rule:  

;(@>%|<=>%,<?>D)
;(@>%|<=>%)

= ;(<?>D|<=>%,@>%)
;(<?>D|<=>%)

= %F;(<?>%|<>%,@>%)
;(<?>D|<=>%)

= %FGH
%FH

   (5) 

Now, we have the expected number of mutations in Trait 1 data: 

𝐸 = 𝑁%𝑃(𝑋 = 1|𝑌% = 1)[𝜋𝜆 + (1 − 𝜋) %FGH
%FH	

	]     (6)  

We can now compute the expected mutations in a gene, depending on which hypothesis (𝐻D to 𝐻") 
applies to the gene. We denote 𝜇 the mutation rate of a gene per chromosome copy.   

. 𝐻D: 𝜆 = 1, and 𝑃(𝑋 = 1|𝑌% = 1) = 2𝜇 therefore,  𝐸 = 𝑁%2𝜇. 

. 𝐻%: 𝜆 = 1,  and 𝑃(𝑋 = 1|𝑌% = 1) = 2𝛾%𝜇; therefore, 𝐸 = 𝑁%2𝛾%𝜇. 

. 𝐻#: 𝜆 may be high than 1, and 𝑃(𝑋 = 1|𝑌% = 1) = 2𝜇 ; therefore,  

𝐸 = 𝑁%2𝜇[𝜋𝜆 + (1 − 𝜋)
%FGH
%FH

 ] (7) 

. 𝐻": 𝜆 may be high than 1, and 𝑃(𝑋 = 1|𝑌% = 1) = 2𝛾%𝜇; therefore,  

𝐸 = 𝑁%2𝛾%𝜇[𝜋𝜆 + (1 − 𝜋)
%FGH
%FH

	]     (8)  
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From equations (7) and (8), if there is no ascertainment bias (no over- or under-sampling), i.e.  𝜋 =
𝑐, the expected rate would not change. When 𝜆 > 1, it is easy to see that 𝐸 is a monotonic 
increasing function of 𝜋 (given 𝑐 and 𝜆). The ratio of 𝐸 and expected rate is the inflation ratio, 𝑅, 
as defined previously.  

The value of R thus depends on 𝜆. Intuitively, 𝜆 should be somewhat smaller than 𝛾# (the 
effect of a risk gene on Trait 2). Suppose the co-morbidity is high, and it is mostly driven by 
inherited variants, then 𝑃(𝑌# = 1|𝑌% = 1) is likely high, say 0.5, and having an extra mutation  will 
not make this ratio significantly larger: 𝜆 would be at most 1/0.5 = 2. It is possible to estimate the 
value of 𝜆 using the liability threshold model. We assume 𝑌% = 1 (mostly due to inherited variants) 
and 𝑋 = 1 acts on the risk of 𝑌# = 1 independently: at the liability scale, this means that 𝑋 = 1 
and 𝑌# = 1 increase the liability in an additive fashion. With this assumption, one can derive the 
value of 𝜆 as a function of the prevalence of Trait 2 (which determines liability threshold), 𝑐, and 
relative risk 𝛾#. We do not pursue this derivation here, however. Instead, for our purpose, we only 
point out that under all settings, we always have 𝜆 ≤ 1/𝑐.  

Assuming a pessimistic scenario of 𝜆 = 1/𝑐, we can estimate the value of 𝑅. When 𝑐  is 
low, it means that the two phenotypes are quite different, so ascertainment bias is likely low. When 
𝑐 is large, ascertainment bias can be higher. We consider some settings: 

. 𝑐 = 0.1, 𝜋 = 0.15:	𝑅 = 1.15. 

. 𝑐 = 0.3, 𝜋 = 0.5: 𝑅 = 1.67.  

In the simulation process, we tested different 𝑅 values between 1.1 and 1.7. 

