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Materials and Methods	
Cell Culture	
A549 cells and K562 cells were a kind gift from Dr. Robert Bradley (UW) and Dr. David 
Hawkins (UW), respectively. MCF7 (cat no. HTB-22), NIH3T3 (cat no. CRL-1658) and 
HEK293T (cat no. CRL-11268) cells were purchased from ATCC. A549 and MCF7 cells were 
cultured in DMEM (ThermoFisher, 11995073) media supplemented with 10% FBS 
(ThermoFisher, cat no. 26140079) and 1% penicillin-streptomycin (ThermoFisher, 15140122). 
K562 cells were cultured in RPMI 1640 (Fisher Scientific, cat no. 11-875-119) supplemented 
with 10% FBS and 1% penicillin-streptomycin and maintained between 0.2-1 x 106 cells/ml. All 
cells were cultured at 37C with 5% CO2. Adherents cells were split when they reached 90% 
confluence by washing with DPBS (Life Technologies, cat no. 14190-250), trypsinizing using 
TryPLE (Fisher Scientific, cat no. 12-604-039) and split at either 1:4 (MCF7) or 1:10 (A549, 
NIH3T3 and HEK293T). 	
	
Compound Preparation	
Dexamethasone was purchased from Sigma-Aldrich and resuspended in molecular biology grade 
ethanol (Fisher Scientific). BMS-345541 (S8044), Vorinostat (S1047), and Nutlin-3a (S8059) 
were acquired from Selleck Chemicals and resuspended in DMSO (VWR Scientific, 97063-136). 
Cherry-picked 96-well compound screens were acquired from Selleck Chemicals resuspended to 
10 mM in DMSO (Table S3). Compounds were diluted in their respective vehicle to 1000x of 
their desired treatment concentration and stored at -80C until use. 	
	
Drug treatment	
For 96-well experiments, adherent cells were trypsinized, washed with PBS and plated in tissue 
culture treated 96 well flat bottom plates (Thermo Fisher Scientific, cat no. 12-656-66) at 25,000 
cells per well in 100 μL of media. Suspension cells were washed with PBS and plated in 96 well 
V-bottom tissue culture plates (Thermo Fisher Scientific, cat no. 549935) at 25,000 cells per well 
in 100 μL of media. Cells were allowed to recover for 24 hours before treatment with 1 μL of a 
1:10 dilution of the appropriate compound or vehicle in PBS to maintain a vehicle concentration 
of 0.1% for all wells. Cells were then exposed to small molecules at the specified concentration 
for either 24 or 72 hours. For experiments where cells were co-treated with HDAC inhibitors and 
either acetate, pyruvate, citrate, ACSS2 inhibitor (EMD Millipore Inc., Cat No. 533756,), ACLY 
inhibitor (Cayman Chemicals, BMS-303141 Cat No. 943962-47-8)  or PDH inhibitor (Cayman 
Chemicals, Cat No. 504817), cells were treated 24 hours after plating and harvested after 24 
hours. In this set of experiments, all wells contained a final concentration of 0.2% DMSO to 
match treatment with both the HDAC inhibitor and inhibitors of metabolic processes.	
	
CellTiter Glo	
A549, MCF7 and K562 cells were seeded in 96 well plates, allowed to attach for 24 hours and 
treated with BMS345541, dexamethasone, nutlin-3A, SAHA, as described above. 24 hours post 
treatment, plates were allowed to reach room temperature and viability estimated using the 
CellTiter-Glo viability assay (Promega) according to manufacturer’s instructions. Luminescence 
was recorded using a BioTek synergy plate reader. For each drug treatment luminescence 
readings were normalized to the average luminescence intensities of vehicle DMSO treated 
wells.	
	



Cell counts of bosutinib exposed cells	
A549, MCF7 and K562 cells were seeded in 12 well plates at 2.8 x 105 cells per well. After 24 
hours to allow for A549 and MCF7 attachment, cells were exposed for 24 hours to 0.1, 1 and 10 
µM bosutinib or DMSO vehicle control. After treatment, adherent cells were detached using 
TrypLE or directly resuspended in 1 mL of media and cells counted on a Countess II FL 
automated cell counter (ThermoFisher).	
	
Cancer cell line encyclopedia and connectivity map data and analysis	
Pharmacological profiling data was downloaded from the Cancer cell line encyclopedia (CCLE) 
data portal (https://portals.broadinstitute.org/ccle/data). Data was the isolated and plotted for cell 
line of haematopoietic and lymphoid, lung and breast tissue origin exposed to the Abl inhibitors 
AZD0530 and nilotinib. Connectivity map (CMAP) data was downloaded from the CLUE 
command app in the CMAP data portal (https://clue.io/command?q=/home). Top connections 
and connectivity scores (obtained using the /conn command) were exported between the MEK 
inhibitor perturbagen class (CP_MEK_INHIBITOR) and HSP inhibitor perturbagen class 
(CP_HSP_INHIBITOR) across all cell lines (Summary) or individual cell lines that overlap with 
our study (A549 and MCF7). Results were then filtered for data from inhibitor exposure. To 
determine how connectivities change across all vs. individual cell lines, we filtered for the top 
connections that overlap with the connectivity summary in data from individual cell lines. 
Connectivity scores were subjected to a threshold value of 90 as in the associated CMAP study 
(11).	
	
Flow cytometry	
A549 and MCF7 cells were seeded in 6 cm dishes at 1.6 x 106 cells per plate. K562 cells were 
seeded in T25 cm2 flasks at 1.6 x 106 cells per flask. After 24 hours to allow for A549 and MCF7 
attachment cells were exposed for 24 hours to 10 µM abexinostat, 10 µM pracinostat or DMSO 
as a vehicle control. After treatment cells were harvested as described above, pellets washed 
twice in PBS, resuspended in 500 µL of cold PBS and fixed by the addition of 5 mL of ice-cold 
ethanol while vortexing at low speed. Cells were stored at -20C prior to processing for flow 
cytometry analysis. For flow cytometry, ethanol was removed and fixed cells washed twice with 
PBS containing 1% BSA (PBS-B) and blocked for 1 hour at room temperature. Then, blocking 
buffer was removed and cells were incubated in PBS containing 1% BSA and 0.1% tryton X-100 
(PBS-BT) as well as a 1:500 dilution of mouse anti-acetyl-lysine antibody (cat no. ICP0390, 
ImmuneChem Pharmaceuticals Inc) for 2 hours at room temperature. After incubation, cells were 
washed twice with PBS-BT and incubated with goat anti-mouse Alexa-647 in PBS-BT for 1 hour 
at room temperature. Lastly, cells were washed twice with PBS-BT, once with PBS-B and 
resuspended in PBS-B containing 5 µg/ml Hoechst 33258 (Life Sciences Technologies) to stain 
the DNA. Then the levels of total acetylated-lysine and DNA content was analyzed by flow 
cytometry on an LSRII flow cytometer (BD Biosciences). Quantification and downstream 
analysis was performed using FlowJo10 (FlowJo.LLC).	
	
Cell harvest, nuclei isolation and sample hashing	
For the harvest of adherent cells, media was removed, and cells were rinsed with 100 μL of 
DPBS and tryspinized with 50 μL of Tryp-LE for 15 minutes at 37C. Once cells had detached 
from the culture plate, the reaction was quenched with 150 μl of ice-cold DMEM containing 
10% FBS. Cell suspensions were generated by pipetting and the entire volume was transferred to 



a 96 well V-bottom plate. Cells were then pelleted by centrifugation at 300 x g for 6 minutes, 
washed with 100 μL of ice-cold DPBS and re-pelleted at 300 x g for 6 minutes. 	
	
Lysis was conducted in the 96 well V-bottom plate. Following removal of PBS, cell suspensions 
were lysed and labeled with 50 μL of cold lysis buffer (10 mM Tris-HCl, pH 7.4, 10 mM NaCl, 
3 mM MgCl2, 0.1% IGEPAL CA-630) (24) supplemented with 1% Superase RNA Inhibitor 
and  400 femtomoles of hashing oligo of the form 5’-
GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAG-[10bp-barcode]-
BAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA-3’ where B is G, C or T (IDT). For 
the large compound screen, 500 femtomoles of an additional oligo was used to uniquely index 
each 96 well treatment plate. After lysis with 3 strokes of multichannel pipette, cells were fixed 
by addition of 200 μL of fixation buffer (5% Paraformaldehyde, 1.25x PBS ). Nuclei were then 
fixed on ice for 15 minutes before pooling into a trough. Nuclei were pooled by plate into a 50 
mL conical tube and pelleted by centrifugation at 500 x g for 5 minutes. Subsequently, cells were 
resuspended in 500 µL of nuclei suspension buffer (NSB; (10 mM Tris-HCl, pH 7.4, 10 mM 
NaCl, 3 mM MgCl2, 1% Superase RNA Inhibitor, 1% 0.2mg/mL Ultrapure BSA)). Finally, 
nuclei from all plates were pooled into a single conical tube and nuclei were pelleted by 
centrifugation at 500 x g for 5 minutes. Nuclei were then resuspended in 1mL of NSB and flash 
frozen into liquid nitrogen in 100 µL aliquots. Nuclei were then stored at -80C until further 
processing with sci-RNA-seq. 	
	
