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Supplementary Online Material: Sensitivity Analyses & Model Equations 
These supplementary materials contain two sensitivity analyses to evaluate how strongly the 
central results in the main text depend on assumptions of the model. First, I investigated how the 
results change when the invader is able to cross-feed (Sensitivity Analysis # 1, pp. 1- 3). In this 
case, the invader is indistinguishable from native taxa, albeit with a relatively high competition 
value (though not higher than could be assigned by chance). Second, I allowed native taxa to 
have variable cross-feeding abilities, rather than assuming that metabolites were divided equally 
among all cross-feeders (Sensitivity Analysis # 2, pp. 4-6). In this case, I set cross-feeding ability 
as equal to competition values. For these two scenarios, I quantified the same outcomes as in the 
main text, and present them below. Additionally, the mathematical description of the model can 
be found in these supplementary materials, after the sensitivity analyses (pp. 7-9).  
 
Sensitivity analysis 1: Invaders have the same cross-feeding abilities as native taxa 
 

 
Fig. S1: Same results as presented in Fig. 2 in the main text, but under the condition that 
invaders have equivalent cross-feeding dynamics as native taxa.  
 
 Allowing invasive taxa to cross-feed substantially changes invasion success. When 
invaders can cross-feed, primary invasions are much more likely to be successful (upper left 
panel); in fact, higher rates of cross-feeding in the community facilitate the invader. Secondary 
invaders are, overall, slightly less successful than primary invaders (upper middle panel), and the 
greatest discrepancy between primary and secondary invaders occurs at intermediate levels of 
cross-feeding (upper right panel). This result that a primary invasion can make a later invasion 
more difficult is in direct contrast to the results presented in the main text. Thus, the cross-
feeding dynamics of an introduced taxon has strong influence on both its ability to join the 
community and the potential for further taxa to join the community.  
 When looking only at communities that were successfully invaded, a different invader is 
generally also successful there (lower left panel). A secondary invader shows similar success 
patterns to a primary invader (lower middle panel), but there are regions of parameter space 
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where the secondary invader has both greater and lesser success (lower right panel). In general, 
when competition is low, secondary invaders were less successful, especially at intermediate 
levels of crossfeeding. However, when competition was high, a secondary invader was often 
more successful, due to the presence of the primary invader.  
 

 
Fig. S2: Same results as presented in Fig. 4 in the main text. When invaders are able to 
cross-feed, a successful invasion only minimally changes community structure and 
metabolite exchange networks.  
 
 In contrast to Fig. 5 in the main text, which showed that the presence of an invader 
changes both community structure and metabolite exchange dynamics, Fig. S2 shows that the 
introduction of an invader generally has small effects on the communities. When native 
communities are already highly diverse (i.e. have a large number of taxa coexisting), the invader 
often simply joins the community, without dislodging other taxa (upper left panel). In these 
cases, the number of metabolites traded increases (upper right panel), as another taxon is added 
to the network of metabolite transfers.   
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Fig. S3: Same results as presented in Fig. 5 in the main text. Warm colors indicate 
increases, and cool colors indicate decreases.  
 
 Allowing the invaders to cross-feed alters the impacts of a successful invasion on 
community structure and metabolite exchange. When invaders can cross-feed, they are much less 
likely to remove taxa from communities or diminish the number of metabolites exchanged within 
the community (upper panels). Additionally, there is less change in the total number of taxa in 
the community (left middle panel). Invading taxa also generally lead to decreases in the number 
of equilibrium metabolites (bottom left panel). Finally, invaders have a smaller impact on overall 
cross-feeding networks, although they do generally lead to slightly fewer cross-feeding 
relationships overall (right middle panel). However, the effect of invaders on the number of 
metabolite flows providing limiting nutrients could be either positive or negative, depending on 
the combination of cross-feeding and competition parameters (bottom right panel). 
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Sensitivity Analysis 2: Cross-feeding ability is equal to competitive ability 
 

 
Fig. S4: Same results as presented in Fig. 2 in the main text, but under the condition that 
cross-feeding abilities are variable between taxa, being set as equal to each taxon’s 
competition value.  
 
