
Treder MVPA-Light Appendix

4 APPENDIX

4.1 LDA implementation

The implementation of LDA in MVPA-Light differs from the generative model presented in section
2.4.3. (main paper). It uses the more efficient Fisher Discriminant Analysis (FDA) (Fisher, 1936) which
omits calculating probabilities and operates in two steps. In the first step, the data is mapped onto a
(c− 1)-dimensional subspace, where c is the number of classes. In the second step, a sample is assigned to
the class with the closest class centroid. LDA thus acts as a prototype classifier within this subspace. The
coordinates for the mapping are found by iteratively solving the equation

wlda = arg max
w

w>Sbw

w>Sww
(1)

where Sb and Sw are defined as

Sb =
∑

j ∈{1,2,...,c}
nj (mj −m)(mj −m)> (between-classes scatter)

Sw =
∑

j ∈{1,2,...,c}

∑
i∈Cj

(xi −mj)(xi −mj)
> (within-class scatter)

Here, nj is the number of instances in class j, mj is the j-th class mean, m is the sample mean, and
Cj is the set of indices of instances in class j. Note that Sw is simply the un-normalized version of Σ in
Equation 3 (main paper). For two classes, LDA has the simple solution

wlda = S−1w (m1 −m2). (2)

For more than two classes, there is multiple vectors wlda. They are collected in a matrix W ∈ Rp×(c−1)
and scaled such that W>SwW = I (Bishop, 2007). W can be obtained via the generalized eigenvalue
problem Sb W = Sw WΛ where Λ is a diagonal matrix of eigenvalues. The threshold is calculated under
the assumption of equal probabilities for the classes. Sw is often ill-conditioned or singular and hence
the inverse in Equation 2 cannot be calculated reliably. Therefore, shrinkage regularization is applied by
default and Sw is replaced by S̃w:

S̃w = (1− λ) Sw + λ ν I (3)

where I is the identity matrix and ν = trace(Sw)/p (Blankertz et al., 2011). For λ = 1, LDA becomes
a prototype classifier, that is, each sample is assigned to the closest centroid in input space. The effect
of shrinkage regularization is depicted in Figure 1. In the literature, LDA has also been used with ridge-
regression type regularization, yielding S̃w = Sw+λridge I with λridge ∈ [0,∞) (Friedman, 1989). The user
can switch to ridge regularization by setting reg = ’ridge’. However, both regularization approaches
are equivalent up to scaling. For a given shrinkage value λ < 1, the corresponding ridge regularization
value is λridge = νλ/(1− λ).

Frontiers 1

Treder MVPA-Light Appendix

Figure 1. a) LDA with two classes. Covariance matrices are indicated by ellipses. The weight vector w is
the normal to the hyperplane. b) Effect of varying λ on the shape of the covariance matrix. c) Covariance
matrices estimated from data usually overestimate large eigenvalues (Blankertz et al., 2011). d) The
shrinkage estimate S̃w partially corrects the estimation error by shrinking towards a spherical covariance
νI.

If p � n, that is, the number of features is much larger than the number of samples, calculation and
inversion of the [features × features] covariance matrix can be computationally expensive. In these cases,
the [samples × samples] Gram matrix can be used instead. The hyperparameter form decides on whether
the ’primal’ form based on covariance or ’dual’ form based on the Gram matrix is used. By default (form
= ’auto’), this is decided automatically by comparing n and p. For the dual form, the resultant formula
is equivalent to kernel FDA with a linear kernel. However, the regularization of N in kernel FDA is not
equivalent to the regularization of Sw. Furthermore, to the best of our knowledge, the Ledoit-Wolf estimate
has not been reported in the literature using dual notation. Therefore, a dual regularization approach for
LDA is developed next.