Preparation of sci-RNA-seq2 libraries	
Frozen nuclei were thawed over ice and spun down at 500g for 5 minutes. Cells were then 
permeabilized in permeabilization buffer (NSB + 0.25% Triton-X) for 3 minutes and then spun 
down. Following another a wash in NSB, two-level sci-RNA-seq libraries prepared as previously 
described (25). Briefly, nuclei were pelleted at 500 x g for 5 minutes, and resuspended in 100 µL 
of NSB. Cell counts were obtained by staining nuclei with 0.4 % trypan blue (Sigma-Aldrich) 
and counted using a hemocytometer. 5000 nuclei in 2 µL of NSB and 0.25 µL of 10 mM dNTP 
mix (Thermo Fisher Scientific, cat no. R0193) were then distributed onto a skirted twin.tec 96 
well LoBind plate (Fisher Scientific, cat no. 0030129512) after which 1 µL of uniquely indexed 
oligo-dT (25 µM)(25) was added to every well, incubated at 55C for 5 minutes and placed on 
ice. 1.75 µL of reverse transcription mix (1µL of Superscript IV first-strand buffer, 0.25 µL of 
100 mM DTT, 0.25 µL of Superscript IV and 0.25 µL of RNAseOUT recombinant ribonuclease 
inhibitor) was then added to every well and plates incubated at 55C for 10 minutes and placed on 
ice. 5 µL of stop solution (40 mM EDTA, 1 mM spermidine and 0.5% BSA) were added to each 
well to stop the reaction. Wells were pooled using wide bore tips, and nuclei transferred to a flow 
cytometry tube through a 0.35 µm filter cap and DAPI added to a final concentration of 3 µM. 
Pooled nuclei were then sorted on a FACS Aria II cell sorter (BD) at 150 cells per well into 96 
well LoBind plates containing 5 µL of EB buffer (Qiagen). After sorting, 0.75 µL of second 
strand mix (0.5 µL of mRNA second strand synthesis buffer and 0.25 µL of mRNA second 
strand synthesis enzyme, New England Biolabs) were added to each well, second strand 
synthesis performed at 16C for 150 minutes. Tagmentation was performed by addition of 5.75 
µL of tagmentation mix (0.01 µL of a custom TDE1 enzyme in 5.74µL 2x Nextera TD buffer, 
Illumina) and plates incubated for 5 minutes at 55C. Reaction was terminated by addition of 12 
µL of DNA binding buffer (Zymo) and incubated for 5 minutes at room temperature. 36 µL of 
Ampure XP beads were added to every well, DNA purified using the standard Ampure XP 



protocol (Beckman Coulter) eluting with 17 µL of EB buffer and DNA transferred to a new 96 
well LoBind plate. For PCR, 2 µL of indexed P5, 2 µL of indexed P7 (25) and 20 µL of 
NEBNext High-Fidelity master mix (New England Biolabs) were added to each well and PCR 
performed as follows: 75C for 3 minutes, 98C for 30 seconds and 18 cycles of 98C for 10 
seconds, 66C for 30 seconds and 72C for 1 minute followed by a final extension at 72C for 5 
minutes. After PCR, all wells were pooled, concentrated using a DNA clean and concentrator kit 
(Zymo) and purified via a 0.8X Ampure XP cleanup. Final library concentrations were 
determined by Qubit (Invitrogen), libraries visualized using a TapeStation D1000 DNA Screen 
tape (Agilent) and libraries sequenced on a Nextseq 500 (Illumina) using a high output 75 cycle 
kit (Read 1: 18 cycles, Read 2: 52 cycles, Index 1: 10 cycles and Index 2: 10 cycles).	
	
Preparation of sci-RNA-seq3 libraries	
Frozen nuclei were thawed as before and three-level sci-RNA-seq libraries prepared as described 
in (21). Nuclei were pelleted at 500 x g for 5 minutes, washed three times with NSB and a small 
aliquot of nuclei stained with 0.4 % trypan blue (Sigma-Aldrich) and nuclei counted using a 
hemocytometer. 80000 nuclei in 22 µL of NSB, 2 µL of 10 mM dNTP mix and were then 
distributed into a skirted 2 µL of ligation compatible indexed oligo-dT primers were distributed 
into each well of 96 well LoBind plates, incubated at 55C for 5 minutes and placed on ice. 14 µL 
of reverse transcription mix (8µL of Superscript IV first-strand buffer, 2 µL of 100 mM DTT, 2 
µL of Superscript IV and 2 µL of RNAseOUT recombinant ribonuclease inhibitor) was then 
added to every well and RT performed on a thermocycler using the following program: 4C for 2 
minutes, 10C for 2 minutes, 20C for 2 minutes, 30C for 2 minutes, 40C for 2 minutes, 50 for 2 
minutes and 55C for 15 minutes. After RT, 60 µL of nuclei buffer containing BSA (NBB, 10 
mM Tris-HCl, pH 7.4, 10 mM NaCl, 3 mM MgCl2 and 1% BSA) were added to each well, 
nuclei pooled using a wide bore tip, nuclei pelleted by centrifugation at 500 x g for 10 minutes 
and the supernatant removed. A second round of combinatorial indexing was performed by 
ligation of indexed primers onto the 5’ end of RT indexed cDNA. Nuclei were resuspended in 
NSB and 10 µL added to each well of 96 well LoBind plates after which 8 µL of indexed 
ligation primers were added to each well along with 22 µL of ligation mix (20 µL of Quick 
ligase buffer and 2 µL of Quick ligase, New England Biolabs). Ligation was then performed at 
25C for 10 minutes. After ligation, 60 µL of NBB were added to each well, nuclei pooled using a 
wide bore tip, another 40 mL of NBB added to the nuclei and nuclei pelleted by centrifugation at 
600 x g for 10 minutes and the supernatant removed. Nuclei were then washed once with 5 mL 
of NBB, resuspended in 4 mL of NBB, multiplets removed by filtering using a 40 µm Flowmi 
cell strainer (Sigma-Aldrich), nuclei counted and 5000 nuclei were distributed per well into 96 
well LoBind plates in a 5 µL volume. Plates containing nuclei were frozen and stored at -80C 
until further processing. After thawing the frozen plate 5 µL of second strand synthesis mix (3 
µL of elution buffer, 1.33 µL mRNA second strand synthesis buffer and 0.66 µL of mRNA 
second strand synthesis enzyme) were added to each well and incubated at 16C for 3 hours. 
Tagmentation was performed by addition of 10 µL of tagmentation mix (0.01 µL of a custom 
TDE1 enzyme in 9.99µL of 2x Nextera TD buffer, Illumina) and plates incubated for 5 minutes 
at 55C. After tagmentation, 20 µL of DNA binding buffer was added to every well and plates 
incubated at room temperature for 5 minutes. 40 µL of Ampure XP beads were then added to 
each well and plates incubated for 5 minutes at room temperature. Upon isolation of beads using 
a magnetic stand, supernatant was removed and beads were washed twice with 80% ethanol. 10 
µL of USER reaction mix (1 µL of 10X USER buffer and 1 µL of USeR enzyme in nuclease-free 



water, New England Biolabs) was then added to each well and beads resuspended and incubated 
at 37C for 15 minutes. After incubation, 7 µL of elution buffer were added to each well and 
supernatant transferred to a new 96 well LoBind plate after binding beads on a magnetic stand. 
After incubation at 85C for 10 minutes, libraries were generated with 15 cycles of PCR. 
Following PCR amplification, sequencing library was purified by first concentrating 1mL of 
PCR library using a 1x Ampure cleanup and then running the resulting product on a 2% agarose 
gel containing ethidium bromide. Gel was cut to isolate 2 fragments, hash molecules (220bp - 
250bp) and RNA library (250bp - 1000bp). Following gel extraction and an additional 1x 
Ampure cleanup RNA libraries were sequenced on a NovaSeq 6000 (Illumina) (Read 1: 34 bp, 
Read 2: 100 bp, Index 1: 10 bp and Index 2: 10 bp) and hash libraries were sequenced on a 75 
cycle NextSeq (Read 1: 34 bp, Read 2: 38 bp, Index 1: 10 bp and Index 2: 10 bp).	
	
Preparation of bulk RNA sequencing libraries 
Compound treated cells were first trypsinized and harvested as described previously. Cells were 
then lysed in V-bottom plates using 26 µL of NSB. 2 µL of 25 µM indexed RT primers were 
added and annealed at 65C for 5 minutes. Subsequently, RT reaction was performed using the 
SuperScript IV system, with 8µL of 5x SuperScript Buffer, 2µL of SuperScript IV, 2µL 10 mM 
dNTP mix, 2µL of 100 mM DTT and 2 µL of RNAseOUT recombinant ribonuclease inhibitor 
per well.. Reaction was performed for 10 minutes at 55C and subsequently stopped via heat 
inactivation (80C for 10 minutes). Libraries were then pooled and excess RT primer was 
removed through either two 0.7x SPRI clean-ups or a single 0.7x SPRI cleanup followed by Exo-
1 treatment and inactivation. Double stranded DNA was produced through incubation at 16C for 
3 hours with second strand synthesis mix containing 0.5 µL of enzyme and 2 µL of second strand 
reaction buffer in a final volume of 20 µL. Following second strand synthesis, libraries were 
tagmented with 1 μL of commercial Nextera reagent with 20.5 µL of 2x TD buffer and . 
Reactions were stopped with 40 µL of Zymo Clean and Concentrate buffer and incubated at 
room temperature for 5 minutes. Libraries were subsequently purified with a 1x SPRI cleanup 
and eluted in 16 µL of elution buffer. Sequencing libraries were generated through PCR with 2 
µL of index P7 and P5 primers each and 20 µL of 2x NEB Next Master Mix. Finally, libraries 
were pooled, purified with a 1x SPRI cleanup and quantified. Libraries were sequenced on a 
Nextseq 500 (Illumina) using a high output 75 cycle kit (Read 1: 18 cycles, Read 2: 52 cycles, 
Index 1: 10 cycles and Index 2: 10 cycles).	
	
Pre-processing of sequencing data	
Sequencing runs were first demultiplexed using bcl2fastq v.2.18. Only barcodes that matched 
reverse transcription indices within an edit distance of 2 bp were retained. For sci-RNA-seq3 
libraries, barcodes which matched both provided reverse transcription indices and ligation 
indices within an edit distance of 2 bp were retained. Following assignment of indices, polyA 
tails were trimmed using trim-galore, and reads were mapped to a human transcriptome (hg-38) 
or human-mouse transcriptome (hg-38 and mm-10) using the STAR aligner. Following 
alignment, reads were filtered for alignment quality, and duplicates were removed. Reads were 
considered duplicates if they (1) mapped to the same gene, (2) mapped to the same cell barcode 
and (3) contained the same unique molecular identifier (UMI). Reads that met the first two 
criteria, and differed by an edit distance of 1 from a previously observed UMI were also marked 
as duplicates and discarded. Non-duplicate reads were assigned to genes using bedtools (40) to 
intersect with an annotated gene model. All 3' UTRs in the gene model were extended by 100 bp 



to account for the possibility that some gene 3' UTR annotations may be too short, causing genic 
reads to improperly be annotated as intergenic. Cell barcodes were considered to correspond to a 
bona fide cell if the number of unique reads associated with the barcode was greater than an 
interactively defined threshold on a knee plot. Reads from cells that passed this UMI count 
threshold were first aggregated into a sparse matrix format and then loaded and saved as a CDS 
object for analysis with Monocle 3.	
	
