Supplementary Materials

Title: Fire and grazing determined grasslands of central Madagascar represent ancient assemblages.

Authors: Cédrique L. Solofondranohatra^{1,2}, Maria S. Vorontsova³, Gareth P. Hempson⁴, Jan Hackel³, Stuart Cable^{2,5}, Jeannoda Vololoniaina¹ and Caroline E. R. Lehmann^{4,6,7}

¹Laboratoire de Botanique, Département de Biologie et Ecologie Végétales, Faculté des Sciences, Université d'Antananarivo, Antananarivo, Madagascar

²Kew Madagascar Conservation Centre, Antananarivo, Madagascar

³Comparative Plant and Fungal Biology, Royal Botanic Gardens, London, United Kingdom

⁴Centre for African Ecology, School of Animal and Plant Sciences, University of the Witwatersrand, Johannesburg, South Africa

⁵Conservation Science, Royal Botanic Gardens, London, United Kingdom

⁶School of GeoSciences, The University of Edinburgh, Edinburgh, United Kingdom

⁷Tropical Diversity, Royal Botanic Garden Edinburgh, Edinburgh, United Kingdom

Journal: Proceedings of the Royal Society B.

Doi: 10.1098/rspb. 2020.0598

Supplementary Figures 1 – 4

Supplementary Tables 1 – 3

References

Supplementary Figure 1: *Map of Madagascar depicting limits of grasslands*. The central ecoregion as per Humbert (1955) is shaded grey. Plateau grassland- wooded grassland mosaic distribution as per Moat and Smith (2007) is shaded in green. Locations of study sites are shown as are names of regions where sampling was undertaken.

Supplementary Figure 2: *Environmental variables distribution* (A) Histograms of mean annual precipitation (Bio_12, Worldclim Global Climate Data version) and percent sand in the top 10 cm soil (Harmonised World Soils Database) across the central ecoregion as mapped by Humbert (1955). (B) Across the 71 study sites, histograms of mean annual precipitation, percent sand in the top 10 cm soil, and distance to road.

Supplementary Table 1: *Table of all grass species encountered.* Table describes: 1) endemicity; 2) number of sites where species were found; 3) maximum number of occurrences per site (out of a maximum of 21); 4) rarity as defined and described in the methods of the main text; and, 5) assemblage group (1 or 2). Assemblage groups are based on residual correlations values between pairs of species as a product of the generalized linear latent variable model described in the main methods. The analysis used only 41 common species and post-hoc assemblage group were assigned to the rare species.

Genera	Species	Endemic	Number of sites	Maximum	Rare	Assemblage
			of occurrence	number of		group
			(out of 71)	occurrence per		
				site (out of 21)		
Agrostis	elliotii	yes	1	1	yes	2
Alloteropsis	semialata	no	4	5	yes	2
Andropogon	itremoensis	yes	1	4	yes	2
Andropogon	trichozygus	yes	1	23	no	NA
Aristida	rufescens	no	12	20	no	1
Aristida	similis	yes	2	5	yes	2
Aristida	tenuissima	yes	21	24	no	2
Axonopus	compressus	no	4	7	no	1
Brachiaria	arrecta	no	1	17	no	NA
Brachiaria	subrostrata	yes	3	14	no	1
Brachypodium	madagascariense	yes	1	1	yes	2
Chrysopogon	serrulatus	no	11	20	no	2

Craspedorhachis	africana	no	18	15	no	NA
Ctenium	concinnum	no	5	16	no	2
Cymbopogon	caesius	no	4	5	yes	2
Cynodon	dactylon	no	12	20	no	1
Cyrtococcum	deltoideum	yes	1	1	yes	1
Digitaria	ciliaris	no	4	7	no	1
Digitaria	debilis	no	5	5	yes	NA
Digitaria	longiflora	no	25	21	no	1
Digitaria	pseudodiaginalis	no	6	6	no	2
Digitaria	thouaresiana	no	1	2	yes	NA
Eleusine	indica	no	9	18	no	1
Eragrostis	atrovirens	no	6	19	no	1
Eragrostis	chapelieri	no	1	6	no	NA
Eragrostis	lateritica	yes	17	15	no	1
Eragrostis	racemosa	no	6	13	no	1
Eragrostis	tenella	no	2	5	yes	1
Eragrostis	tenuifolia	no	4	6	no	NA
Eulalia	villosa	no	1	4	yes	NA
Festuca	camusiana	yes	1	1	yes	2
Heteropogon	contortus	no	9	21	no	1
Hyparrhenia	newtonii	no	19	15	no	2

