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Gaussian process emulation

The employed Gaussian process emulators (GPEs) are obtained as a combination of a mean
function and a zero-mean Gaussian process (GP) (for a deeper insight on GPs, see [1]):

f(x) := m(x) + g(x) (1)

The mean function is of the form of a linear regression model

m(x) = h(x)Tβ (2)

while the GP is defined as
g(x) ∼ GP(0, k(x, x′)) (3)

where k(x, x′) is a positive definite kernel. The GPE training process consists of:

(a) fitting the linear regression model’s coefficient to the data by minimising the residual sum
of squares between the observed targets (data) and the targets predicted by the linear
approximation;

(b) fitting the GP’s hyperparameters to the residuals (data minus mean function predicted
mean) by maximising the log-marginal likelihood (equation (2.30) in [1]).
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Cross-validation results

LV feature Test score Mean test score

split 1 split 2 split 3 split 4 split 5

EDV SHAM 0.9573 0.9574 0.9718 0.9685 0.9490 0.96
AB 0.9500 0.9544 0.9235 0.9166 0.9550 0.94

ESV SHAM 0.9662 0.9578 0.9648 0.9800 0.9709 0.97
AB 0.9708 0.9544 0.9531 0.9478 0.9707 0.96

EF SHAM 0.9457 0.9220 0.8787 0.9282 0.7639 0.89
AB 0.9678 0.9517 0.9582 0.9471 0.9643 0.96

IVCT SHAM 0.9699 0.9674 0.9422 0.9740 0.9584 0.96
AB 0.9897 0.9908 0.9886 0.9894 0.9915 0.99

ET SHAM 0.9242 0.8001 0.8036 0.9203 0.8436 0.86
AB 0.9636 0.9672 0.9662 0.9301 0.9581 0.96

IVRT SHAM 0.8533 0.8803 0.8940 0.9258 0.9067 0.89
AB 0.8394 0.9082 0.8669 0.8434 0.8403 0.86

Tdiast SHAM 0.9197 0.8595 0.8726 0.9528 0.8610 0.89
AB 0.9618 0.9604 0.9554 0.9203 0.9451 0.95

PeakP SHAM 0.9785 0.9721 0.9797 0.9903 0.9840 0.98
AB 0.9827 0.9887 0.9908 0.9691 0.9882 0.98

Tpeak SHAM 0.9671 0.9513 0.9614 0.9643 0.9630 0.96
AB 0.8404 0.8891 0.9370 0.9252 0.9374 0.91

ESP SHAM 0.9970 0.9971 0.9973 0.9954 0.9970 0.99
AB 0.9958 0.9971 0.9970 0.9927 0.9959 0.99

maxdP SHAM 0.9780 0.9688 0.9812 0.9672 0.9855 0.98
AB 0.9852 0.9878 0.9910 0.9888 0.9861 0.99

mindP SHAM 0.6636 0.7468 0.6824 0.8549 0.7070 0.73
AB 0.8218 0.8543 0.6812 0.8392 0.4675 0.73

Table 1: GPEs’ accuracy, evaluated using a 5-fold cross-validation. One fifth of the training dataset
is excluded and one GPE is trained on the remaining points to predict each single output feature. The
left-out part is then used for testing the GPE accuracy, and an R2 score is calculated (Test score).
The process is repeated for each of the five subsets (split 1–5), randomly selected from the full training
dataset. The final accuracy (Mean test score) is determined by averaging the R2 scores obtained
in predicting the five different left-out parts. LV features’ labels are explained in Table 2 in the main
manuscript.
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History matching formalisation
This Section provides the mathematical description of the Bayesian history matching (HM) tech-
nique (implemented following Coveney et al. [2]). HM starts by defining a dataset of observations
(simulator runs). One GPE is trained for each output feature to be matched. In the first HM
iteration, testing points constituting the “not-ruled-out-yet” (NROY) space are sampled from
the input parameter space through a space-filling design, in our case a Latin hypercube (LHD).
In the next iterations, the testing points are sampled from the NROY space of the previous
iteration. A subset of NROY points is used to run simulations. The obtained simulator outputs
are used to enrich the training dataset, making the GPEs more accurate in the NROY space.
GPEs trained on the new space are then evaluated at the remaining points in the NROY space:
if there are too few points according to the user needs (for this model: if the number of points
was below 256), then additional points are generated within NROY using the “cloud” technique
described in [2]. Briefly, every point in NROY space is used to generate new points by sampling
from a multi-normal distribution centred on that point and scaled into the current range of the
known NROY points, and then further scaled by a factor so that only 10% of the new points
were non-implausible (ensuring new points are sufficiently far from the generating points).