Assigning sample labels from hash reads	
Demultiplexed reads that matched combinatorial indexing barcodes were examined to identify 
hash reads. Reads were considered hash reads when they met two criteria: (1) the first 10 bp of 
read 2 matched a hash barcode in the experiment within an edit distance of two and (2) contained 
a polyA track between base pairs 12 to 16 of read 2. These reads were then deduplicated by cell 
barcode and collapsed by UMIs to create a vector of hash oligo UMI counts for each nucleus 
in the experiment. 	
	
To assign each nucleus  to the culture well from which it came, we test whether its sci-RNA-seq 
library is enriched for a particular hash barcode. We compare a nucleus’s hash UMIs against a 
‘background distribution’, which under ideal circumstances, would be the uniform distribution. 
In practice, minor variation in concentrations of hash oligos added to each well of liberated 
nuclei may necessitate empirically estimating the background. To do so, we simply average the 
relative hash UMIs from cell indices for which fewer than < mRNA UMIs were collected, 
reasoning that these reflect library contributions from RT well supernatant, debris fragments, etc. 
We then compare the hash UMIs  for nucleus  to this background by a chi-squared test. After 
correcting the resulting p values for multiple testing by Benjamini-Hochberg, we reject the null 
hypothesis that  originates from the background distribution at specified FDR (5% FDR was 
used in this study). Those nuclei with hash counts deemed different than background are then 
evaluated for enrichment for a single hash sequence. Enrichment ratios were calculated as the 
UMI count ratio of the most abundant vs. the second most abundant hash oligo. Specifically, if 
the UMI count for the most abundant hash in nucleus  is 𝛼-fold higher than the second most 
abundant,  is marked as a singleton. 𝛼 was determined on a per-experiment basis by examining 
the distribution of these ratios and choosing a value that separated unlabeled cells and singularly 
labeled cells. Cells that fell below 𝛼-fold enrichment of a unique hash oligo were flagged as a 
multiplet or debris and discarded. 	
	
Dose-response analysis	
Dose-response analysis was conducted in R using the drc package (41) by fitting a four-
parameter log-logistic model for each drug to the number of cells recovered in the single-cell 
RNA-seq data at each dose. Cells that survived doublet analysis and QC were grouped by their 
culture well of origin and counted. These counts were then adjusted to account for variation in 
recovery as a function of cell type and culture plate as follows. The vector of cell counts across 
wells were fit with the model 	
	

 	
	



Where  and  are binary indicator variables encoding the cell type and culture plate, 
respectively. The adjusted cell counts for a given well  from culture plate  of cells of type  
are then computed as	
	

 	
	
Next, adjusted per-well cell counts were grouped by type and drug and passed as input to the 
drm() function of the drc package with a model formula ‘cell_count ~ log_dose` and the LL.4() 
model family function. This procedure fits the model:	
	

 	
In the above model, the parameters  and  correspond to the lower and upper asymptotic limits 
of the response, respectively. The steepness of the response curve is reflected in , and is a 
parameter that encodes the half-maximal ‘effective dose’ (ED50). 	
	
The dose response curves enable cells to be annotated according to the impact of their culture 
conditions on viability. Each cell is assigned a ‘viability score’ which is simply the expected 
fraction of vehicle cells remaining after exposure to a given dose of a compound. These cell 
counts are generated via the predict() function of the drc package and then normalized relative to 
the corresponding vehicle control.	
	
Dimensionality reduction and trajectory analysis	
Gene expression profiles were visualized with Monocle 3, which uses UMAP to project them 
into a two or three dimensional space. Briefly, Monocle 3 first calculates size factors for every 
cell. Size factors were calculated as the log UMI counts observed in a single cell divided by the 
geometric mean of log UMI counts from all measured cells.  After scaling each nucleus’ UMI 
counts by its library size factor, Monocle3 adds a pseudocount of 1, and log transforms the 
counts. Next, these log-transformed profiles are projected onto the top 25 principal components. 
These PCA coordinates were transformed by Monocle 3 (using an approach similar to the 
removeBatchEffect() function in the limma package (42)) according to the model ‘~ log(UMIs) + 
replicate’ (Figure 3) or ‘~ log(UMIs) + viability + proliferation index + replicate’ . Adjusted 
PCA coordinates for each cell are used to initialize UMAP. Unless otherwise noted, UMAP was 
run with the following parameters: 50 nearest neighbors, min_dist = 0.1, inter-cell distance 
assessed by cosine similarity. UMAP projection of cells after dual HDAC inhibition and acetyl-
COA precursor supplementation or acetyl-CoA generating enzyme inhibition was performed as 
described with the exception that PCA initialization was performed on the top 1000 most 
overdispersed genes. Louvain community detection was then performed on this UMAP space 
using the python package ‘louvain’. Trajectory reconstruction was then performed as described 
in (21). 	
	
To determine whether cells exposed to a particular compound/dose combination displayed an 
enrichment along UMAP space we created contingency tables of the number of compound or 
vehicle treated cells within and outside clusters and used the stats R package implementation of 
Fisher’s exact test to test for enrichment. For visualization of drug enrichment in Figure 3B, 



cells opacity was added to cells under the minimum compound/dose that passed meet an 
enrichment cutoff of FDR < 1% and a log2 of the odds ratio > 2.5. Cells that passed these filters 
were used to generate the heatmap of the fraction of enriched cells by cluster in Figure S6.	
	
Estimation of Proliferation Index	
To obtain an estimate of proliferation index for a single cell, size factor normalized expression of 
cell cycle marker genes (from Table S5 in (43)) were summed for each cell and logged. Scores 
were calculated in this way for both G1S and G2M. “Proliferation Index” refers to overall 
proliferative state of a cell  and is calculated as the logged sum of the aggregated G1S and G2M 
gene expression.  	
	
Differential expression analysis	
To test whether a gene is differentially expressed by a cell line in a dose-dependent manner when 
exposed to a compound, we fit its (library size-factor adjusted) UMI count recorded from each 
nucleus with a generalized linear model: 	
	

	
 

Where  is a quasipoisson-valued random variable,  is the log-transformed dose of the 
compound being evaluated. We fit these models with Monocle 3, which uses the speedglm 
package. To fit the regression model for each drug’s effect on each gene, we first identify the 
subset of cells that are relevant for the model. To determine the effects on gene G in cells of type 
C when treated with drug D, we include all cells of type C that were treated with any dose of D. 
To these, we add cells of type C that were treated with the vehicle control. We then fit a model 
defined above relating the expression level of G across all of these cells. Genes are deemed to be 
dose-dependent differentially expressed genes (DEGs) if their fitted models include a term 
that is significantly different from zero as assessed by a Wald test (Benjamini-Hochberg adjusted 

 ). P values for  terms are pooled across all compounds and all genes prior to 
correction for multiple testing. 	
	
To assess a gene for differential expression as a function of ‘pseudodose’  in the consensus 
HDAC inhibition trajectory, we fit a model	

	

	
	

Where  is a quasipoisson variable capturing the gene’s UMI counts,  encodes the pseudodose 
values smoothed via a natural spline, is a factor encoding the cell type, and  captures the 
interaction between cell type and pseudodose. The term  encodes the (log) dose dependent 
effects of compound . 
 
Pairwise correlation of screened compounds  
To identify compounds that result in similar dose-dependent changes to cellular transcriptomes 
we calculated the Pearson correlation between every pairwise set of compounds. We created a 



gene by compound matrix for the union of dose-dependent genes across all compounds where 
each entry is the beta coefficient for the dose dependence term  and ten calculated the Pearson 
correlation for every drug pair using the cor.test() function in the R stats package specifying to 
use complete observations. The resulting correlation matrix was then hierarchically clustered 
using the pheatmap package in R. The significance of every pairwise correlation was determined 
using the corr.test() function from the psych package in R specifying Benjamini-Hochberg as the 
method for adjusting for multiple hypothesis testing.	
	
Geneset enrichment analysis	
After fitting a generalized linear model, genes that had significant coefficients (5% FDR 
threshold) were used for gene set enrichment analysis with the R package piano (44). Briefly, 
gene sets were ranked according to the set-wide average Wald test statistic corresponding to the 
generalized linear model term being evaluated with piano’s runGSA() function. Genes were 
randomized across sets to establish a null distribution for each set’s rank. After 10000 
permutations, runGSA() computed p values using the 'mixed' directional enrichment policy.. The 
top gene sets, corresponding to those with the largest magnitude enrichment statistic, were 
chosen for visualization. 	
	
Alignment of HDAC inhibitior treated cells	
To organize cells treated with HDAC inhibitors into a trajectory cells were sampled to equalize 
the number of cells represented between the three cell lines or between treatments at 24 and 72 
hrs. Next, PCA coordinates were computed jointly, and then aligned using the mnnCorrect 
function from the package scran (32). These adjusted coordinates were used to initialize UMAP 
in Monocle 3. We then fit a principal graph to the data via lean_graph(). To define the origin of 
the trajectory, we mapped each cell to its nearest principal graph node, and then selected all 
principal graph nodes for which a majority of mapped cells were treated with vehicle. All other 
cells’ pseudodoses  was measured as the geodesic distance between their nearest principal 
graph node to an origin node. 	
	
To quantify the potency of each HDAC inhibitor, we first grouped all cells from each replicate 
according to treatment and dose, and then computed the mean pseudodose for each cell. We then 
fit mean pseudodose values as a function of compound concentration using the drc package (41). 
We used a four-parameter log-logistic model, with the maximal response fixed at the highest 
pseudodose value achieved across all compounds and doses. We then take the model parameter 
as described in the 'dose response analysis' section above as the transcriptional EC50 (TC50) for 
each compound. 
  