Hyparrhenia	rufa	no	18	21	no	1
Imperata	cylindrica	no	5	5	yes	NA
Loudetia	filifolia	no	11	21	no	2
Loudetia	simplex	no	58	25	no	2
Melinis	minutiflora	no	5	3	yes	2
Melinis	repens	no	4	5	yes	2
Microchloa	kunthii	no	7	8	no	1
Oplismenus	burmanii	no	2	1	yes	2
Panicum	cinctum	yes	12	13	no	2
Panicum	ibitense	yes	4	5	yes	2
Panicum	perrieri	yes	3	2	yes	2
Panicum	subhystrix	yes	5	5	yes	2
Panicum	umbellatum	yes	23	21	no	1
Paspalum	scrobiculatum	no	16	18	no	1
Pennisetum	pseudotriticoides	yes	5	13	no	2
Pogonarthria	squarosa	no	2	2	yes	2
Schizachyrium	brevifolium	no	3	16	no	NA
Schizachyrium	exile	no	7	12	no	1
Schizachyrium	sanguineum	no	49	22	no	2
Setaria	pumila	no	14	20	no	1
Setaria	sphacelata	no	2	2	yes	1

Sporobolus	centrifugus	no	21	18	no	1
Sporobolus	paniculatus	no	3	7	no	1
Sporobolus	piliferus	no	1	1	yes	2
Sporobolus	pyramidalis	no	5	20	no	1
Stenotaphrum	oostachyum	yes	6	15	no	1
Stenotaphrum	unilaterale	yes	1	4	yes	1
Styppeiochloa	hitchcockii	yes	1	1	yes	2
Trachypogon	spicatus	no	45	25	no	2
Tricanthecium	brazzavillense	no	2	5	yes	2
Tricholaena	monache	no	3	5	yes	2
Tristachya	humbertii	yes	4	17	no	1
Tristachya	isalensis	yes	5	9	no	2
Urelytrum	agropyroides	no	6	19	no	2

Supplementary Table 2: *Description of five measured traits alongside collection method, related function and literature references.* The five traits are: 1) leaf table height (H_{LT}, cm); 2) leaf thickness (LT, cm); 3) leaf size: leaf width to leaf length ratio (LW/LL); 4) growth form (mat forming, rambling, caespitose); and, 5) bulk density (BD, g/cm³)]).

Traits	Collection method	Related function	References
Leaf table height (H _{LT} ,	The height visually estimated to	Plant height is a key functional trait with	Westoby, 1998 ;
cm)	correspond to the c. 80 th quantile of	consequences for light competition in	Dìaz et al., 2016;
	leaf biomass was measured on three	frequently burnt environment. Tall	D'Antonio &
	individuals per species.	grasses are effective competitors for	Vitousek, 1992;
		light, often associated with high total	Rossiter et al.,
		biomass and are more flammable which	2003; Archibald et
		reinforce a fire feedback to increase	al., 2019;
		flammability. Tall grasses are "fire	Hempson et al.,
		resistors and grazer avoiders". Short	2015
		grasses have low proportion of stem	
		material and are relatively higher-quality	
		forage.	
Leaf thickness (LT, cm)	Leaf thickness was measured on	Leaf thickness is related to its toughness	Theron and
	three fully expanded leaves on each	and digestibility. Toughness is among	Booysen, 1966;
	of three individuals per species.	the most important mechanical attributes	