The so called implausibility measure (I) is computed for each of the tested point x and for each
output feature j:

I2j (x) :=
(E[femul, j(x)]− E[Yj ])

2

Var[femul, j(x)] + Var[Yj ] + Var[md]
(4)

The implausibility measure takes into account how far is the emulator mean (E[femul, j(x)])
from the actual observation mean (E[Yj ]), given the observation error (Var[Yj ]) and the emula-
tor uncertainty for the prediction (Var[femul, j(x)]), and an additional model discrepancy term
(Var[md]) which in this study has not been considered.

NROY space gets eventually partitioned according to a fixed threshold into two regions: the
space of non-implausible points, satisfying the inequality:

max
j∈{1,...,#output features}

Ij(x) ≤ Ithreshold (5)

and the space of implausible points, satisfying the reversed inequality. The non-implausible points
constitute the new NROY space for the next iteration. The iterations go on while progressively
scaling down the Ithreshold constant, until reaching the convergence of NROY space, i.e. the
percentage of NROY space out of the total testing points space is close to zero.
The value of Ithreshold is a measure of the accepted discrepancy between the emulator and
observations. This value was updated between waves. Ithreshold was manually initialised to
ensure that a nonempty non-implausible set was obtained after the first wave. Starting from an
Ithreshold value of 3.0 we incremented by 0.5 until we achieved a non-empty non-implausible set.
This gave Ithreshold values of 5.5 and 5.0 in the SHAM and AB models’ fitting, respectively. The
value of Ithreshold was then decremented by 0.5 with each HM wave down to the commonly used
(see e.g. [3, 4]) value of 3.0 (the so-called Pukelsheim’s 3-sigma rule [5]). The decrement rate
of 0.5 was selected to ensure that we reached the desired final value of 3.0 within a reasonable
number waves, to maintain computational tractability, while allowing us to initialise the HM
over a sufficient large search space.
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History matching target values
This Section summarises the target organ-scale features’ mean and standard deviation values for
HM, which in our study come from two different sources. Whenever it was not possible to get
information about a specific organ-scale feature from the available MRI data [6], the information
was obtained from available literature data from experimental studies performed in male rats at
body temperature with abdominal/ascending aortic banding [7, 8, 9, 10, 11, 12, 13, 14, 15]. In
particular, EDV, ESV, ET and IVRT features were immediately available from the MRI data,
while information about PeakP, maxdP and mindP features was collected from literature. Mean
and standard deviation values for the volume-related features come from recordings performed
on the cohort of rats (n = 8, n = 15 from SHAM, AB groups, respectively) that underwent
MRI examination [6]. Mean and standard deviation values for each pressure-related feature were
calculated from the set of experimental mean values collected from each of above-mentioned
literature studies. We did not have specific values for IVCT, Tdiast, Tpeak and ESP, and we
chose not to match EF explicitly as this is derived form EDV and ESV. This resulted in 7
organ-scale phenotypes (see Table 2) used to constrain the model parameters.

Label Units Mean Std Reference
SHAM AB SHAM AB

EDV∗ µL 508.80 466.50 39.01 37.10 [6]
ESV∗ µL 154.60 125.60 16.53 23.40 [6]
ET∗ ms 51.21 54.72 1.85 1.85 [6]
IVRT∗ ms 20.55 41.11 1.85 1.85 [6]
PeakP∗∗ kPa 16.66 21.66 1.02 0.69 [7, 8, 9, 10, 11, 12, 13, 14, 15]
maxdP∗∗ kPa ms−1 1.14 1.24 0.25 0.24 [7, 8, 9, 10, 11, 12, 13, 14, 15]
mindP∗∗ kPa ms−1 −1.00 −1.16 0.23 0.23 [7, 8, 9, 10, 11, 12, 13, 14, 15]