Supplementary Note 2: Real data analysis for two datasets of one trait. 
We attempted to use mTADA to jointly analyze two CHD datasets as two independent 

disorders (CHD1 and CHD2) to test whether mTADA could be able to report a high proportion of 
overlapping risk genes for the two datasets, and to compare the performance of mTADA and 
extTADA.We applied mTADA and extTADA to two CHD datasets. extTADA was run separately 
for the main CHD dataset (CHD1, n = 1213 trios), the independent CHD dataset (CHD2, n = 1241 
trios). mTADA was run for CHD1-CHD2. extTADA was used to estimate 𝜋%$ and 𝜋#$. These two 
proportions were 0.0419 and 0.0485 for CHD1 and CHD2 respectively. Estimated by mTADA, 
𝜋" was 0.0252 (credible interval, CI = 0.0136, 0.0388), which was 60.1% (CI=32.5-92.6%) of 𝜋%$ 
and 52% (CI=28-80%) of 𝜋#$. mTADA performed better than extTADA in the identification of 
risk genes for single disorders by using overlapping information to leverage the statistical evidence 
of genes (Supplementary Figure 16). 
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Supplementary Tables 
 

Disorder1 Disorder2 𝜋%$  𝜋#$  𝜋"	   𝑙_𝜋"  𝑢XY  𝑔𝑂	(%) 𝑙_𝑔𝑂	(%) 𝑢_𝑔𝑂	(%) 

ASD DD 0.04427 0.02936 0.01802 0.01472 0.02171 32.4 26.5 39 

ASD ID 0.04427 0.02708 0.01968 0.0155 0.02409 38.1 30 46.6 

ASD EE 0.04427 0.01548 0.00967 0.00525 0.01452 19.3 10.5 29 

ASD CHD 0.04427 0.0419 0.0174 0.00947 0.02748 25.3 13.8 40 

DD ID 0.02936 0.02708 0.02056 0.0176 0.02353 57.3 49.1 65.6 

DD EE 0.02936 0.01548 0.0065 0.00382 0.01007 17 10 26.3 

DD CHD 0.02936 0.0419 0.01891 0.01271 0.02618 36.1 24.3 50 

ID EE 0.02708 0.01548 0.01007 0.00614 0.01419 31 18.9 43.7 

ID CHD 0.02708 0.0419 0.01567 0.00881 0.02362 29.4 16.5 44.3 

EE CHD 0.01548 0.0419 0.00111 0 0.00704 2 0 12.5 

SCZ ASD 0.03237 0.04427 0.01056 0.00373 0.02076 16 5.6 31.4 

SCZ DD 0.03237 0.02936 0.00789 0.00355 0.01449 14.7 6.6 26.9 

SCZ ID 0.03237 0.02708 0.00419 0.00052 0.01094 7.6 0.9 19.8 

SCZ EE 0.03237 0.01548 0.00212 0 0.00979 4.6 0 21.4 

SCZ CHD 0.03237 0.0419 0.00275 0 0.0154 3.8 0 21.5 

 

Supplementary Table 1 
Risk-gene overlaps. 𝜋%$  and 𝜋#$ are the proportions of risk genes for single traits estimated by extTADA 
(Nguyen, et al., 2017). 𝜋"  is the overlapping proportion of risk genes while 𝑙_𝜋" and 𝑢_𝜋" are the lower 
and upper values of 𝜋"’s credible intervals. The genetic overlap (gO) is calculated as in the main text or 
𝑔𝑂 =	100% ∗ 𝜋"/(𝜋%$ + 𝜋#$ − 𝜋"). 
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Study Result 
Cross-Disorder Group of the Psychiatric 
Genomics Consortium, et al. (2013) 

rg = 0.16, se = 0.06, p = 0.0071 

Cross-Disorder Group of the Psychiatric 
Genomics Consortium (2019) 

rg = 0.22, se = 0.04,  
1.42e-05 

Brainstorm Consortium, et al. (2018) rg = 0.2082, correlation se = 0.0577, 
p < 3.35e-04 

Gandal, et al. (2018) rho ~ 0.5, p < 0.001 
Hammerschlag, et al. (2019) rg = 0.24, se = 0.039, p=1.09e-09 

 
Supplementary Table 2 
Genetic overlaps and transcriptomic correlation between ASD and SCZ in previous studies. rg: 
genetic correlation, se: standard error. 
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Supplementary Table 3 
Top SCZ risk genes from the joint analysis of SCZ and developmental disorders (DD). 
Columns which start with ‘dn’ (de novo) describe the number of de novo mutations (DNMs) for 
each variant category, and these DNMs were used in the analysis of mTADA. Columns 
‘CaseCount’ and ‘ControlCount’ show the counts of disruptive and damaging ultra-rare 
variants for cases and controls respectively. These case/control data are from an independent 
dataset of 4,877 cases and 6,203 controls. 
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Information Proportion First trait Second trait 