 In these simulations, the distinction from the model presented in the main text is that taxa 
in the native community have varying levels of cross-feeding abilities. However, this change has 
minimal impact on invasive taxa, as invasion success is largely unchanged.  
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Fig. S5: Same results as presented in Fig. 4 in the main text. Allowing for variation of cross-
feeding abilities in the native taxa has minimal effect on model results.  
 
 As with invasion success, changing the model to allow native taxa to be differentially 
good at cross-feeding shows minimal differences in community structure and metabolite transfer 
networks.  
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Fig. S6: Same results as presented in Fig. 6 in the main text.  
 
 Finally, Fig. S6 looks at how communities changed in response to a successful invader, 
when the native taxa varied in cross-feeding ability. These results are, again, largely similar to 
those presented in the main text, where there is no variation in cross-feeding ability.  



These equations describe the dynamics of the native community before the invader is introduced. 
When the invader is added, the number of taxa increases by one, but cross-feeding is not 
affected, as the invader has no direct cross-feeding relationships. The model can be 
mathematically described as follows: 
  
Vector and matrix definitions: 
  

 is a vector of the abundances of native taxaY  
... )(Y ,Y =  1 ,Y 2  Y x   

 
Where  denotes the abundance of taxon j at time (t)Y j t  
  

 is a vector of competition values for each taxonc  
 (c , c , ... c )c =  1  2  x  

  
For each taxon , there is an associated vector r_j of all stored metabolitesY j  
r_j = (r_j1 , r_j2, … r_jm) 
  
For each taxon  there is a set s_j that gives the metabolites in r_j required by the taxonY j  
s_j = {s_j1 , s_j2, … s_jn} 
 
For each taxon  there is a set d_j that gives the metabolites in r_j excreted by the taxonY j  
d_j = {d_j1 , d_j2, … d_jq} 
  
There is a single vector e for environmental metabolites, where entries in e give the amount of 
each metabolite in the environment 
e = (e1 , e2 , … em) 
  
In addition, for each metabolite z , there is an associated matrix CFbinary_z  (with dimensions of x 
by x) where the entry is 1 if the taxon in the given row has a cross-feeding relationship where it 
received metabolites from the taxon from the given column. All other entries are zero. This matrix 
is randomly generated in each model run using the process described in the main text. 
  
The vector k_z  contains the sum of each column in CFbinary_z , which gives the number of 
cross-feeding donor relationships that each taxon has for metabolite z . 
  
Dividing each entry in binary matrix CFbinary_z  by the associated column sum in vector k_z  yields 
the matrix CFnorm_z , where each non-zero entry gives the fraction of excreted metabolites that 
are available for transfer from the taxon in the given column to the taxon in the given row. 
  
 
 



Equations governing abundances and metabolites: 
  
The model progresses through discrete time steps, where the vectors Y , r , and e are updated 
based on the prior values. The change to the abundance of taxon j through time is given by:  
 

(t ) (t) ( r_j (t) h_j (t) ) ) (1 f  ) Y j + 1 = (Y j + mina ∈ s_j a +  a *  −  Eq. 1
 

  
Where  is the vector giving the amount of each metabolite uptaken by taxon j from the_j (t)h   
environment in that time step: 
  

_j (t) (   min ( e (t) i,  (Y (t) r_k (t) ) ) ,h  =  
c  (Y (t) −r_j (t)) j j 1

(Y (t) − r_k (t))∑
x

k = 1
ck k 1

*  1 +   ∑
x

k = 1
ck k −  1  Eq. 2  

                    min ( e (t) i,  (Y (t) r_k (t)) ) , ...   
c  (Y (t) −r_j (t)) j j 2

(Y (t) − r_k (t))∑
x

k = 1
ck k 2

*  2 +   ∑
x

k = 1
ck k −  2   

                    min ( e (t) i,  (Y (t) r_k (t)) )  )  
c  (Y (t) −r_j (t)) j j m

(Y (t) − r_k (t))∑
x

k = 1
ck k m

*  m +   ∑
x

k = 1
ck k −  m  

 
Entries in h_j are zero if the metabolite is not required by the taxon.  
  