Table 2: Left ventricular features’ target mean and standard deviation values. One asterisk ( )∗ features
values come directly from the available MRI data. Two asterisks ( )∗∗ features values come from literature
experimental studies.
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History matching parameter bounds
This Section provides detailed information about the input parameters of the rat heart contraction SHAM and
AB models. In the first wave of HM we used a LHD sampling of the plausible parameter space. The bounds of
the plausible parameters are defined from prior experimental and modelling studies summarised in Tables 3–4.
The same parameter bounds are used in both SHAM and AB models to avoid bias.

Parameter Units Value from experimental papers Value from modelling papers

Range Ref. Range Ref.

p kPa [0.2, 1.4] [7, 8, 9, 10, 11, 12, 13, 14, 15] 1.0 [16, 17]
ap kPa [12, 21] [7, 12, 13, 18, 19, 20, 15, 21] [8, 9] [16, 17]
z mmHg s ml−1 [1.5, 16] [22, 23, 24, 25, 26, 27, 28] [6, 20] [16, 17, 29]
c1 kPa [0.1, 3.0] [30] (review paper) [0.4, 1.1] [16, 17, 31, 32]
ca50 µm − − [00.85, 1.56] [16, 17, 33, 34, 35, 36]
kxb ms−1 0.1 [37, 38] [0.008, 0.2] [16, 17]
koff ms−1 [0.0013, 1.2] [39, 40, 41] [0.05, 0.2] [16, 17, 33]
Tref kPa − − [20, 160] [16, 17, 33, 31, 37, 42, 43, 44, 45, 46]

Table 3: SHAM input parameters’ ranges. The range of each parameter in HM is given by the union of experimental and
modelling papers’ ranges, intersected with the range resulting from the AB rat phenotype (Table 4).

Parameter Units Value from experimental papers Value from modelling papers

Range Ref. Range Ref.

p kPa [0.3, 1.6] [7, 8, 9, 10, 11, 12, 13, 14, 15] 1.0 [17]
ap kPa [21, 26] [7, 12, 13, 15] [7, 20] [17]
z mmHg s ml−1 [5.5, 23] [22, 26, 27] 9.5 [17]
c1 kPa − − [0.2, 1.6] [17]
ca50 µm − − [00.85, 1.0] [17]
kxb ms−1 − − 0.02 [17]
koff ms−1 − − 0.1 [17]
Tref kPa − − 120 [17]

Table 4: AB input parameters’ ranges. The range for each parameter in HM is given by the union of experimental and
modelling papers’ ranges, intersected with the range resulting from the SHAM rat phenotype (Table 3).
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Using HM technique, we fitted the SHAM and AB rat models to match the experimentally
observed LV features. The input parameter space underwent reduction towards different regions
according to the rat phenotype. Two different regions in the high-dimensional space were obtained
even if the process started from the same hypercube for both SHAM and AB rat models. Table 5
summarises the final ranges for the mechanics-related parameters after the tuning.

Parameter Initial range After fit range

SHAM AB

p [0.3, 1.4] [0.3, 0.5] [0.3, 0.9]
ap [6.0, 21.0] [6.0, 9.1] [6.0, 7.7]
z [5.5, 20.0] [5.5, 8.4] [9.1, 11.9]
c1 [0.1, 3.0] [00.85, 1.9] [1.6, 3.0]
ca50 [0.4, 2.3] [1.4, 1.7] [0.5, 0.7]
kxb [0.008, 0.2] [0.013, 0.019] [0.008, 0.012]
koff [0.05, 0.2] [0.05, 0.06] [0.05, 0.12]
Tref [80, 160] [148, 160] [109, 120]