Trio number  𝑁% 𝑁# 

  These samples are correctly assigned to this 
group 

These samples are misdiagnosed to this 
group 

All samples are correctly assigned to this 
group 

Trio number in the 
simulation process 

 𝑁%(1 − 𝑃𝐸) 𝑁%𝑃𝐸 𝑁# 

𝑯𝟎 𝜋D 𝑥a%% 	~	𝑃𝑜𝑖𝑠𝑠𝑜𝑛(2𝑁%(1 − 𝑃𝐸))  𝑥a%# 	~	𝑃𝑜𝑖𝑠𝑠𝑜𝑛(2𝑁%𝑃𝐸𝜇a) 𝑥a#	~	𝑃𝑜𝑖𝑠𝑠𝑜𝑛(2𝑁#𝑃𝐸𝜇a) 

𝑯𝟏 𝜋% 𝑥a%% 	~	𝑃𝑜𝑖𝑠𝑠𝑜𝑛(2𝑁%(1 − 𝑃𝐸)𝜇a𝛾a%)  

𝛾a%	~	𝐺𝑎𝑚𝑚𝑎(𝛾̅%𝛽%, 𝛽%) 

𝑥a%# 	~	𝑃𝑜𝑖𝑠𝑠𝑜𝑛(2𝑁%𝑃𝐸𝜇a) 𝑥a#	~	𝑃𝑜𝑖𝑠𝑠𝑜𝑛(2𝑁#𝑃𝐸𝜇a) 

𝑯𝟐 𝜋# 𝑥a%% 	~	𝑃𝑜𝑖𝑠𝑠𝑜𝑛(2𝑁%(1 − 𝑃𝐸)) 𝑥a%# 	~	𝑃𝑜𝑖𝑠𝑠𝑜𝑛(2𝑁%𝑃𝐸𝜇a𝛾a#)  

𝛾a#	~	𝐺𝑎𝑚𝑚𝑎(𝛾̅#𝛽#, 𝛽#) 

𝑥a#	~	𝑃𝑜𝑖𝑠𝑠𝑜𝑛(2𝑁#𝑃𝐸𝜇a𝛾a#)  

𝛾a#	~	𝐺𝑎𝑚𝑚𝑎(𝛾̅#𝛽#, 𝛽#) 

𝑯𝟑 𝜋" 𝑥a%% 	~	𝑃𝑜𝑖𝑠𝑠𝑜𝑛(2𝑁%(1 − 𝑃𝐸)𝜇a𝛾a%)  

𝛾a%	~	𝐺𝑎𝑚𝑚𝑎(𝛾̅%𝛽%, 𝛽%) 

𝑥a%# 	~	𝑃𝑜𝑖𝑠𝑠𝑜𝑛(2𝑁%𝑃𝐸𝜇a𝛾a#)  

𝛾a#	~	𝐺𝑎𝑚𝑚𝑎(𝛾̅#𝛽#, 𝛽#) 

𝑥a#	~	𝑃𝑜𝑖𝑠𝑠𝑜𝑛(2𝑁#𝑃𝐸𝜇a𝛾a#)  

𝛾a#	~	𝐺𝑎𝑚𝑚𝑎(𝛾̅#𝛽#, 𝛽#) 

Gene-level variant 
count 

 𝑥a% = 𝑥a%% + 𝑥a%#  𝑥a# = 𝑥a# 

 
Supplementary Table 4 
The simulation process of misdiagnosed cases for one variant category at the 𝒊𝒕𝒉 gene. There 
are 𝑁% samples in the first-trait group, and 𝑁# samples in the second-trait group. Assuming that 
a percentage (𝑃𝐸) of samples in the first-trait group is from the second-trait group; therefore, 
their variant counts at the gene are from the same distribution as the second-trait group. 
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Supplementary Figures 

 
Supplementary Figure 1 
Correlation between posterior probabilities (PPs) and observed false discovery rates (FDRs). 
The A and B panels show results for the two models: genes are associated with only the first trait 
(Model 1) and only the second trait (Model 2) in Figure 1 respectively. The PPs of these results 
are PP1 or PP2 in the main text. 
 