		influencing grazing. Thick, tough leaves	Coley, 1983;
		are less digestible to herbivores. They	Wilson et al., 1983;
		are hypothesized to have high carbon	
		content to make grasses more	
		flammable. Thinner soft leaves are more	
		palatable and attract grazers.	
Leaf size: leaf width to	Leaf width and length were	Large versus small leaves are grazing	Stobbs, 1973;
leaf length ratio (LW/LL)	measured on the same three leaves	and fire attraction traits respectively.	Archibald et al.,
	per individual per species for leaf	Large leaves are more palatable and	2019; Schwilk,
	thickness measurement.	preferred by grazers by reducing	2015
		foraging time. Small leaves arranged in	
		an aerated canopy ignite easily and burn	
		intensely, i.e. more flammable.	
Growth form (mat	Growth form were recorded for	Mat-forming habit with culms growing	Hempson et al.,
forming, rambling,	each species.	laterally is a grazing adaptation trait.	2015 ; Linder et al.,
caespitose)		With this growth form, most of the	2018 ; Dìaz et al.,
		meristematic tissues are kept below	2007. Hempson et
		grazing depth, allowing grasses to resist	al., 2019 ;
		intense grazing. In contrast, caespitose	Archibald et al.,
		grasses with erect culms can protect their	2019

		meristematic tissue from fire damage	
		with intravaginal buds protected within	
		basal leaf sheaths or underground, and	
		tillers tightly clustered. Caespitose	
		growth form can be associated with	
		"generalist tolerators" and "avoiders"	
		life histories as well. Rambling species	
		are characterized by culms with an	
		architecture in between prostrate and	
		upright, which are better light competitor	
		than mat-forming species but less than	
		caespitose species.	
Bulk density (BD, g/cm ³)	Bulk density is the ratio between	Species with high bulk density attract	Hempson et al.,
	plant biomass and volume. It is	grazers with a high density of palatable	2019; Coughenour,
	calculated by dividing the total	leaves clustered in the canopy which	1985.
	aboveground biomass by an	promote grazing. Intermediate bulk	
	estimate of the grass canopy	density promotes fire spread with	
	volume. Volume was calculated	enough fuel to burn and sufficient air	
	using measures of the tuft basal	flow for combustion.	
	diameter (D _B), leaf table height		
	(H_{LT}) and leaf table diameter $(D_{LT},$		

diameter at H _{LT}). For caespitose	
grasses, volume (V) was calculated	
using the formula for a truncated	
cone: V = $\pi / 3 * H_{LT} * ((D_B / 2)^2 +$	
$(D_{LT} / 2)^2 + D_B * D_{LT})$. For mat-	
forming grasses, a square of the	
individual(s) was marked out using	
a spade, and the volume was	
calculated as a cube: $V = D_B * D_{LT}$	
* H _{LT} . Aboveground biomass was	
determined on three individuals per	
species by clipping, drying (at 60°C	
for 72 h) and weighing (using a	
scale with two decimal place scale)	
the parts of the individual for which	
the volume estimate was made.	

Supplementary Figure 3: *Histograms of residual correlations values, estimated from a generalized latent variable model for each species.* Model incorporates mean annual precipitation, presence/absence of fire, distance to road and a single latent variable. Values range from -1 to +1 and species with residual correlations ranging from -0.1 to +0.1 represent a lack of any association and were not classified into assemblages.

9

1.0

Sporobolus pyramidalis

Stenotaphrum oostachyum

Trachypogon spicatus

Tristachya humbertii

Tristachya isalensis

Urelytrum agropyroides

Supplementary Table 3: *Table of Akaike Information Criterion (AIC) values derived from generalized latent variable models.* Values correspond to the different environmental covariates' association used in the models of grass species frequency data in addition to a single unobserved predictor (latent variable). AIC values were sorted from the lowest to the highest and the model with mean annual precipitation (MAP), distance to road, presence/ absence of fire was kept for interpretation.

Environmental covariates used for the model	AIC values
MAP + distance to road + presence/ absence fire	4904.07
MAP + distance to road + presence/ absence fire + percent sand	4906.25
MAP + presence/ absence fire	4923.8
MAP + distance to road	5011.67
MAP + distance to road + percent sand	5016.9
MAP	5040.02
MAP + percent sand	5043.26
distance to road + presence/ absence fire + percent sand	5168.96
presence/ absence fire + percent sand	5179.44
distance to road + presence/ absence fire	5193.85
presence/ absence fire	5199.39
distance to road	5348.65
distance to road + percent sand	5356.67
percent sand	5363.98
null model	5393.02

Supplementary Figure 4. Grass species richness and phylogenetic diversity across assemblage group. Assemblage groups (1 and 2) are based on residual correlations values between pairs of species as a product of the generalized linear latent variable model described in the main methods. No significant differences were found between species richness but phylogenetic diversity differed significantly between the two groups (GLM, P < 0.001).