Supplementary Figures 	
	

	
Supplementary Figure 1. Hashing with short, polyadenylated single-stranded 
oligonucleotides enables stable, low-cost labeling of nuclei for sci-RNA-seq and subsequent 
doublet detection. A) Fluorescent microscopy images demonstrating lack of Alexa 647-
conjugated oligo staining (right) of unpermabilized H3-GFP+ NIH3T3 cells (left). B) Design of 
polyadenylated hash oligos (top) and indexed primer used for reverse transcription (bottom). C) 
Number of hash UMIs detected per cell. Cells with fewer than 10 hash UMIs (red line) were 
excluded from further analysis. D) Distribution of enrichment ratios for cells. Enrichment ratios 
were calculated as the UMI count ratio of the most abundant vs. the second most abundant hash 
oligo. An enrichment ratio cutoff of 15 (red line) was used to distinguish doublets vs. singlets. E) 
Boxplot of the number of cells recovered per well for each cell line. F) Layout of culture plate 
wells with color indicating number of cells recovered and outline indicating cell line. Note that 
although more NIH3T3 cells were recovered per well, similar numbers of cells were recovered 
across wells of each cell type. G) Log-scale per-gene aggregated, size-factor normalized UMI 
counts recovered from sci-RNA-seq on fresh vs. frozen preparations. Size factors are calculated 
as the log counts observed in a single cell divided by the geometric mean of log counts from all 
measured cells. Black line indicates y = x. Red line is the fit with Pearson correlation shown. H) 



Log-scale boxplot of number of hash UMIs recovered from sci-RNA-seq of HEK293T (human) 
or NIH3T3 (mouse cells) from fresh vs. frozen preparations. I) Theoretical (red bars) vs. 
observed (black dots for individual wells and blue bars for means) doublet rate as a function of 
the number of nuclei sorted into the final plate during sci-RNA-seq. J) Barnyard plot from 
Figure 1E after removal of doublets detected by hashing. K) Log-scale boxplot of number of 
RNA UMIs in singlet vs. doublet cells, as called based on the purity of hash UMIs. Of note, 
these are ‘within species’ doublets, i.e. human-human or mouse-mouse, which are not readily 
detected by conventional barnyard experiments.  
  



	

	
Supplementary Figure 2. sci-Plex distinguishes transcriptional responses of A549 cells to 
four small molecules and recovers dose-response estimates similar to established assays.  
A) Experimental layout of A549 cells in 96 well plates. Cells were treated for 24 hours in two 96 
well plates using 7 doses (or vehicle) arrayed along each column. B) Cells that contained more 
than 30 hash oligo UMIs and C) had an enrichment ratio of greater than 10 were retained. D) 
Retained cells had a median hash UMI count of 78 and median RNA UMI count of 4,681. E) 
UMAP embedding of chemically perturbed A549 cells, equivalent to Figure 2B but with cells 
colored by whether they were treated with vehicle or one of the four small molecules. F) UMAP 
embedding of chemically perturbed A549 cells, equivalent to Figure 2B but with cells colored 
by cluster as defined using the density peak algorithm in Monocle 3. G) Cartoon depicting how 
pooling of barcoded nuclei preserves relative cell counts. H) Viability estimates from counting 
the proportion of recovered hashed nuclei (grey) vs. CellTiter-Glo (red, n = 6). I) Scatter plot of 



inferred cell counts (x-axis) and CellTiter-Glo viability estimates (y-axis) across all treatments 
and doses tested (Pearson correlation and chi square test).  
  



	

	
Supplementary Figure 3. Dose-dependent differentially expressed genes (DEG) recover 
expected transcriptional modules. A) Upset plot displaying the intersections of dose-dependent 
DEGs between treatments (vertical bars) as well as the total number of dose-dependent DEGs 
per treatment (horizontal bars). A gene is defined as a dose-dependent DEG if the quasi-poisson 
regression model relating its expression in a given cell to the dose of drug that cell received 
shows a significant dose effect (Wald test) after Benjamini-Hochberg correction (FDR < 0.05). 
See Methods for full details on regression modeling. The four leftmost vertical bars correspond 
to drug-specific dose-dependent DEGs, while the rightmost vertical bar corresponds to dose-
dependent DEGs shared by all four drugs. B) Gene set analysis (GSA) performed with dose-
dependent DEGs using the runGSA() function from the piano package and the Hallmarks gene 
set from MSigDB (45). Heatmap color indicates the value of the directional GSA enrichment 
statistic with values that were capped at either -10 or +10 for visualization.	



	



Supplementary Figure 4. Hash-based cell labeling in large-scale sci-Plex experiment.  
A) Hashing design for sci-Plex with 188 compounds. The experiment used 52 x 96-well plates 
where each well was marked by a combination of two oligos, one specific to a single 96-well 
culture plate and another specific to a well within that culture plate. B) Although this could 
theoretically be implemented with just 96 well hash oligos, we instead used 768, which meant 
that out of the 39,936 possible pairings of plate and well hash oligos, only a minority (12.5%) of 
combinations were expected ('legal'), while most were unexpected ('illegal') C) Observed 
pairings of plate and well hash oligos were strongly enriched for 'legal' combinations. D) Scatter 
plot of HEK293T and NIH3T3 cells seeded in a single RT well of the large-scale sci-Plex 
experiment. E-H) Hash UMI (panels E & G) and enrichment ratio (panels F & H) cutoffs used 
for well hash oligos (panels E & F) and plate hash oligos (panels G & H). Enrichment ratio 
cutoffs corresponds to greater than 5-fold enrichment. Hash UMI cutoffs correspond to > 5. 
  



	
	

	
	
Supplementary Figure 5. Quality control metrics for large-scale sci-Plex experiment. A) 
Log-scale boxplot of number of RNA UMIs for cells that passed hash and RNA UMI cutoff 
filters for each of three cell lines. B) Correlation of size factor-normalized counts for genes 
between replicates for each of the three cell lines. Black line indicates y = x. Red line is the fit 
with Pearson correlation shown. C) Boxplots showing the number of vehicle cells recovered 
from each of 8 vehicle control wells within each replicate for A549, K562 and MCF7 cells. 	

	



	
	
Supplementary Figure 6. Exposing cells to compounds alters their distribution across cell 
clusters. Heatmap showing the log-transformed ratio of cells treated with a particular drug 
compared to vehicle control cells in each Louvain community. Columns correspond to clusters in 
PCA space (see Fig S7A-C) and rows correspond to compounds, annotated by pathway and 
target. A gray entry denotes a compound that is not significantly enriched or depleted relative to 
vehicle in the corresponding cluster (Fisher’s exact test, FDR < 1%). 	
	
	
	
	



	
Supplementary Figure 6 (continued). Exposing cells to compounds alters their distribution 
across cell clusters. Heatmap showing the log-transformed ratio of cells treated with a particular 
drug compared to vehicle control cells in each Louvain community. Columns correspond to 
clusters in PCA space (see Fig S7A-C) and rows correspond to compounds, annotated by 
pathway and target. A gray entry denotes a compound that is not significantly enriched or 
depleted relative to vehicle in the corresponding cluster (Fisher’s exact test, FDR < 1%). 	
	
	
	



Supplementary Figure 7. sci-Plex identifies pathway-specific enrichment of compounds 
across UMAP clusters. A-C) UMAP embedding from Figure 3B colored by cells’ assignment 
to Louvain communities across PCA space for A549 (panel A), K562 (panel B) and MCF7 
(panel C) cells. D) UMAP embedding of A549 cells from Figure 3B. Cells treated with the 
glucocorticoid receptor (GR) agonist triamcinolone acetonide are highlighted in green while all 
other cells are colored grey. These cells comprise the vast majority (95%) of the cells in cluster 
18 from panel A. E) Percent of A549 cells expressing the GR target genes ANGPTL4 and 
GDF15, as a function of increasing doses of the synthetic GR agonist triamcinolone acetonide. 
F-H) UMAP embedding of A549 cells colored by cells treated with varying doses of epothilone 
A (F), epothilone B (G), or colored by proliferation index (H). Insets display magnified views of 
distinct foci induced upon treatment. The treatments with the highest number of cells in each 
bounding box are indicated in panel H with the number of cells in parentheses. 	
	



	

Supplementary Figure 8. Number of dose-dependent differentially expressed genes 
detected per compound category. Significant dose-dependent differentially expressed genes 
(FDR < 0.05) are grouped by cell line and colored by targeted pathway. 
  



	

	

Supplementary Figure 9. Correlation of “pseudobulk” sci-Plex with bulk-RNA-seq. A) 
Log10 transcripts per million (TPM) for protein-coding genes measured by bulk RNA-seq (x-
axes) vs. size factor-normalized, aggregated single cell profiles for vehicle treated cells from sci-
Plex (y-axis). Results are shown for both A549 and K562 cells. Black line indicates the line y = 
x, while the blue line shows the linear fit with Pearson correlation shown. B) Scatter plots, for 
selected compounds, comparing statistically significant estimates derived from linear models fit 
to single cell data (x-axes) vs. estimates derived from bulk RNA-seq using DESeq2 (y-axes). 
Black line indicates y = x. Blue line is the fit with Pearson correlation shown. 	



	
	
Supplementary Figure 10. Moderated Z scores from the L1000 assay correlate with dose-
dependent betas from sci-Plex. A) For a selected compound-cell line combination (trichostatin 
A in MCF7 cells), we plot moderated Z scores from the L1000 assay with treatment for 24 hrs at 
each of eight doses (y-axes) (11) vs. dose-dependent betas from sci-Plex data (x-axes). All genes 
that are part of the L1000 assay and significant for dose-dependent effects with sci-Plex (p-value 
< 0.01) are shown. Line is the fit with Spearman correlation shown. B) Boxplot of Spearman 
correlations between significant sci-Plex computed dose-dependent betas and L1000 moderated 
Z-score values from LINCS L1000 data for measured genes at the highest dose in MCF7 cells. 
Compounds are presented as grouped by the pathway they target. Red point corresponds to 
fluvestrant. C) Similar to panel A, but for fluvestrant in MCF7 cells and at the highest dose (10 
µM). D) Similar to panel B, but for A549 cells. Red point corresponds to triamcinalone 
acetonide. E) Similar to panel A, but for triamcinalone acetonide in A549 cells and at the highest 
dose (10 µM). 	