Table 5: SHAM and AB input parameters’ ranges before and after the fit.
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History matching verification using synthetic data
In this Section, we show the efficacy of HM technique in fitting the SHAM rat heart model to
synthetic data. We started from the performed HM on the SHAM model (Figure 1). We then
selected an intermediate wave, specifically wave 4 (Figure 2), among the total 8 waves the full
process took to complete. We then sampled points in wave 4 (Figure 3) that did not belong to the
final wave, namely wave 8. We then simulated all these points (n = 48) and computed the mean
and standard deviation values of the observed sample for each of the organ-scale LV features,
to be further used as synthetic data to be matched. We then started the HM process from the
same initial space-filling design (lightest blue variant coloured points in Figure 1) used for the
SHAM model HM, this time trying to match the synthetic data instead of the experimental data.
To replicate exactly the same process we performed with experimental data, we tried to match
the same 7 features out of the total 12 features of interest, although we had mean and standard
deviation values for all the LV features. Figure 4 shows that all the LV features were perfectly
matched at the end of the HM process (which took 9 waves to complete), including the 5 features
we did not tried to match. Moreover, we observed that the input parameters’ ranges were most
of the time restricted to spaces which have nonempty intersection with the ranges where the
synthetic data were sampled from (Figure 5).

Label Units Mean Std

EDV∗ µL 493.10 16.85
ESV∗ µL 204.29 7.93
EF % 58.54 1.74
IVCT ms 140.855 0.78
ET∗ ms 56.77 1.53
IVRT∗ ms 20.03 2.43
Tdiast ms 94.07 1.11
PeakP∗ kPa 18.56 1.14
Tpeak ms 39.39 1.36
ESP kPa 8.74 0.21
maxdP∗ kPa ms−1 1.08 0.06
mindP∗ kPa ms−1 −0.54 0.06

Table 6: Synthetic data left ventricular features’ mean and standard deviation values for the history
matching. One asterisk ( )∗ features only were matched.
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Figure 1: SHAM rat heart model history matching on experimental data.
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Figure 2: SHAM rat heart model history matching using experimental data. Initial space, the 4th
wave NROY space and the 8th wave NROY space are highlighted with light, dark and very dark blue
colour variants, respectively.
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Figure 3: SHAM rat heart model history matching using experimental data. Initial space and the 4th
wave space are highlighted with light and dark blue colour variants respectively. New points (in red) are
sampled within the 4th wave NROY space, where the 8th wave NROY space has been cut out.
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Figure 4: Simulated LV features’ distributions around synthetic mean values vector. These are obtained
by evaluating the simulator at input parameter points belonging to the first up to the last waves of history
matching performed on synthetic data. Simulated features are shown as empty dots, while the related
mean values are displayed as filled dots. 3×STD confidence intervals are also shown as vertical straight
lines centred around their respective mean value. All displayed values (including confidence intervals)
are normalised by their respective synthetic mean values.
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Figure 5: Input parameters’ ranges at each wave during SHAM rat heart model history matching on
synthetic data (blue). The parameters’ ranges where the synthetic data were sampled from are also
shown (red).
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Investigating different emulation techniques
In Section 2(e) of the main manuscript, we used a specific formulation which describes the GPE
as a combination of a mean function in the form of a linear regression model and a zero mean
GP. Although this formulation served well in the context of HM (as previously shown by others,
e.g. [3, 4]) being fast and easy to repeatedly train in consecutive waves, it is still a heuristic
formulation and can potentially lead to underestimating the surrogate model uncertainty in the
predictions. In this Section, we investigate a different emulation strategy, as presented in the
work of Oakley and O’Hagan [47] and used for HM in [2]. The main difference with the currently
used emulation strategy (described in the Section “Gaussian process emulation”) is that the
linear regressor’s coefficients are concurrently fitted with the GP’s hyperparameters by maximal
likelihood. This approach can potentially lead to a better representation of the surrogate model
uncertainty.

To investigate the possible underestimation of the emulator’s variance, we evaluated how the
choice of a different emulation strategy could impact the HM implausibility condition and conse-
quent high-dimensional parameters’ space reduction. From now on, we will refer to the emulators
trained with the strategy employed throughout this entire work as “sequential GPEs”, while we
will refer to the Oakley and O’Hagan [47] emulation strategy (currently under study) as “simul-
taneous GPEs”. The following analysis has been performed for both the SHAM and AB rat
models.