References

Archibald, S., Hempson, G.P., and Lehmann, C.E.R. (2019). A unified framework for plant life history strategies shaped by fire and herbivory. *New Phytol.* doi:10.1111/nph.15986

Coley, P.O. (1983) Herbivory and defensive characteristics of tree species in a lowland tropical forest. *Ecological Monographs* 53, 209–233.

Coughenour, M. B. (1985). Graminoid responses to grazing by large herbivores: adaptations, exaptations, and interacting processes. *Annals of the Missouri Botanical Garden*, 72, 852–863

D'Antonio, C. M. and Vitousek, P. M. (1992). Biological invasions by exotic grasses, the grass/fire cycle, and global change. *Annu. Rev. Ecol. Syst.* 23, 63–87

Diaz, S., Kattge, J., Cornelissen, J. H. C., Wright, I. J., Lavorel, S., Dray, S. et al., (2016). The global spectrum of plant form and function. *Nature* 529: 167–171.

Dìaz, S., Lavorel, S., McIntyre, S. U. E., Falczuk, V., Casanoves, F., Milchunas, D. G. et al. (2007). Plant trait responses to grazing–a global synthesis. *Global Change Biology*, 13, 313–341.

FAO/IIASA/ISRIC/ISSCAS/JRC, 2009. Harmonized World Soil Database (version 1.2). FAO, Rome, Italy and IIASA, Laxenburg, Austria.

Fick, S.E. and Hijmans, R.J. (2017). Worldclim 2: New 1-km spatial resolution climate surfaces for global land areas. *Int. J. Climatol.* 37, 4302-4315.

Hempson, G. P., Archibald, S., Donaldson, J. E., and Lehmann, C. E. (2019). Alternate Grassy Ecosystem States Are Determined by Palatability–Flammability Trade-Offs. *Trends in ecology* & *evolution*, 34, 286–290.

Hempson, G.P., Archibald, S., Bond, W.J., Ellis, R.P., Grant, C.C., Kruger, F.J., Moxley, C., Owen-Smith, N., Peel, M.J.S., Smit, I.P.J. et al. (2015). Ecology of grazing lawns in Africa. *Biol. Rev.* 90, 979–994. doi:10.1111/brv.12145

Humbert, H. (1955). Les territoires phytogéographiques de Madagascar. Ann. Biol. 31, 439–448.

Linder, H. P., Lehmann, C. E. R., Archibald, S. A., Osborne, C. P., and Richardson, D. M. (2018). Global grass (Poaceae) success underpinned by traits facilitating colonization, persistence and habitat transformation. *Biol. Rev.* 93, 1125–1144. doi:10.1111/brv.12388

Rossiter, N. A., Setterfield, S. A., Douglas, M. M., Hutley, L. B. (2003). Testing the grass-fire cycle: alien grass invasion in the tropical savannas of northern Australia. *Diversity and Distributions* 9: 169–176.

Schwilk ,D.W. (2015) Dimensions of plant flammability. *New Phytol*. 206, 486–488. (doi:10. 1111/nph.13372)

Stobbs, T. H. (1973). The effect of plant structure on the intake of tropical pastures. I. Variation in the bite size of grazing cattle. *Crop and Pasture Science*, 24: 809–819.

Theron, E. P. and Booysen, P. de V. (1966). Palatability in grasses. *Proceedings of the Grassland Society of South Africa* 1, 111–120.

Westoby, M. (1998). A leaf-height-seed (LHS) plant ecology strategy scheme. *Plant and Soil* 199: 213–227.

Wilson, J. R., Brown, R. H. and Windham, W.R. (1983). Influence of leaf anatomy on the dry matter digestibility of C3, C4 and CJ/C4 intermediate types of Panicum species. *Crop Science*. 23, 141–146.