4.1.1 Dual regularization of LDA

The goal of this section is to develop a dual regularization approach for LDA that is equivalent to the
primal regularization approach. This is important in order to assure that switching from primal to dual
form with an equal regularization magnitude λ does not affect the solution w. The approach consists of

2

Treder MVPA-Light Appendix

two steps. First, the Ledoit-Wolf estimate for the optimal regularization hyperparameter λ∗ needs to be
calculated using the Gram matrix instead of the covariance matrix. Second, it needs to be assured that the
dual regularization yields the same w as the primal approach.

4.1.2 Dual Ledoit-Wolf estimate

The Ledoit-Wolf estimate (Ledoit and Wolf, 2004; Blankertz et al., 2011) for the optimal regularization
hyperparameter, denoted as λ∗, can be formulated as

λ∗ =

∑n
i=1 ||S− xix

>
i ||2F

n2[Tr(S2)− Tr(S)2/p]
(4)

where S = 1
nX>X, Tr is the trace operator and X is assumed to be zero mean (column-wise). In a finite

sample, λ∗ can take values smaller than 0 or larger than 1, so it is additionally thresholded between 0 and 1.

To rewrite Equation 4 in terms of the Gram matrix K = XX> observe that in the numerator we can
write ||S−xix

>
i ||2F = Tr(K2)/n2− 2Tr(S xix

>
i)+ 〈xi,xi〉2. For the middle term we have Tr(S xix

>
i) =

Tr(1n
∑n

j=1 xjx
>
i 〈xi,xj〉) =

1
n

∑n
j=1〈xi,xj〉2. In other words, we can rewrite the Ledoit-Wolf estimate in

terms of inner products as

λ∗ =
Tr(K2)/n− 2

∑n
i=1

∑n
j=1 K2

ij/n+
∑n

i=1 K2
ii

Tr(K2)− Tr(K)2/p
(5)

where the identity Tr(S2) = Tr(K2)/n2 has been used. Both primal and dual estimation of λ∗ are
implemented in the function LedoitWolfEstimate. This approach generalizes to kernel FDA when
the Gram matrix is replaced by the kernel matrix.

4.1.3 Dual regularization

The relationship between primal weights w and dual weights α is given by w = X>α. The denominator
of the Fisher ratio in Equation 1 can be related to the dual problem as w>Sww = α>Nα (Ghojogh et al.,
2019) where N is the ”dual” of Sw (see Equation 12). For the ridge regularized case, we then obtain

w>(Sw + λI)w = α>(N + λK)α (6)

where K is the Gram matrix as defined above. The optimal α is given by (N+λK)−1(M1−M2) where
Mj is defined as in Equation 12. The result for shrinkage regularization is analogous.

4.2 Naive Bayes implementation

MVPA-Light uses Gaussian distributions to model the univariate densities, that is P (x(j) | y = i) =
1√
2πσ2ij

exp(− (x(j)−mij)
2

2σ2ij
). The parameters of the model are thus the mij’s (mean of the j-th feature in

class i) and σ2ij’s (variance of the j-th feature in class i) estimated on the training data. Inserting the
Gaussian densities into Equation 2 (main paper) yields

Frontiers 3

Treder MVPA-Light Appendix

P (y = i |x) =

∏p
j=1

1√
2πσ2ij

exp(− (x(j)−mij)
2

2σ2ij
) P (y = i)

∑c
k=1

∏p
j=1

1√
2πσ2kj

exp(− (x(j)−mkj)2

2σ2kj
) P (y = k)

. (7)

Classification is computationally more efficient if the denominator (which is necessary for normalization
only) is omitted and the numerator is log transformed. This leads to the class-conditional decision values
di,

di = −
1

2

p∑
j=1

log(2π σ2ij)−
p∑
j=1

(x(j) −mij)
2

2σ2ij
+ logP (y = i) (8)

which can be transformed into posterior probabilities using the softmax function

P (y = i |x) = edi∑c
k=1 e

dk
. (9)

