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Figure S1. Performance of partitioned emulation for the different qualities of interest. Visualised are the predicted and

actual values for the test data, unseen during emulator construction, using regular (red) or partitioned (blue) emulation.

Lines of equality are shown in black. Partitioned emulators show very good performance, with almost all predictions falling

very close to the line of equality. Those that are less well predicted are due to being assigned to the incorrect partition

by the support vector machine classifier. Regular emulation shows good, but inferior, performance, and in fact struggles

further than implied by the figure due to generating wild predictions in regions where the quantity of interest cannot be

measured (which are correctly separated out by partitioning).
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Figure S2. Partitioned emulation successfully predicts the dependence of the two most important quantities of interest on

one another. Data points collected from simulations in tissue fibres (blue) show clear, but nonlinear dependence between

action potential wavelength and block susceptibility, S. The emulator’s predictions throughout the parameter space (grey)

demonstrate all of the same trends.
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Figure S3. Main effects of ischaemia components on excitation propagation in a tissue fibre, over a range regarding

intermediate progression of the condition. Trends in the quantities of interest match those shown by the main effects

over the full parameter space, save for a minor positive effect of hyperkalemia on action potential duration (due to the

shifted equilibrium potential for K+ weakening repolarising currents). This also results in a complex dependence of the

action potential amplitude on hyperkalemia, before weakened excitation due to the depolarised rest potential dominates

as hyperkalemia extent increases further.
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Figure S4. Smooth maps of risk created to estimate risk away from observed data. Depth of red indicates the extent of

risk of re-entry. Dots indicate observations from 2D tissue simulations, including failure to propagate (grey), propagation

without re-entry (blue), local re-entry (white) and transient and sustained re-entry (red).
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Figure S5. Smooth maps of risk created to estimate risk away from observed data. Depth of red indicates the extent of

risk of re-entry. Dots indicate observations from 2D tissue simulations, including failure to propagate (grey), propagation

without re-entry (blue), local re-entry (white) and transient and sustained re-entry (red).
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Figure S6. Smooth maps of risk created to estimate risk away from observed data. Depth of red indicates the extent of

risk of re-entry. Dots indicate observations from 2D tissue simulations, including failure to propagate (grey), propagation

without re-entry (blue), local re-entry (white) and transient and sustained re-entry (red).
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Figure S7. Manifestations of ischaemic remodelling with the potential for re-entry. Marginal distributions show the result

of integrating over variation in the remaining two parameters. Depth of red indicates the extent of risk of re-entry. Dark

grey regions mark regions predicted to block (with insignificant risk of re-entry). For reference, the 2D simulation data

showing local re-entry (white) or transient or sustained re-entry (red) is projected onto the same parameter space.
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Figure S8. Manifestations of ischaemic remodelling with the potential for re-entry. Marginal distributions show the result

of integrating over variation in the remaining two parameters. Depth of red indicates the extent of risk of re-entry. Dark

grey regions mark regions predicted to block (with insignificant risk of re-entry). For reference, the 2D simulation data

showing local re-entry (white) or transient or sustained re-entry (red) is projected onto the same parameter space.
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Figure S9. Manifestations of ischaemic remodelling with the potential for re-entry. Marginal distributions show the result

of integrating over variation in the remaining two parameters. Depth of red indicates the extent of risk of re-entry. Dark

grey regions mark regions predicted to block (with insignificant risk of re-entry). For reference, the 2D simulation data

showing local re-entry (white) or transient or sustained re-entry (red) is projected onto the same parameter space.
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Gaussian Process Methodology

Generating Emulator Predictions

The main document details how partitioning is used to improve emulation, but this section
provides further information regarding the basic Gaussian process (GP) methodology. Here, as
in the main document, inputs to a model are denoted θ and its m-th output is denoted ym.
The training data is then a matrix of input values (each row a set of parameters θ), Θ, and a
corresponding vector of values for an output quantity of interest, ym.