	
	



 	



Supplementary Figure 11. Single cell measurements reveal variation in proliferation status 
in vehicle treated cell and across each dose of each drug. A-C) UMAP projection of A549 
(A), K562 (B) and MCF7 (C) colored by proliferation index. High proliferation index indicates 
an increase in the aggregate expression of transcripts that are markers for G1/S phase or G2/M 
phase (43). (D-F) Density plot of cell cycle distribution for compound-treated cells (blue fill) or 
vehicle-treated cells (red line). Grey line indicates cutoff used to distinguish proliferating cells 
(greater than cutoff) vs. non-proliferating cells (less than cutoff). G-I) Relationship between the 
percentage of cells designated as low proliferation at each dose of each drug (x-axis) versus the 
median estimated viability of that combination (y-axis). Each black point corresponds to cells 
treated with the same dose of a given drug. Red points correspond to vehicle treatment. J) 
Volcano plot depicting the log2 fold change for significant (q value < 0.01) differentially 
expressed genes between high and low fractions of vehicle treated cells. 



  
	
Supplementary Figure 12. Single cell measurements enable estimation of proliferation 
status and viability across drug-dose combinations. Heatmap depicting estimates of relative 
proliferation rate, the percentage of cells exhibiting low proliferation index, and the estimated 
viability for each compound (row) at each dose (column) pair.	



	

	
Supplementary Figure 13. sci-Plex enables the dissection of proliferating and non-
proliferating cell populations. A) Schematic depicting how changes in cellular state (top) and 
changes in the relative frequency of subpopulations (bottom) look identical upon subjecting the 
sample to aggregate measures such as bulk RNA-seq. Adapted from ref (14). B,C) Pearson 
correlations between dose-dependent effect sizes estimated from high vs. low proliferation index 
cells for each cell line (panel B) and drug class (panel C). D) Per-gene effect sizes estimated 



from high ( ) vs. low ( ) proliferation index cells for 4 selected compounds. Effect sizes are 
expressed as log2 transformed fold changes over intercept. Four classes of genes are shown: those 
significant in only high proliferation index cells (green); only low proliferation index cells 
(purple); both high and low cells, and with concordant effect estimates (red); both high and low 
cells, but with discordant effect estimates (blue). A drug had concordant dose-dependent effects 
on gene in high cells ( ) and low cells ( ) when | | was less than 10 percent of 

.  Black line indicates y = x.  
  



	

	
Supplementary Figure 14. sci-Plex screen identifies viability and expression signatures that 
are reproducible across validation experiments and orthogonal datasets. A) Cell count 
viability estimates for K562 (red), A549 (blue) and MCF7 (green) cells exposed to vehicle or 
increasing doses of the Src/Abl inhibitor bosutinib (n = 6 culture replicates, Wilcoxon rank sum 
test). For each cell line, cell count values were normalized to the mean cell counts value of 
vehicle control treated cells. Error bars denote standard error of the mean, n = 8. B) EC50 values 
for cell lines of hematopoietic and lymphoid, lung and breast tissue origin, for which viability 
estimates are available from the Cancer Cell Line Encyclopedia (CCLE), exposed to the Abl 
inhibitors AZD0530 (left panel) or nilotinib (right panel). C-E) Top connectivity scores (a 
measure that summarizes similarities between transcriptional signatures induced by different 
drugs (11, 12)) for MEK and HSP inhibitors from the CMAP database across all cell lines 
(summary, panel C) or for A549 (panel D) and MCF7 (panel E) cells individually. A 
connectivity score cutoff of +/- 90 was applied as in (11).	
  



	
Supplementary Figure 15. Correlation of compound-driven molecular signatures for A549 
cells identified in sci-Plex screen. Heatmap depicts the Pearson correlation of beta coefficients 
across dose-dependent differentially expressed genes for every pairwise combination of 
compounds screened. To aid in visualization Pearson correlations were capped at 0.6. 



Supplementary Figure 16. Correlation of compound-driven molecular signatures for K562 
cells identified in sci-Plex screen. Heatmap depicts the Pearson correlation of beta coefficients 
across dose-dependent differentially expressed genes for every pairwise combination of 
compounds screened. To aid in visualization Pearson correlations were capped at 0.6. 



Supplementary Figure 17. Correlation of compound-driven molecular signatures for 
MCF7 cells identified in sci-Plex screen. Heatmap depicts the Pearson correlation of beta 
coefficients across dose-dependent differentially expressed genes for every pairwise combination 
of compounds screened. To aid in visualization Pearson correlations were capped at 0.6.	
  



	

	
Supplementary Figure 18. Clustergrams of the correlation of compound-driven molecular 
signatures. Clustergrams depicting the Pearson correlation of beta-coefficients across dose-
dependent differentially expressed genes for every pairwise combination of compounds screened 
for A549 (A), K562 (B) and MCF7 (C) cells. Compounds names are colored by the pathway 
targeted.	



	
	
Supplementary Figure 19. UMAP embedding of drugs based on their dose-dependent 
effects on each gene’s expression. Each drug was provided to UMAP as a vector of the effect 
estimates ( , see Methods)  for all genes. Point shape corresponds to cell type and color 
corresponds to compound class. 	



	



Supplementary Figure 20. Pairwise distances between PCA embeddings of drugs based on 
their dose-dependent effects. A) Heatmap of pairwise distances between two cell types 
(columns) for a given drug (rows) in PCA reduced dimensional space. Hierarchically clustered to 
visualize cell type-specific responses to each drug. B) Insets of highlighted portions of the 
heatmap with pathway annotation shown to the left. Specific compounds highlighted with a red 
arrow are shown to the right (C-E) as UMAP embeddings. F) Trametinib treated cell lines are 
highlighted to illustrate colocalization of A549 and K562. Colored points correspond to labeled 
compound and all other drugs are shown in gray. Shape encodes the cell line from which each 
effect profile was captured (squares: MCF7; triangles: K562; circle: A549). 
  



	
Supplementary Figure 21. HDAC inhibitor-treated cell types align and enable joint 
pseudodose trajectory reconstruction. A) UMAP embedding highlighting the reconstructed 
pseudodose trajectory over the mutual nearest neighbor-aligned HDAC inhibitor and vehicle 
treated cells. Root nodes (red points) were chosen as nodes in the principal graph that had over 
50% of their nearest neighbors annotated as vehicle treated cells. B) Distribution of each cell line 
within the embedding. C) Barplot displaying the fraction of each pseudodose bin occupied by 
cells treated at each dose. D) Barplot displaying the fraction of each pseudodose bin occupied by 
cells treated with each compound. E) Proportion within each pseudodose bin corresponding to 
each cell line. 	
	



Supplementary Figure 22. Ridge plots display the distribution of cells along pseudodose for 
each HDAC inhibitor and dose combination for compounds that localized to the HDAC 
trajectory. 	



	

Supplementary Figure 23. Contact inhibition of cell proliferation 72 hours post drug 
exposure. Representative brightfield images of A549 cells exposed to vehicle (A) or the 
specified dose of the SIRT1 activator SRT2104 (B) or the HDAC inhibitor Abexinostat (C). 
Viability estimates as determined by recovered cell counts for each drug/dose combination 
normalized to cell counts of vehicle control wells.	





Supplementary Figure 24. Aligning A549 cells at 24 and 72 hours after treatment reveals 
time-dependent responses to diverse small molecules. (A-C) UMAP embedding of A549 cells 
at 24 and 72 hours post treatment in the absence of a correction for differences in viability and 
proliferation (A), after linear transformation of the data to account for changes in proliferation 
index and viability (B) and after mutual nearest neighbor based alignment of data after linear 
transformation (C). Cells are colored by the time point at which they were collected. (D-F) 
UMAP embeddings as in panels A-C with cells colored by the aggregated normalized expression 
score of G1/S marker genes. (G-I) UMAP embeddings as in panels A-C with cells colored by the 
aggregated normalized expression score of G2/M marker genes. (J-L) UMAP embeddings as in 
panels A-C with cells colored by proliferation index. (M-O) UMAP embeddings as in panels A-
C only visualizing cells treated with vehicle control. (P) UMAP embeddings from panel C with 
cells colored as to the pathway targeted by the treatment to which they were exposed. (Q) 
Proportion of cells broken up by pathway targeted. Note that only a subset of our 188 
compounds across a limited number of pathways were tested at 72 hours. (R) Proportion of cells 
broken up by the activity targeted by treatment with epigenetic regulation compounds. (S) 
Proportion of cells broken up by HDAC compound. 
  



	

	

Supplementary Figure 25. Bromodomain inhibition, sirtuin activation, and histone 
deacetylase inhibition induce characteristic transcriptomic responses. (A-D) UMAP 
embedding of MNN aligned A549 cells 24 and 72 hours after treatment with the pan-HDAC 
inhibitors abexinostat (A) or belinostat (B), the bromodomain inhibitor JQ1 (C), and the SIRT1 
activator SRT2104 (D). Cells are colored by the dose to which each cell was exposed. 	
	



	
	



Supplementary Figure 26. The heterogeneous response to the majority of HDAC inhibitors 
does not appear to be driven by cellular asynchrony. A) Aligned UMAP embeddings of cells 
exposed to vehicle HDAC inhibitors for 24 or 72 hours. Cells are colored by their progression 
along pseudodose. B) Aligned UMAP embeddings of cells exposed to vehicle (grey cells) or the 
labeled HDAC inhibitor for 24 (red cells) or 72 (blue cells) hours. C) Ridge plots displaying the 
density of HDAC inhibitor-exposed A549 cells along an aligned pseudodose trajectory. Results 
are displayed for the 8 HDAC inhibitors that were assayed at both 24 and 72 hours. Gray and 
color filled lines denote cells exposed with inhibitors for 24 or 72 hours, respectively. 
  



 

	
Supplementary Figure 27. Transcriptional trajectory of HDAC inhibitor-treated cells 
corresponds to in vitro IC50 measurements. A) Pseudodose response curves were fit for each 
compound and each cell line using the drc R package. The mean position of each dose along the 
pseudodose trajectory was used as the response. Two illustrative examples for belinostat (top) 
and trichostatin A (TSA) (below) are shown. Dotted vertical lines illustrate the transcriptional 
EC50 (TC50) for each compound in each cell line. Shaded gray area denotes the 95% confidence 
intervals for each TC50 estimate. B) Plot displaying aggregate in vitro measured mean of 
log10(IC50 [M]) versus log(TC50) colored by solubility supplied by Selleckchem Chemicals. 
Points displayed as (*) were not used for fits. C) log10(IC50 [M]) versus log(TC50) for each 
HDAC isoform. Each point is colored by the HDAC inhibitor used. 	