4.3 Logistic Regression implementation

The optimization problem underlying Logistic Regression is convex but there exists no analytical solution.
Instead, an iterative algorithm is required to optimize w. In MVPA-Light, the Trust Region Newton Method
introduced by Lin et al. (2007) is implemented in the function TrustRegionDoglegGN. Log-F(1,1)
regularization (reg = ’logf’) is implemented via data augmentation. L2-regularization is implemented
by adding a penalty term to the loss function:

LL2LR(w) = LLR(w) +
λ

2
||w||2 (10)

Here, λ ∈ [0,∞) controls the amount of regularization. While log-F(1,1) regularization does not require
any hyperparameters, L2-regularization requires λ to be set. The effect of regularization on the predicted
probabilities is depicted in Figure 2. If multiple candidates are provided for λ, a line search is performed
using nested cross-validation. This kind of line search is costly, since the classifier has to be trained
multiple times for each value of the hyperparameter. To speed up the search, ’warm starts’ can be used
wherein the initial value for w, denoted as winit, is a function of the solutions in previous iterations. If
predict regularization path=1, then in the k-th iteration, a polynomial function is fit to the
solutions wk−1,wk−2, ... to the previous iterations using λk−1, λk−2, ... as predictors. It is then evaluated
at the current value of λ in order to predict a good starting vector for the optimization.

4.4 SVM implementation

The formulation of SVM in Equation 6 (main paper) is intuitive but limited to the linear case. It can be
rewritten into a dual formulation which applies to both linear and kernel case (Hsieh et al., 2008). The
optimal weights are then found by solving the quadratic optimization problem

4

Treder MVPA-Light Appendix

Figure 2. Logistic regression on data with two features (x and y axis) and two classes represented by purple
(class 1) and green (class 2) dots. The curved surface is the sigmoid function fit and the vertical z-axis
represents the probability for class 1. In L2 regularization, a larger λ leads to a flatter sigmoid function
with smoothly varying probabilities. For comparison, the sigmoid fit using log-F(1,1) regularization is also
shown.

arg min
α

1

2
α>Qα− 1

>α

subject to ∀i : 0 ≤ αi ≤ c

(11)

where α = [α1, α2, ..., αn]
> ∈ Rn is the dual weight vector and 1 is a vector of 1’s. Q is the kernel

matrix with the class labels absorbed, i.e. Qij = yiyj k(xi,xj), where k is the kernel function, and
yi, yj ∈ {+1,−1} are the class labels for the i-th and j-th sample. The hyperparameter c controls the
amount of regularization. The optimization of the weights is performed using a Dual Coordinate Descent
approach (Hsieh et al., 2008) implemented in the function DualCoordinateDescent.

4.5 KFDA implementation

Let K ∈ Rn×n be the kernel matrix representing the inner products of the samples in the Reproducing
Kernel Hilbert Space (RKHS) and Kj ∈ Rn×nj be the submatrix of K with columns corresponding to
samples in class j. The kernelized versions of between-classes and within-class scatter are given by the
matrices M and N as

M =
c∑

j=1

nj (Mj −M∗) (Mj −M∗)
>

N =
c∑

j=1

Kj (I−
1

nj
11
>) K>j

(12)

where Mj ∈ Rn is the mean of the columns of Kj and M∗ is the mean of the columns of K. Then the
solution is given by the (c− 1) leading eigenvectors of N−1M. Like in LDA, the model can be regularized
using ridge regularization (reg = ’ridge’) or shrinkage regularization (reg = ’shrink’). Using
shrinkage, N is replaced by Ñ = (1− λ) N + λ trace(N)/n I.

Frontiers 5

Treder MVPA-Light Appendix

4.6 Implementing a prototype classifier

This section illustrates how to implement a prototype classifier that assigns a new sample to the class with
the closest class centroid. Class centroids are calculated from the training data by calculating the means of
the samples within each class. This example is mostly didactic. A prototype classifier can be simulated
with LDA or multi-class LDA by setting reg = ’shrink’ and lambda = 1.