 

●

● ● ●
●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

● ● ●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ● ●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●

●

●

●

●

●

● ● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●
●

●
●

●
●

●

●

●

●
●

●

●

●

● ●
●

●

●

●

●
●

●
●

●
●

●

●

●

● ●
●

●

●

● ● ●

●

●

●

●
●

●
●

●
●

●

●

●

●
●

●
●

●

● ● ● ●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ● ●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

● ● ●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ● ● ●
●

●

●

●
●

●
●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●
●

●
●

●

●

● ● ●
●

●
●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
● ● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ● ●
●

●
●

●

●

●

●

● ●

●

●

●
●

●
●

●

●

●

●
● ●

●
●

●

●

●

●

● ●

●

●

●
●

●
●

●

●

●

●
● ●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

● ●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

● ●

●

●

● ●
●

●

●

●

●

●
●

●
●

●

●
●

●

●

● ●

●

●

● ● ●

●

●

●

●

●
● ● ●

●

●
●

●

●

●
●

●

●
● ●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●
●

●

●
●

●
●

●

●

●

●
● ●

●
●

●
●

●

●

●

●
●

●

●
● ●

●

●

●

●

●

● ●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●
●

●

●

●

●
●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●
●

●

● ●
●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●
●

●

● ● ●

●

●

●

●

●
● ●

●

●

●
●

●

●

●

●

●

●
● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●
●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●
●

●

●

●
●

mRR = 105/29, 12/2 mRR = 105/29, 87/23 mRR = 24/6, 12/2 mRR = 24/6, 87/23

pi3 = 0.01
pi3 = 0.02

0.
8

0.
5

0.
2

0.
8

0.
5

0.
2

0.
8

0.
5

0.
2

0.
8

0.
5

0.
2

0.1

0.5

0.8

0.1

0.5

0.8

Posterior probability

O
bs

er
ve

d 
FD

R

TrioNumber
●

●

●

●

●

●

●

●

●1000, 1000

1000, 2000

1000, 5000

2000, 1000

2000, 2000

2000, 5000

5000, 1000

5000, 2000

5000, 5000●

●

●

●

●

●

●

●

●
● ● ●

●
●

●

●

● ● ● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
● ● ● ●

● ●

●

●
● ● ●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

● ●
● ●

●

●
●

●

●

●

●

●
●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

● ●
●

● ●

●

●
● ● ●

●

●

●

●

●

●

●

●

● ●

● ●

●

●

●

●

●
● ● ●

●

●
●

●

●

●

●

● ●
●

●
●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●
●

●
●

● ●

●

● ● ● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
● ● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ● ● ● ●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●
●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

● ●

● ● ● ●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●
● ● ● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●
●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●
●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●
● ● ● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ● ● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ● ● ●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ● ● ●
●

●

●

● ● ● ● ●

●

●

●

●

●

●

●

●

● ● ● ●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ● ● ●

●

●

●

● ● ● ●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ● ● ● ● ●

●

●

● ● ● ●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

● ● ●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

● ● ● ●
●

●

●

●
● ● ● ●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

● ● ● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
● ●

●
● ●

● ● ● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ● ● ● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ● ● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ● ● ● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