First, a best-fit linear trend is subtracted from the data, so that the GP is then attempting to
non-parametrically fit the remaining residuals. That is, the training data’s model outputs are
transformed according to

zm = ym −X (XTX)−1XTym, X= [1,Θ].

A zero-mean GP, which is defined entirely by its covariance function k= (θ,θ′;φ), is then fit to
this transformed data. Fitting here refers to selection of the hyperparameters φ by maximising the
likelihood that the data would be generated by a GP with those hyperparameters, which has an
analytical form,

φMLE = arg maxφ
(
−zTm

[
K(φ)

]−1
zm − ln detK(φ)

)
.

Here K(φ) is the covariance matrix between all of the input training points, with elements
given by Kij(φ) = k(Θi∗,Θj∗;φ) and subscript i∗ denoting the i-th row of the matrix. The first
term of this likelihood represents the goodness of data fit, and the second the complexity of the
fitted surface, and as such maximising the likelihood represents compromising between the two
(helping decrease the risk of overfitting).

This work uses the automatic relevance determination variation of the Matern-3/2 covariance
function, defined

k(θ,θ′;φ) = σ2(1 +
√
3r) exp−

√
3r + σ2nδθ,θ′ , r=

√√√√√Nparams∑
d=1

(θd − θ′d)2

l2d
,

with θd denoting the value of the d-th parameter in θ (and similarly for θ′), δx,y the Kronecker
delta and φ= (l, σ, σn) the hyperparameters consisting of effect lengths for each parameter,
overall variance, and noise in the process, respectively.

With a GP trained (selecting KMLE =K(φMLE) ), a prediction at a point θ can then be made using
the mean of the process,

zj,pred(θ) =K∗MLEK
−1
MLEzm, (K∗MLE)i = k(θ,Θi∗;φMLE).

Prediction for the actual output quantities is then completed by combining the best linear fit with
the predicted residual away from that linear fit,

yj,pred(θ) = θ (XTX)−1XTym +K∗MLEK
−1
MLEzm.

Note that here (and in the above), θ is treated as a row vector.

Risk Surface Construction

For constructing a risk surface (used to generate Figure 8 in the main document), a GP was used
as a way to estimate risk away from the data collected from simulations in two-dimensional
heterogeneous tissue. Risk was calculated by averaging over the three simulations performed
for each combination of parameter and φ values, an insufficient sample to correctly estimate the
true proportion of realisations of heterogeneity that will exhibit re-entry. As such, this GP was
used simply as a compelling option for producing a smoothed surface of risk that reflected in
some sense the uncertainty in the true risk away from the collected data, including a contribution
towards lower risk from “negative” data (observations of no re-entry).
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The tissue simulations were used to estimate Risk according to

Rjk =R(mj , φk) =
1

3

3∑
n=1

(
1Ci(mj ,φk)=re-entry + 0.21Ci(mj ,φk)=local

)
.

Recalling that risk estimation is carried out in the “metric” space (WL,S) so that the smoothing
implies similar dynamics will present similar risk (instead of just similar values of parameters), the
“parameters” here are the vectors of metrics m= (WL, S). Ci(mj , φk) is the class of behaviour
observed for the i-th simulation using parameters that gave metrics mj in the tissue fibre
simulations, and obstacle proportion φk. The formula corresponds to assigning a risk of unity to
simulations showing “re-entry” (transient or sustained), and 20% as much risk to simulations that
showed local re-entry (see Table 2 in main document). Other simulations (whether successfully
propagating or not) were assigned zero risk.

Surfaces were constructed using the risk data directly (no transformation first removing a
parametric trend). Each proportion of obstacles was treated separately, providing estimated risk
at any point in the parameter space for a given φk according to

Rpred(m, φk) =K∗R(m)K−1R R∗k.

Here KR and K∗R are covariance matrices defined in the same manner as above, but with
hyperparameters specified to attain a desired level of smoothing,

lWL = 2.5, lS = 0.2, σ= 0.2, σn = 0.1.