We trained simultaneous GPEs (with a linear regression model and RBF kernel) using the HM
initial training dataset used for the sequential GPEs (first wave). For the sake of a better
visualisation, a 1 million points LHD was sampled in the initial parameter hypercube, and was
tested against the implausibility criterion (equation (5)) using both the sequential GPEs and the
simultaneous GPEs, with same thresholds as in the original analysis (5.5 and 5.0 for SHAM and
AB, respectively). We then repeated the same process for the last wave: simultaneous GPEs were
trained on the last wave’s training dataset derived using the sequential GPEs. Another LHD
with 1 million points was sampled this time in the second to last wave’s NROY space and was
tested against the implausibility criterion using both the sequential GPEs and the simultaneous
GPEs, with threshold set to 3.0.

In Figure 6–7, the implausibility measures obtained by testing all the points in the first wave’s
LHD when using the two different emulation strategies for both of the rat models are plotted
according to their magnitude in a hexbin plot. We can compare the input parameters’ high-
dimensional space reduction both by visual inspection and by computing the percentage of space
removed in each wave 1- non-implausible (NIMP) / implausible (IMP) spaces. We can notice
that, for both of the rat models, a bigger part of the space is cut using the sequential GPEs (B)
compared with the simultaneous GPEs (A). For the SHAM rat the parameter space is reduced
by 98.9134% and 99.9117% for the sequential and the simultaneous GPEs, respectively. For the
AB rat the parameter space is reduced by 99.4345% and 99.918% for the sequential and the
simultaneous GPEs, respectively.

At the last wave, however, the situation is different. At this point the accuracy of both GPEs are
improved by higher sampling in the area of interest. Under these conditions, the simultaneous and
sequential GPEs behave similarly. In Figure 8–9, the implausibility measures obtained by testing
all the points in the last wave’s LHD when using the two different emulation strategies for both of
the rat models are plotted in the same manner as done in the previous case. We can notice that,
for both of the rat models, the space is split into non-implausible and implausible regions in a
very similar way. Again, inspecting the ratio values gives a better understanding of the modalities
of the high-dimensional space splitting: 99.5202%, 99.1696% for respectively simultaneous and
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sequential GPEs for SHAM, and 97.187%, 97.9942% for respectively simultaneous and sequential
GPEs for AB.

We can conclude that, given the bigger space cut, there might be a non-negligible underestimation
of the emulator’s variance in the first wave when using the sequential GPE formulation. Smaller
variances decrease the denominator in equation (4), thereby increasing the numerator and the
implausibility measure for those specific points which could be therefore deemed implausible and
discarded. However, with each HM wave the emulator becomes progressively more and more
accurate, the underestimation of the uncertainty phenomenon is reduced and the two GPEs
formulations reach the same space. This was further assessed by comparing the one-dimensional
parameters’ ranges we obtained using the sequential GPEs and the ones we now obtain using
the simultaneous GPEs. These are summarised in Figure 10. We can see that the parameters’
ranges resulting from the last wave are very similar for both of the rat models.

We have provided an initial test of how differences in GPE formulations impact HM solutions.
A comprehensive evaluation is beyond the scope of this study. Different groups are using the
two GPE formulations described here ([2, 4, 48, 49, 50]) and determining the costs and benefits
of each approach in specific contexts would prove useful.
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Figure 6: SHAM model, initial wave. (A) simultaneous GPEs formulation vs. (B) sequential GPEs
formulation. Each hexbin is coloured by the minimum implausibility of all the points falling into it.
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Figure 7: AB model, initial wave. (A) simultaneous GPEs formulation vs. (B) sequential GPEs
formulation. Each hexbin is coloured by the minimum implausibility of all the points falling into it.
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Figure 8: SHAM model, final wave. (C) simultaneous GPEs formulation vs. (D) sequential GPEs
formulation. Each hexbin is coloured by the minimum implausibility of all the points falling into it.
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Figure 9: AB model, final wave. (C) simultaneous GPEs formulation vs. (D) sequential GPEs formu-
lation. Each hexbin is coloured by the minimum implausibility of all the points falling into it.
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B