mRR = 105/29, 12/2 mRR = 105/29, 87/23 mRR = 24/6, 12/2 mRR = 24/6, 87/23

pi3 = 0.01
pi3 = 0.02

0.
8

0.
5

0.
2

0.
8

0.
5

0.
2

0.
8

0.
5

0.
2

0.
8

0.
5

0.
2

0.1

0.5

0.8

0.1

0.5

0.8

Posterior probability

O
bs

er
ve

d 
FD

R

TrioNumber
●

●

●

●

●

●

●

●

●1000, 1000

1000, 2000

1000, 5000

2000, 1000

2000, 2000

2000, 5000

5000, 1000

5000, 2000

5000, 5000

A

B



 11 

 
Supplementary Figure 2 
Correlation between posterior probabilities (PPs) and observed false discovery rates (FDRs). 
The A and B panels show results for the two traits: genes are associated with the first trait (Model 
1 + 3) and the second trait (Model 2+3) respectively. The PPs of these results are PP1 + PP3 and 
PP1 + PP2 for the first and the second traits respectively. 
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Supplementary Figure 3 
Correlation between simulated and estimated values of the overlapping proportion of risk genes 
(𝝅𝟑) for different trio sample sizes.  mRR: mean relative risks; ntrio: trio numbers of two traits. 
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Supplementary Figure 4 
Overlapping proportions of risk genes of disorders from Markov Chain Monte Carlo sampling 
results. X-axes are for the overlapping proportions of risk genes while y axes represent the mean 
relative risks of the first traits.  
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Supplementary Figure 5 
The percentage of overlapping risk genes for single traits. These values were calculated as 
100𝜋"/(𝜋% + 𝜋") and 100𝜋"/(𝜋% + 𝜋") for the first and the second traits respectively.  
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Supplementary Figure 6 
Protein-protein interaction (PPI) results for top EE and SCZ genes (posterior probability>0.8). 
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Supplementary Figure 7 
Spatiotemporal expression results of top genes from the analysis of ID and CHD data across 
four brain regions. Left pictures show different subregions, and the four regions are from these 
sub-regions (Region 1: IPC, V1C, ITC, OFC, STC, A1C; Region 2:S1C, M1C, DFC, VFC, MFC; 
Region 3:HIP, AMY, STR; Region 4: CB). The package cerebroViz (Bahl, et al., 2017) was used 
to draw brain regions. The abbreviation of these regions as described in the package: inferior 
parietal cortex (IPC), primary visual cortex (V1C), inferior temporal cortex (ITC), orbital 
frontal cortex (OFC), posterior (caudal) superior temporal cortex (STC), primary auditory 
cortex (A1C), primary somatosensory cortex (S1C), primary motor cortex (M1C), dorsolateral 
prefrontal cortex (DFC), ventrolateral prefrontal cortex (VFC),  medial prefrontal cortex 
(MFC), hippocampus (HIP), amygdala (AMY), striatum (STR), cerebellum (CB). 
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Supplementary Figure 8 
The influence of misdiagnosed cases on the estimation of 𝝅𝟑. X-axes show the simulated values 
of 𝜋" while Y-axes describe the estimated values of 𝜋". PE: the percentage of samples inside the 
first-trait group have the second trait (e.g., the first column shows that 1% of samples in the first-
trait group are misdiagnosed, they belong to the second-trait group); mRR: mean relative risks; 
nTrio: the number of parent-offspring trios.  
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Supplementary Figure 9 
The influence of misdiagnosed cases on the estimation of 𝝅𝟏. X-axes show the simulated values 
of 𝜋% while Y-axes describe the estimated values of 𝜋%. PE: the percentage of samples inside the 
first-trait group which have the second trait (e.g., the first column shows that 1% of samples in 
the first-trait group are misdiagnosed, they belong to the second-trait group); mRR: mean 
relative risks; nTrio: the number of parent-offspring trios. 
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Supplementary Figure 10 
Comparison of single-trait and two-trait methods when there are misdiagnosed cases. X-axes 
show the number of parent-offspring trios while Y-axes describe AUC values. PE: the percentage 
of samples inside the first-trait group which have the second trait (e.g., the first column shows 
that 1% of samples in the first-trait group are misdiagnosed, they belong to the second-trait 
group).  

 



 20 

 