Or, if Eq. 1 were described verbally, 
  
The abundance at the next time step = (abundance at prior time step + minimum of (stored 
resources + resources uptaken from the environment) ) * (1 – flushing) 
 
The number of reproducing individuals from each taxon, given in the vector , is equal to the(t)g  
minimum of each taxon’s stored metabolites plus metabolites uptaken from the environment: 
 

,(t) ( g =  ( r_1 (t) h_1 (t) ) mina ∈ s_1 a +  a  Eq. 3  
, …               ( r_2 (t) h_2 (t) ) mina ∈ s_2 a +  a   
 )               ( r_x (t) h_x (t) ) mina ∈ s_x a +  a  

 
Multiplying the normalized cross-feeding matrix CFnorm_z by the reproduction vector  (which(t)g  
is equivalent to excretion, as excretion is coupled to reproduction) yields a vector  where_z(t)w  
each entry is the quantity of metabolite z  available to each taxon through cross-feeding:  
 

_z(t) CF norm_z g(t)w =  *  Eq. 4  
 
At each time step, the sum of vector cf_z gives the total quantity of metabolite z  exchanged 
through cross-feeding, with each entry corresponding to the quantity being acquired by each 



taxon. The number of metabolites acquired by each taxon is the minimum of the number of 
metabolites available and the taxon’s demand for metabolites:  
 

f_z(t) ( min ( w_z (t) , Y (t) 2 g (t) r_1 (t) )  ,  c =  1  1 +  1 −  z  Eq. 5  
                  min ( w_z (t) , Y (t) 2 g (t) r_2 (t) )  , ...  2  2 +  2 −  z   
                  min ( w_z (t) , Y (t) 2 g (t) r_x (t) )  ) x  x +  x −  z  

 
The following equation governs the change in stored metabolites for taxon j over time: 
 

_j (t )  ( r_j (t) h_j (t) g (t) cf_1 (t) ) (1 f ) ,r  + 1 = ( 1 +  1 −  1 +  j *  −   Eq. 6  
                       ( r_j (t) h_j (t) g (t) cf_2 (t) ) (1 f )  , ...   2 +  2 −  2 +  j *  −    
                       ( r_j (t) h_j (t) g (t) cf_m (t) ) (1 f )  ) m +  m −  m +  j *  −   

 
Or, verbally,  
 
The number of metabolites stored by a taxon equals the number of metabolites previously stored, 
plus the metabolites uptaken from the environment, minus the metabolites used for reproduction, 
plus the number of metabolites acquired from cross-feeding, with a fraction f lost to flushing.  
 
The equations governing the invasive taxon’s resource storage are the same as Eq. 6, but 
removing the cross-feeding term.  
 
Finally, the amount of metabolite z  in the environment can be written as:  
 

(t ) (t) i in ( e (t) i, (Y (t) r_k (t) ) (t) δ  f_z  ) (1 ) ez + 1 = ( ez +  − m z +   ∑
x

k = 1
ck k −  z +  ∑

x

k = 1
gk *  k −  ∑

x

k = 1
c k *  − f   

 
Where  1, if  z _k ; 0, otherwise  δk = {  ∈ d    Eq. 7 
  
Or, verbally,  
 
The quantity of metabolites in the environment equals the previous quantity of metabolites in the 
environment, plus inputs, minus metabolites uptaken through competition, plus excreted 
metabolites but not those that were directed to other taxa through cross-feeding, and with a 
fraction f lost to flushing.  
 
 