	
 
 



 

Supplementary Figure 28. Linear models identify pseudodose-dependent modules of 
proliferation and metabolism. A) Barplot of the total number of significant dose-dependent and 
pseudodose-dependent DEGs (FDR < 0.05). B) Upset plot displaying the intersections of 
significant pseudodose-dependent DEGs between the three cell types. C) Pseudodose heatmap 
depicting 4,308 genes that varied significantly as a function of pseudodose. Each row 
corresponds to the expected expression for a gene in the three cell lines as fit by the model 
described in the 'Differential expression analysis' section of the Methods. Genes (rows) were 
scaled and standardized within each cell line before joining the three matrices and performing 
hierarchical clustering. Clusters from hierarchical clustering were then used as an input into 
GSAhyper using the Hallmarks geneset collection. Select genes and genesets characterizing each 
cluster are shown (right).  
	
	



	
Supplementary Figure 29. HDAC inhibitor treatment induces cell cycle arrest in all three 
cell lines. A) Percentage of cells expressing RNA for AURKA and CDKN1A across pseudodose 
bins. Black bars denote the bootstrapped 95% confidence interval. B) Boxplots depicting the 
percentage of cells in the low proliferation fraction in at a given drug dose across pseudodose 
bins. C) DNA content analysis of the three cell lines upon treatment with DMSO (top) or 10µM 
abexinostat (bottom). D) Quantification of flow cytometry data depicting the number of cells in 
each DNA content category.  



 
	

	
Supplementary Figure 30. HDAC inhibitor exposure leads to sequestration of acetate in the 
form of acetylated lysines. A) Quantification of flow cytometry measurements of total cellular 
acetylated lysines in A549 (left panel), MCF7 (middle panel) and K562 (right panel) cells 
exposed to 10 µM pracinostat, 10 µM p abexinostat or vehicle control. Error bars denote 
standard deviation of the mean (Wilcoxon rank sum test, n = 3 culture replicates, * p < 0.05, *** 
p < 0.005). B) Representative flow cytometry histograms for the experiment quantified in panel 
A. Blue shaded regions and red lines correspond to DMSO vehicle control and 10 µM 
abexinostat, respectively. 
  



	



Supplementary Figure 31. Supplementation with acetyl-CoA precursors decrease, while 
inhibition of enzymes that replenish acetyl-coA pools exacerbate, progression along the 
HDAC inhibitor pseudodose trajectory. A-D) UMAP embeddings of A549 (panels A and B) 
and MCF7 (panels C and D) single cell transcriptomes after exposure to the HDAC inhibitors 
pracinostat or abexinostat, in the presence or absence of acetyl-CoA precursors or inhibitors to 
enzymes that replenish acetyl-CoA pools. UMAP were constructed from cells from all 
conditions in the experiment. Cells are colored by pseudodose bin (panels A and C) or dose 
(panels B and D). E) Venn diagram of the overlap of differentially expressed genes across 
trajectories between or original HDACi trajectory vs. A549 or MCF7 HDACi trajectories from 
this new experiment. F,H) Boxplots of pseudodose estimates for select conditions of cells 
exposed to 1 or 10 µM pracinostat with or without co-treatment with acetyl-coA precursors for 
A549 (panel H) or MCF7 (panel L) cells. Values are normalized to vehicle treated cells. 
Wilcoxon rank sum test. G,I) Boxplots of pseudodose estimates for select conditions of cells 
exposed to vehicle and pracinostat with or without co-treatment with acetyl-coA precursors for 
A549 (panel I) or MCF7 (panel M) cells. Values were normalized to vehicle treated cells. 
Wilcoxon rank sum test. J,L) Heatmaps depicting the fraction of cells per pseudodose bin for 
cells exposed to various acetyl-coA precursors in pracinostat-exposed A549 (F) or MCF7 (J) 
cell. K,M) Heatmaps depicting the fraction of cells per pseudodose bin for cells exposed to 
various inhibitors targeting enzymes that replenish acetyl-coA pools in pracinostat-exposed 
A549 (panel G) and MCF7 (panel K) cells.	



	

Supplementary Figure 32. Correlation of effect sizes between differentially expressed genes 
post-HDAC inhibition from original screen vs. new experiment. A-B) Correlation of effect 
size estimates (beta coefficients) for differentially expressed genes between vehicle control and 
10 µM abexinostat (panel A) or 10 µM pracinostat (panel B) for A549 cells. C-D) Correlation of 
effect size estimates (beta coefficients) for differentially expressed genes between vehicle control 
and 10 µM abexinostat (panel C) or 10 µM pracinostat (panel D) for MCF7 cells. X-axes 
correspond to large-scale sci-Plex experiment. Y-axes correspond to targeted follow-up sci-Plex 
experiment. 	
	



	

Supplementary Table 1. Summary of single cell sequencing experiments performed and 
thresholds used in analysis of the data. Threshold values chosen manually based on 
distribution of molecules observed. Cells that failed to meet thresholds were not included in 
analyses. 	



Supplementary Tables Available Online: 
	
Supplementary Table 2. Differential expression analysis of A549 cells treated with Nutlin-
3a, SAHA, Dexamethasone, and BMS345541. Differential gene expression test results, model 
components, and hypothesis testing statistics for each gene tested for each compound. 
	
Supplementary Table 3. Metadata of molecular compounds profiled. Compound specific 
metadata include molecular weight, SMILES string and CAS number. Experiment specific 
metadata include pathway annotations, dose, and identifying hash combination. 
	
Supplementary Table 4. DEGs detected per compound per cell line. The number of 
significant dose-dependent differentially expressed genes (FDR < 0.05) are listed by cell line and 
compound profiled.	
	
Supplementary Table 5. Differential expression analysis of A549, K562 and MCF7 cells in 
response to treatment with one of 188 compounds for 24 hours or 72 hours. Differential 
gene expression test results, model components, and hypothesis testing statistics for each gene 
for every compound. 
 
Supplementary Table 6. Dose-response model parameters for transcriptionally derived 
HDAC inhibitor potencies.  Mean pseudodose values were fit as a function of compound 
concentration using the drc package. Column names identify parameters. 
	
Supplementary Table 7. In vitro IC50 measurements for Histone deacetylase (HDAC) 
inhibitors in the trajectory analysis. IC50 values collected from published manuscripts (PMID 
listed in table). NAs represent untested isoforms or missing data.  
	
Supplementary Table 8. DEGs detected over consensus HDAC inhibition trajectory. 
Differential gene expression test results, model components, and hypothesis testing statistics for 
each gene for every compound.	
 

 
 



References and Notes 
1. J. R. Broach, J. Thorner, High-throughput screening for drug discovery. Nature 384, 14–16 

(1996). Medline 
2. D. A. Pereira, J. A. Williams, Origin and evolution of high throughput screening. Br. J. 

Pharmacol. 152, 53–61 (2007). doi:10.1038/sj.bjp.0707373 Medline 
3. D. Shum, C. Radu, E. Kim, M. Cajuste, Y. Shao, V. E. Seshan, H. Djaballah, A high density 

assay format for the detection of novel cytotoxic agents in large chemical libraries. J. 
Enzyme Inhib. Med. Chem. 23, 931–945 (2008). doi:10.1080/14756360701810082 
Medline 

4. C. Yu, A. M. Mannan, G. M. Yvone, K. N. Ross, Y.-L. Zhang, M. A. Marton, B. R. Taylor, A. 
Crenshaw, J. Z. Gould, P. Tamayo, B. A. Weir, A. Tsherniak, B. Wong, L. A. Garraway, 
A. F. Shamji, M. A. Palmer, M. A. Foley, W. Winckler, S. L. Schreiber, A. L. Kung, T. 
R. Golub, High-throughput identification of genotype-specific cancer vulnerabilities in 
mixtures of barcoded tumor cell lines. Nat. Biotechnol. 34, 419–423 (2016). 
doi:10.1038/nbt.3460 Medline 

5. Z. E. Perlman, M. D. Slack, Y. Feng, T. J. Mitchison, L. F. Wu, S. J. Altschuler, 
Multidimensional drug profiling by automated microscopy. Science 306, 1194–1198 
(2004). doi:10.1126/science.1100709 Medline 

6. Y. Futamura, M. Kawatani, S. Kazami, K. Tanaka, M. Muroi, T. Shimizu, K. Tomita, N. 
Watanabe, H. Osada, Morphobase, an encyclopedic cell morphology database, and its use 
for drug target identification. Chem. Biol. 19, 1620–1630 (2012). 
doi:10.1016/j.chembiol.2012.10.014 Medline 

7. J. Kang, C.-H. Hsu, Q. Wu, S. Liu, A. D. Coster, B. A. Posner, S. J. Altschuler, L. F. Wu, 
Improving drug discovery with high-content phenotypic screens by systematic selection 
of reporter cell lines. Nat. Biotechnol. 34, 70–77 (2016). doi:10.1038/nbt.3419 Medline 

8. K. L. Huss, P. E. Blonigen, R. M. Campbell, Development of a Transcreener kinase assay for 
protein kinase A and demonstration of concordance of data with a filter-binding assay 
format. J. Biomol. Screen. 12, 578–584 (2007). doi:10.1177/1087057107300221 Medline 

9. C. Ye, D. J. Ho, M. Neri, C. Yang, T. Kulkarni, R. Randhawa, M. Henault, N. Mostacci, P. 
Farmer, S. Renner, R. Ihry, L. Mansur, C. G. Keller, G. McAllister, M. Hild, J. Jenkins, 
A. Kaykas, DRUG-seq for miniaturized high-throughput transcriptome profiling in drug 
discovery. Nat. Commun. 9, 4307 (2018). doi:10.1038/s41467-018-06500-x Medline 

10. E. C. Bush, F. Ray, M. J. Alvarez, R. Realubit, H. Li, C. Karan, A. Califano, P. A. Sims, 
PLATE-Seq for genome-wide regulatory network analysis of high-throughput screens. 
Nat. Commun. 8, 105 (2017). doi:10.1038/s41467-017-00136-z Medline 

11. A. Subramanian, R. Narayan, S. M. Corsello, D. D. Peck, T. E. Natoli, X. Lu, J. Gould, J. F. 
Davis, A. A. Tubelli, J. K. Asiedu, D. L. Lahr, J. E. Hirschman, Z. Liu, M. Donahue, B. 
Julian, M. Khan, D. Wadden, I. C. Smith, D. Lam, A. Liberzon, C. Toder, M. Bagul, M. 
Orzechowski, O. M. Enache, F. Piccioni, S. A. Johnson, N. J. Lyons, A. H. Berger, A. F. 
Shamji, A. N. Brooks, A. Vrcic, C. Flynn, J. Rosains, D. Y. Takeda, R. Hu, D. Davison, 
J. Lamb, K. Ardlie, L. Hogstrom, P. Greenside, N. S. Gray, P. A. Clemons, S. Silver, X. 