Supplementary Figure 11A 
The correlations between observed false discovery rates (oFDRs) and posterior probabilities 
(PPs) when there are misdiagnosed cases. These results are for the first-trait group. Genetic/ 
misdiagnosis information is described in Supplementary Figure 8, 9 and 10. Horizontal lines 
describe oFDR=0.05 and oFDR=0.1. Vertical lines describe PP=0.5 and PP=0.8. 
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Supplementary Figure 11B. 
The correlations between observed false discovery rates (oFDRs) and posterior probabilities (PPs) 
when there are misdiagnosed cases. These results are for the second-trait group. Genetic/ misdiagnosis 
information is described in Supplementary Figure 8, 9 and 10. Horizontal lines describe oFDR=0.05 and 
oFDR=0.1. Vertical lines describe PP=0.5 and PP=0.8. 
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Supplementary Figure 12 
The influence of ascertainment bias (AB) on the estimation of 𝝅𝟑 when there is inflation of 
gene-level de novo mutations at risk genes of Trait 2. X-axes show the simulated values of 𝜋" 
while Y-axes describe the estimated values of 𝜋". R: the inflation ratio of DNMs per gene; mRR: 
mean relative risks; nTrio: the number of parent-offspring trios.  
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Supplementary Figure 13 
The influence of ascertainment bias on the estimation of 𝝅𝟏 when there is inflation of gene-
level de novo mutations at risk genes of Trait 2. X-axes show the simulated values of 𝜋% while 
Y-axes describe the estimated values of 𝜋%. R: the inflation ratio of DNMs per gene; mRR: mean 
relative risks; nTrio: the number of parent-offspring trios.  
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Supplementary Figure 14 
Comparison of single-trait and two-trait methods when there is inflation of gene-level de novo 
mutations at risk genes of Trait 2. X-axes show the number of parent-offspring trios while Y-
axes describe AUC values. R is the inflation ratio and pi03 is the proportion of overlapping 
genes.  
 

 



 25 

 

Supplementary Figure 15A 
The correlations between observed false discovery rates (oFDRs) and posterior probabilities 
(PPs) when there is inflation of gene-level de novo mutations at risk genes of Trait 2. These 
results are for the first-trait group. Genetic/ascertainment-bias information is described in 
Supplementary Figure 12-14. Horizontal lines describe oFDR=0.05 and oFDR=0.1. Vertical 
lines describe PP=0.5 and PP=0.8.  
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Supplementary Figure 15B 
The correlations between observed false discovery rates (oFDRs) and posterior probabilities 
(PPs) when there is inflation of gene-level de novo mutations at risk genes of Trait 2. These 
results are for the second-trait group. Genetic/ascertainment-bias information is described in 
Supplementary Figure 12-14. Horizontal lines describe oFDR=0.05 and oFDR=0.1. Vertical 
lines describe PP=0.5 and PP=0.8. 
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Supplementary Figure 16 
Analysis results of two CHD datasets. The figure describes the number of prioritized CHD 
genes with different thresholds for mTADA and extTADA. As described in the main manuscript 
for mTADA, posterior probabilities (PPs) of single traits were calculated as PP1+PP3 and 
PP2+PP3 for CHD1 and CHD2 respectively. Top pictures: the information from CHD2 
improved the risk-gene identification of mTADA for CHD1. Bottom pictures: the information 
from CHD1 improved the risk-gene identification of mTADA for CHD2. 

 

PP>0.8 PP>0.9 PP>0.95
C

H
D

1
C

H
D

2

0 5 10 15 20 25 0 5 10 15 20 25 0 5 10 15 20 25

extTADA

mTADA

extTADA

mTADA

Gene number

M
et

ho
d



 28 

Reference: 
Bahl, E., Koomar, T. and Michaelson, J.J. cerebroViz: an R package for anatomical visualization of 
spatiotemporal brain data. Bioinformatics 2017;33(5):762-763. 
Brainstorm Consortium, et al. Analysis of shared heritability in common disorders of the brain. Science 
2018;360(6395). 
Cross-Disorder Group of the Psychiatric Genomics Consortium. Genomic Relationships, Novel Loci, and 
Pleiotropic Mechanisms across Eight Psychiatric Disorders. Cell 2019;179(7):1469-1482 e1411. 
Cross-Disorder Group of the Psychiatric Genomics Consortium, et al. Genetic relationship between five 
psychiatric disorders estimated from genome-wide SNPs. Nat Genet 2013;45(9):984-994. 
Gandal, M.J., et al. Shared molecular neuropathology across major psychiatric disorders parallels 
polygenic overlap. Science 2018;359(6376):693-697. 
Hammerschlag, A.R., et al. Synaptic and brain-expressed gene sets relate to the shared genetic risk across 
five psychiatric disorders. Psychol Med 2019:1-11. 
Nguyen, H.T., et al. Integrated Bayesian analysis of rare exonic variants to identify risk genes for 
schizophrenia and neurodevelopmental disorders. Genome Med 2017;9(1):114. 

 