Figure 10: Final wave one-dimension parameters’ ranges simultaneous GPEs vs. sequential GPEs
comparison. (A) SHAM rat model. (B) AB rat model. For each parameter, the final ranges (dashed
and dotted lines) have been normalised according to the relative initial range (solid line).
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Global Sensitivity Analysis
This Section summarises the GP emulators-based global sensitivity analysis results. The first-
and second-order interactions and total effects of input parameters for each of the organ-scale LV
feature under study are shown in Figures 12–15. Figure 11 provides an example on how to read
the network charts in Figures 12–15. Figure 11, for example, illustrates that the most significant
second-order interaction is given by the ca50–koff pair of parameters.

total  
effect

A B

first-order 
effect

second-order  
effect

ca50 ca50

kxb Tref Tref

pp

c1 c1ap ap

koff koff

z z

kxb

Figure 11: Example network charts. The two charts illustrate input parameters’ contribution to a
specific LV feature’s total variance in SHAM (A) and AB (B) models. For each input parameter, the size
of the node represents the first-order effect, the thickness of the linking line represents the second-order
effect, and the node border thickness represents the total effect.
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Figure 12: Effect of input parameters on the EDV (a), ESV (b), and EF (c) features in SHAM (blue)
and AB (red) models.
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Figure 13: Effect of input parameters on the IVCT (a), ET (b), and IVRT (c) features in SHAM (blue)
and AB (red) models.
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Figure 14: Effect of input parameters on the Tdiast (a), PeakP (b), and Tpeak (c) features in SHAM
(blue) and AB (red) models.
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Figure 15: Effect of input parameters on the ESP (a), maxdP (b), and mindP (c) features in SHAM
(blue) and AB (red) models.
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Sensitivity indices estimation accounting for emulator uncertainty
In Section 2(h) of the main manuscript, we mentioned that global sensitivity indices were esti-
mated by neglecting the emulator’s uncertainty and using the emulator’s mean as a pointwise
approximation of the model’s output. This was addressed as a model limitation (discussed in
Section 5) and partially motivated by the fact the emulator uncertainty around the predictions
was small.

In this Section, we provide additional information to show that this choice does not affect the
final sensitivity indices estimates.

The Sobol sensitivity indices were estimated using Saltelli method [51] which efficiently estimates
first- and second-order and total effects using full model evaluations at a specific set of points
belonging to low-discrepancy quasi-random Sobol sequences. Without going into details, let’s
suppose that the Saltelli estimator can be described by a function S that takes as an input model
f evaluations Y at specific points X (Y = f(X)) and gives as an output the sensitivity indices
Si, Sij , ST :

Y
S(·)7−−→ Si, Sij , ST (6)

In this study, we substituted the full model f with a surrogate model consisting of a set of 12
Gaussian process emulators:

femul = (femul, 1, . . . , femul, 12) (7)

and used the emulator posterior mean to estimate the Sobol indices, namely:

E[femul(X)]
S(·)7−−→ Si, Sij , ST (8)

In order to show that small uncertainties do not affect sensitivity indices estimates, we performed
an additional example simulation in which we took into account the emulator posterior variance
in the estimation of the SHAM rat model ejection fraction (EF) global sensitivities to model
parameters. This was performed by evaluating the Saltelli estimator S at full emulator poste-
rior predictions Ŷ , which correspond to values randomly sampled from a multivariate normal
distribution with mean vector given by the specific emulator of EF feature (femul, 3) posterior
mean µ = E[femul, 3(X)], and covariance matrix given by the same emulator posterior covariance
matrix Σ = Cov[femul, 3(X)], namely:

N (µ, Σ) ∼ Ŷ S(·)7−−→ Si, Sij , ST (9)

We sampled 1, 000 emulator posterior predictions (Ŷk, for k = 1, . . . , 1000) and we compared
the obtained sensitivity indices (Si, Sij , ST )k with the ones obtained when only the emulator
posterior mean was used (equation (8)). In Figure 16, each sensitivity index’ distributions with 2
STD are plotted against the single values obtained when the posterior mean only is run instead.
We can see that the distributions’ means are almost perfectly matching the single-valued effects
for each sensitivity index. The similarities of the sensitivities is consistent with a limited impact
of GPE uncertainties on GSA calculation.
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Figure 16: Ejection fraction global sensitivity to model parameters. 1, 000 predictions from the emu-
lator posterior distribution are sampled, and first- and second-order and total effects (Si, Sij , ST ) are
computed for each of them. The obtained indices distributions are plotted with ∼ 95% confidence in-
tervals (blue), compared with the sensitivity indices single values obtained when the emulator posterior
mean only is used as a pointwise prediction in the sensitivity indices calculation (orange).
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Modelling heart tissue mechanics
In this Section we provide a description of the employed mathematical model of heart tissue
mechanics.