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=8895594&dopt=Abstract
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=8895594&dopt=Abstract
http://dx.doi.org/10.1038/sj.bjp.0707373
http://dx.doi.org/10.1038/sj.bjp.0707373
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=17603542&dopt=Abstract
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=17603542&dopt=Abstract
http://dx.doi.org/10.1080/14756360701810082
http://dx.doi.org/10.1080/14756360701810082
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=18608772&dopt=Abstract
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=18608772&dopt=Abstract
http://dx.doi.org/10.1038/nbt.3460
http://dx.doi.org/10.1038/nbt.3460
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=26928769&dopt=Abstract
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=26928769&dopt=Abstract
http://dx.doi.org/10.1126/science.1100709
http://dx.doi.org/10.1126/science.1100709
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=15539606&dopt=Abstract
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=15539606&dopt=Abstract
http://dx.doi.org/10.1016/j.chembiol.2012.10.014
http://dx.doi.org/10.1016/j.chembiol.2012.10.014
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=23261605&dopt=Abstract
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=23261605&dopt=Abstract
http://dx.doi.org/10.1038/nbt.3419
http://dx.doi.org/10.1038/nbt.3419
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=26655497&dopt=Abstract
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=26655497&dopt=Abstract
http://dx.doi.org/10.1177/1087057107300221
http://dx.doi.org/10.1177/1087057107300221
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=17409274&dopt=Abstract
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=17409274&dopt=Abstract
http://dx.doi.org/10.1038/s41467-018-06500-x
http://dx.doi.org/10.1038/s41467-018-06500-x
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=30333485&dopt=Abstract
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=30333485&dopt=Abstract
http://dx.doi.org/10.1038/s41467-017-00136-z
http://dx.doi.org/10.1038/s41467-017-00136-z
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=28740083&dopt=Abstract
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=28740083&dopt=Abstract


Wu, W.-N. Zhao, W. Read-Button, X. Wu, S. J. Haggarty, L. V. Ronco, J. S. Boehm, S. 
L. Schreiber, J. G. Doench, J. A. Bittker, D. E. Root, B. Wong, T. R. Golub, A next 
generation connectivity map: L1000 platform and the first 1,000,000 profiles. Cell 171, 
1437–1452.e17 (2017). doi:10.1016/j.cell.2017.10.049 Medline 

12. J. Lamb, E. D. Crawford, D. Peck, J. W. Modell, I. C. Blat, M. J. Wrobel, J. Lerner, J.-P. 
Brunet, A. Subramanian, K. N. Ross, M. Reich, H. Hieronymus, G. Wei, S. A. 
Armstrong, S. J. Haggarty, P. A. Clemons, R. Wei, S. A. Carr, E. S. Lander, T. R. Golub, 
The Connectivity Map: Using gene-expression signatures to connect small molecules, 
genes, and disease. Science 313, 1929–1935 (2006). doi:10.1126/science.1132939 
Medline 

13. M. B. Elowitz, A. J. Levine, E. D. Siggia, P. S. Swain, Stochastic gene expression in a single 
cell. Science 297, 1183–1186 (2002). doi:10.1126/science.1070919 Medline 

14. C. Trapnell, Defining cell types and states with single-cell genomics. Genome Res. 25, 1491–
1498 (2015). doi:10.1101/gr.190595.115 Medline 

15. S. M. Shaffer, M. C. Dunagin, S. R. Torborg, E. A. Torre, B. Emert, C. Krepler, M. Beqiri, 
K. Sproesser, P. A. Brafford, M. Xiao, E. Eggan, I. N. Anastopoulos, C. A. Vargas-
Garcia, A. Singh, K. L. Nathanson, M. Herlyn, A. Raj, Rare cell variability and drug-
induced reprogramming as a mode of cancer drug resistance. Nature 546, 431–435 
(2017). doi:10.1038/nature22794 Medline 

16. S. L. Spencer, S. Gaudet, J. G. Albeck, J. M. Burke, P. K. Sorger, Non-genetic origins of 
cell-to-cell variability in TRAIL-induced apoptosis. Nature 459, 428–432 (2009). 
doi:10.1038/nature08012 Medline 

17. M. Stoeckius, S. Zheng, B. Houck-Loomis, S. Hao, B. Z. Yeung, W. M. Mauck 3rd, P. 
Smibert, R. Satija, Cell Hashing with barcoded antibodies enables multiplexing and 
doublet detection for single cell genomics. Genome Biol. 19, 224 (2018). 
doi:10.1186/s13059-018-1603-1 Medline 

18. J. Gehring, J. H. Park, S. Chen, M. Thomson, L. Pachter, Highly multiplexed single-cell 
RNA-seq for defining cell population and transcriptional spaces. bioRxiv 315333 
[Preprint] 5 May 2018. https://doi.org/10.1101/315333. 

19. C. S. McGinnis, D. M. Patterson, J. Winkler, D. N. Conrad, M. Y. Hein, V. Srivastava, J. L. 
Hu, L. M. Murrow, J. S. Weissman, Z. Werb, E. D. Chow, Z. J. Gartner, MULTI-seq: 
Sample multiplexing for single-cell RNA sequencing using lipid-tagged indices. Nat. 
Methods 16, 619–626 (2019). doi:10.1038/s41592-019-0433-8 Medline 

20. D. Shin, W. Lee, J. H. Lee, D. Bang, Multiplexed single-cell RNA-seq via transient 
barcoding for simultaneous expression profiling of various drug perturbations. Sci. Adv. 
5, eaav2249 (2019). doi:10.1126/sciadv.aav2249 Medline 

21. J. Cao, M. Spielmann, X. Qiu, X. Huang, D. M. Ibrahim, A. J. Hill, F. Zhang, S. Mundlos, L. 
Christiansen, F. J. Steemers, C. Trapnell, J. Shendure, The single-cell transcriptional 
landscape of mammalian organogenesis. Nature 566, 496–502 (2019). 
doi:10.1038/s41586-019-0969-x Medline 

22. M. A. McBrian, I. S. Behbahan, R. Ferrari, T. Su, T.-W. Huang, K. Li, C. S. Hong, H. R. 
Christofk, M. Vogelauer, D. B. Seligson, S. K. Kurdistani, Histone acetylation regulates 

http://dx.doi.org/10.1016/j.cell.2017.10.049
http://dx.doi.org/10.1016/j.cell.2017.10.049
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=29195078&dopt=Abstract
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=29195078&dopt=Abstract
http://dx.doi.org/10.1126/science.1132939
http://dx.doi.org/10.1126/science.1132939
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=17008526&dopt=Abstract
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=17008526&dopt=Abstract
http://dx.doi.org/10.1126/science.1070919
http://dx.doi.org/10.1126/science.1070919
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=12183631&dopt=Abstract
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=12183631&dopt=Abstract
http://dx.doi.org/10.1101/gr.190595.115
http://dx.doi.org/10.1101/gr.190595.115
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=26430159&dopt=Abstract
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=26430159&dopt=Abstract
http://dx.doi.org/10.1038/nature22794
http://dx.doi.org/10.1038/nature22794
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=28607484&dopt=Abstract
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=28607484&dopt=Abstract
http://dx.doi.org/10.1038/nature08012
http://dx.doi.org/10.1038/nature08012
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=19363473&dopt=Abstract
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=19363473&dopt=Abstract
http://dx.doi.org/10.1186/s13059-018-1603-1
http://dx.doi.org/10.1186/s13059-018-1603-1
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=30567574&dopt=Abstract
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=30567574&dopt=Abstract
https://doi.org/10.1101/315333
https://doi.org/10.1101/315333
http://dx.doi.org/10.1038/s41592-019-0433-8
http://dx.doi.org/10.1038/s41592-019-0433-8
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=31209384&dopt=Abstract
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=31209384&dopt=Abstract
http://dx.doi.org/10.1126/sciadv.aav2249
http://dx.doi.org/10.1126/sciadv.aav2249
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=31106268&dopt=Abstract
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=31106268&dopt=Abstract
http://dx.doi.org/10.1038/s41586-019-0969-x
http://dx.doi.org/10.1038/s41586-019-0969-x
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=30787437&dopt=Abstract
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=30787437&dopt=Abstract


intracellular pH. Mol. Cell 49, 310–321 (2013). doi:10.1016/j.molcel.2012.10.025 
Medline 

23. S. A. Comerford, Z. Huang, X. Du, Y. Wang, L. Cai, A. K. Witkiewicz, H. Walters, M. N. 
Tantawy, A. Fu, H. C. Manning, J. D. Horton, R. E. Hammer, S. L. McKnight, B. P. Tu, 
Acetate dependence of tumors. Cell 159, 1591–1602 (2014). 
doi:10.1016/j.cell.2014.11.020 Medline 

24. D. A. Cusanovich, R. Daza, A. Adey, H. A. Pliner, L. Christiansen, K. L. Gunderson, F. J. 
Steemers, C. Trapnell, J. Shendure, Multiplex single cell profiling of chromatin 
accessibility by combinatorial cellular indexing. Science 348, 910–914 (2015). 
doi:10.1126/science.aab1601 Medline 

25. J. Cao, J. S. Packer, V. Ramani, D. A. Cusanovich, C. Huynh, R. Daza, X. Qiu, C. Lee, S. N. 
Furlan, F. J. Steemers, A. Adey, R. H. Waterston, C. Trapnell, J. Shendure, 
Comprehensive single-cell transcriptional profiling of a multicellular organism. Science 
357, 661–667 (2017). doi:10.1126/science.aam8940 Medline 

26. L. McInnes, J. Healy, UMAP: Uniform Manifold Approximation and Projection for 
Dimension Reduction. arXiv:1802.03426 [stat.ML] (9 February 2018). 