First, the train function needs to be implemented. As input arguments, train functions take a param
struct which is short notation for ’hyperparameter’. It corresponds to the cfg.hyperparameter struct
defined in the high-level functions. Additionally, it takes the training data X and the corresponding class
labels clabel. For brevity, most of the documentation is omitted.

function model = train_prototype(param, X, clabel)

nclasses = max(clabel);

% Classifier struct
model = [];
model.nclasses = nclasses;

%% Calculate class centroids
model.centroid = zeros(nclasses, size(X,2));
for c=1:nclasses

model.centroid(c,:) = mean(X(clabel==c,:));
end

The output of the train function is a structure model that describes the parameters of the classifier after
training. The test function takes the classifier model and the test data X as input. For classification, we
need to calculate the Euclidean distance between each test sample and each of the centroids. Then, each
sample is assigned to the closest class centroid.

function clabel = test_prototype(model, X)

% Euclidean distance of each sample
% to each class centroid
dist = arrayfun(@(c) sum(bsxfun(@minus, X, ...

model.centroid(c,:)).ˆ2, 2), ...
1:model.nclasses, ’Un’,0);

dist = cat(2, dist{:});

% For each sample, find the closest centroid
clabel = zeros(size(X,1),1);
for ii=1:size(X,1)

[˜, clabel(ii)] = min(dist(ii,:));
end

6

Treder MVPA-Light Appendix

The output of the test function is clabel, the vector of predicted class labels. Finally, an entry
for prototype needs to be added to the function mv get hyperparameter. Since the prototype
classifier has no hyperparamaters, this entry can be empty. Provided that the train and test functions are in
the MATLAB path, the new classifier can be used with all high-level functions by setting cfg.model =
’prototype’.

REFERENCES

Bishop, C. M. (2007). Pattern Recognition and Machine Learning. Journal of Electronic Imaging 16,
049901. doi:10.1117/1.2819119

Blankertz, B., Lemm, S., Treder, M., Haufe, S., and Müller, K. R. (2011). Single-trial analysis and
classification of ERP components - A tutorial. NeuroImage 56, 814–825. doi:10.1016/j.neuroimage.
2010.06.048

Fisher, R. A. (1936). The use of multiple measurements in taxonomic problems. Annals of Eugenics 7,
179–188. doi:10.1111/j.1469-1809.1936.tb02137.x

Friedman, J. H. (1989). Regularized Discriminant Analysis. Journal of the American Statistical Association
84, 165. doi:10.2307/2289860

Ghojogh, B., Karray, F., and Crowley, M. (2019). Fisher and Kernel Fisher Discriminant Analysis: Tutorial.
arXiv e-prints , arXiv:1906.09436

Hsieh, C.-J., Chang, K.-W., Lin, C.-J., Keerthi, S. S., and Sundararajan, S. (2008). A dual coordinate descent
method for large-scale linear SVM. In Proceedings of the 25th international conference on Machine
learning - ICML ’08 (New York, New York, USA: ACM Press), 408–415. doi:10.1145/1390156.1390208

Ledoit, O. and Wolf, M. (2004). A well-conditioned estimator for large-dimensional covariance matrices.
Journal of Multivariate Analysis 88, 365–411. doi:10.1016/S0047-259X(03)00096-4

Lin, C.-J., Weng, R. C., and Keerthi, S. S. (2007). Trust region Newton methods for large-scale logistic
regression. In Proceedings of the 24th international conference on Machine learning - ICML ’07 (New
York, New York, USA: ACM Press), 561–568. doi:10.1145/1273496.1273567

Frontiers 7

	Appendix
	LDA implementation
	Dual regularization of LDA
	Dual Ledoit-Wolf estimate
	Dual regularization

	Naive Bayes implementation
	Logistic Regression implementation
	SVM implementation
	KFDA implementation
	Implementing a prototype classifier