Tissue models of cardiac mechanics link cellular active contraction models through to whole organ
pump function. We modelled mechanical properties of the cardiac tissue using non-linear solid
mechanics. Like electrical properties, tissue mechanical properties depend on the orientation of
cardiac tissue microstructure. Therefore, in the following description, tensors will be given in
terms of a coordinate system locally aligned with the muscle fibre (f), sheet (s) and sheet-normal
directions (n) in the reference configuration, determining the orthonormal matrix L = [f s n].
In finite elastic deformation theory, the transformation from undeformed (X) configuration to
deformed (x) configuration is described by means of the deformation gradient tensor:

F =
∂x

∂X
(10)

Large deformation mechanics equations enforce the stress equilibrium:

−Div(FT) = 0 (11)

where T is the second Piola-Kirchhoff stress tensor. The solution to the mechanics problem
requires a description of the material behaviour known as the constitutive law, which gives the
stress tensor T as a function of the Green strain tensor E and the Cauchy strain tensor C for
the material. The strain tensor is given as a function of the deformation gradient tensor:

E =
1

2
(C− I), C = FTF (12)

and is transformed to a fibre-aligned coordinate system using Efsn = LT E L. The stress tensor
Tfsn is determined from the constitutive law, which is generally expressed as a strain energy function
W :

Tfsn =
∂W

∂Efsn
(13)

The stress tensor Tfsn is then transformed back using L Tfsn LT . In this work, we used the
transversely isotropic cardiac strain energy function proposed by Guccione et al. [52], combined
with a Lagrange multiplier scheme with a compressibility penalty term [53, 54]:

W = Wg − p(J − 1) +
κ

2
(J − 1)2 (14)

where

Wg =
1

2
c1 (eQ(E) − 1) (15)

Q(E) = c2E
2
ff + c3 (E2

ss + E2
nn + 2E2

sn) + 2 c4 (E2
fs + E2

fn) (16)

and where κ, c1, c2, c3, c4 ∈ R+, p is the hydrostatic term and J = det(F). The final second
Piola-Kirchhoff stress tensor is obtained from the strain energy function by adding an active
tension component Ta (calculated using the Land et al. [16] model of cellular contraction) along
the fibre direction f :

T = L
∂W

∂Efsn
LT + Ta ffT (17)
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T expresses the stresses in actively contracting incompressible cardiac tissue in terms of its strain
and completes the set of equations required to model actively contracting cardiac tissue. The
resulting system of equations is solved using the finite element method.
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LV features extraction
In this Section we describe how specifically the 12 left ventricular (LV) features under study were
extracted from the model output.

The multi-scale model of rat heart contraction is run for a specific input parameters set for 4
heart beats. The 12 key LV features are then extracted from the fourth beat’s volume V (t) and
pressure P (t) curves as follows:

EDV = max
t>0

V (t) (18)

ESV = min
t>0

V (t) (19)

EF = 100× EDV− ESV
EDV

(20)

IVCT = t1 − t0 (21)
ET = t2 − t1 (22)
IVRT = t3 − t2 (23)
Tdiast = t4 − t2 (24)
PeakP = max

t>0
P (t) (25)

Tpeak = arg max
t>0

P (t) (= P (t5)) (26)

ESP = P (t2) (27)

maxdP = max
t>0

dP (t)

dt
(28)

mindP = min
t>0

dP (t)

dt
(29)

where t0, t1, t2, t3, t4, t5 are all positive time points, shown in Figure 17.
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Figure 17: LV features (EDV, ESV, EF, IVCT, ET, IVRT, Tdiast, PeakP, Tpeak, ESP, maxdP,
mindP) extracted from left ventricular volume and pressure transients.
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