27. M. Jost, Y. Chen, L. A. Gilbert, M. A. Horlbeck, L. Krenning, G. Menchon, A. Rai, M. Y. 
Cho, J. J. Stern, A. E. Prota, M. Kampmann, A. Akhmanova, M. O. Steinmetz, M. E. 
Tanenbaum, J. S. Weissman, Combined CRISPRi/a-based chemical genetic screens 
reveal that rigosertib is a microtubule-destabilizing agent. Mol. Cell 68, 210–223.e6 
(2017). doi:10.1016/j.molcel.2017.09.012 Medline 

28. G. Grosveld, T. Verwoerd, T. van Agthoven, A. de Klein, K. L. Ramachandran, N. 
Heisterkamp, K. Stam, J. Groffen, The chronic myelocytic cell line K562 contains a 
breakpoint in bcr and produces a chimeric bcr/c-abl transcript. Mol. Cell. Biol. 6, 607–
616 (1986). doi:10.1128/MCB.6.2.607 Medline 

29. E. K. Greuber, P. Smith-Pearson, J. Wang, A. M. Pendergast, Role of ABL family kinases in 
cancer: From leukaemia to solid tumours. Nat. Rev. Cancer 13, 559–571 (2013). 
doi:10.1038/nrc3563 Medline 

30. J. Barretina, G. Caponigro, N. Stransky, K. Venkatesan, A. A. Margolin, S. Kim, C. J. 
Wilson, J. Lehár, G. V. Kryukov, D. Sonkin, A. Reddy, M. Liu, L. Murray, M. F. Berger, 
J. E. Monahan, P. Morais, J. Meltzer, A. Korejwa, J. Jané-Valbuena, F. A. Mapa, J. 
Thibault, E. Bric-Furlong, P. Raman, A. Shipway, I. H. Engels, J. Cheng, G. K. Yu, J. 
Yu, P. Aspesi Jr., M. de Silva, K. Jagtap, M. D. Jones, L. Wang, C. Hatton, E. 
Palescandolo, S. Gupta, S. Mahan, C. Sougnez, R. C. Onofrio, T. Liefeld, L. MacConaill, 
W. Winckler, M. Reich, N. Li, J. P. Mesirov, S. B. Gabriel, G. Getz, K. Ardlie, V. Chan, 
V. E. Myer, B. L. Weber, J. Porter, M. Warmuth, P. Finan, J. L. Harris, M. Meyerson, T. 
R. Golub, M. P. Morrissey, W. R. Sellers, R. Schlegel, L. A. Garraway, The Cancer Cell 
Line Encyclopedia enables predictive modelling of anticancer drug sensitivity. Nature 
483, 603–607 (2012). doi:10.1038/nature11003 Medline 

31. C. Dai, S. Santagata, Z. Tang, J. Shi, J. Cao, H. Kwon, R. T. Bronson, L. Whitesell, S. 
Lindquist, Loss of tumor suppressor NF1 activates HSF1 to promote carcinogenesis. J. 
Clin. Invest. 122, 3742–3754 (2012). doi:10.1172/JCI62727 Medline 

http://dx.doi.org/10.1016/j.molcel.2012.10.025
http://dx.doi.org/10.1016/j.molcel.2012.10.025
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=23201122&dopt=Abstract
http://dx.doi.org/10.1016/j.cell.2014.11.020
http://dx.doi.org/10.1016/j.cell.2014.11.020
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=25525877&dopt=Abstract
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=25525877&dopt=Abstract
http://dx.doi.org/10.1126/science.aab1601
http://dx.doi.org/10.1126/science.aab1601
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=25953818&dopt=Abstract
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=25953818&dopt=Abstract
http://dx.doi.org/10.1126/science.aam8940
http://dx.doi.org/10.1126/science.aam8940
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=28818938&dopt=Abstract
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=28818938&dopt=Abstract
https://arxiv.org/abs/1802.03426
https://arxiv.org/abs/1802.03426
http://dx.doi.org/10.1016/j.molcel.2017.09.012
http://dx.doi.org/10.1016/j.molcel.2017.09.012
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=28985505&dopt=Abstract
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=28985505&dopt=Abstract
http://dx.doi.org/10.1128/MCB.6.2.607
http://dx.doi.org/10.1128/MCB.6.2.607
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=3023859&dopt=Abstract
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=3023859&dopt=Abstract
http://dx.doi.org/10.1038/nrc3563
http://dx.doi.org/10.1038/nrc3563
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=23842646&dopt=Abstract
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=23842646&dopt=Abstract
http://dx.doi.org/10.1038/nature11003
http://dx.doi.org/10.1038/nature11003
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=22460905&dopt=Abstract
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=22460905&dopt=Abstract
http://dx.doi.org/10.1172/JCI62727
http://dx.doi.org/10.1172/JCI62727
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=22945628&dopt=Abstract
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=22945628&dopt=Abstract


32. L. Haghverdi, A. T. L. Lun, M. D. Morgan, J. C. Marioni, Batch effects in single-cell RNA-
sequencing data are corrected by matching mutual nearest neighbors. Nat. Biotechnol. 36, 
421–427 (2018). doi:10.1038/nbt.4091 Medline 

33. C. Trapnell, D. Cacchiarelli, J. Grimsby, P. Pokharel, S. Li, M. Morse, N. J. Lennon, K. J. 
Livak, T. S. Mikkelsen, J. L. Rinn, The dynamics and regulators of cell fate decisions are 
revealed by pseudotemporal ordering of single cells. Nat. Biotechnol. 32, 381–386 
(2014). doi:10.1038/nbt.2859 Medline 

34. W. Brazelle, J. M. Kreahling, J. Gemmer, Y. Ma, W. D. Cress, E. Haura, S. Altiok, Histone 
deacetylase inhibitors downregulate checkpoint kinase 1 expression to induce cell death 
in non-small cell lung cancer cells. PLOS ONE 5, e14335 (2010). 
doi:10.1371/journal.pone.0014335 Medline 

35. J.-S. Roe, F. Mercan, K. Rivera, D. J. Pappin, C. R. Vakoc, BET bromodomain inhibition 
suppresses the function of hematopoietic transcription factors in acute myeloid leukemia. 
Mol. Cell 58, 1028–1039 (2015). doi:10.1016/j.molcel.2015.04.011 Medline 

36. J. E. Brownell, J. Zhou, T. Ranalli, R. Kobayashi, D. G. Edmondson, S. Y. Roth, C. D. Allis, 
Tetrahymena histone acetyltransferase A: A homolog to yeast Gcn5p linking histone 
acetylation to gene activation. Cell 84, 843–851 (1996). doi:10.1016/S0092-
8674(00)81063-6 Medline 

37. J. Taunton, C. A. Hassig, S. L. Schreiber, A mammalian histone deacetylase related to the 
yeast transcriptional regulator Rpd3p. Science 272, 408–411 (1996). 
doi:10.1126/science.272.5260.408 Medline 

38. S. K. Kurdistani, Chromatin: A capacitor of acetate for integrated regulation of gene 
expression and cell physiology. Curr. Opin. Genet. Dev. 26, 53–58 (2014). 
doi:10.1016/j.gde.2014.06.002 Medline 

39. K. E. Wellen, G. Hatzivassiliou, U. M. Sachdeva, T. V. Bui, J. R. Cross, C. B. Thompson, 
ATP-citrate lyase links cellular metabolism to histone acetylation. Science 324, 1076–
1080 (2009). doi:10.1126/science.1164097 Medline 

40. A. R. Quinlan, I. M. Hall, BEDTools: A flexible suite of utilities for comparing genomic 
features. Bioinformatics 26, 841–842 (2010). doi:10.1093/bioinformatics/btq033 Medline 

41. C. Ritz, F. Baty, J. C. Streibig, D. Gerhard, Dose-response analysis using R. PLOS ONE 10, 
e0146021 (2015). doi:10.1371/journal.pone.0146021 Medline 

42. M. E. Ritchie, B. Phipson, D. Wu, Y. Hu, C. W. Law, W. Shi, G. K. Smyth, limma powers 
differential expression analyses for RNA-sequencing and microarray studies. Nucleic 
Acids Res. 43, e47 (2015). doi:10.1093/nar/gkv007 Medline 

43. I. Tirosh, B. Izar, S. M. Prakadan, M. H. Wadsworth 2nd, D. Treacy, J. J. Trombetta, A. 
Rotem, C. Rodman, C. Lian, G. Murphy, M. Fallahi-Sichani, K. Dutton-Regester, J.-R. 
Lin, O. Cohen, P. Shah, D. Lu, A. S. Genshaft, T. K. Hughes, C. G. K. Ziegler, S. W. 
Kazer, A. Gaillard, K. E. Kolb, A.-C. Villani, C. M. Johannessen, A. Y. Andreev, E. M. 
Van Allen, M. Bertagnolli, P. K. Sorger, R. J. Sullivan, K. T. Flaherty, D. T. Frederick, J. 
Jané-Valbuena, C. H. Yoon, O. Rozenblatt-Rosen, A. K. Shalek, A. Regev, L. A. 
Garraway, Dissecting the multicellular ecosystem of metastatic melanoma by single-cell 
RNA-seq. Science 352, 189–196 (2016). doi:10.1126/science.aad0501 Medline 

http://dx.doi.org/10.1038/nbt.4091
http://dx.doi.org/10.1038/nbt.4091
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=29608177&dopt=Abstract
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=29608177&dopt=Abstract
http://dx.doi.org/10.1038/nbt.2859
http://dx.doi.org/10.1038/nbt.2859
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=24658644&dopt=Abstract
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=24658644&dopt=Abstract
http://dx.doi.org/10.1371/journal.pone.0014335
http://dx.doi.org/10.1371/journal.pone.0014335
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=21179472&dopt=Abstract
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=21179472&dopt=Abstract
http://dx.doi.org/10.1016/j.molcel.2015.04.011
http://dx.doi.org/10.1016/j.molcel.2015.04.011
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=25982114&dopt=Abstract
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=25982114&dopt=Abstract
http://dx.doi.org/10.1016/S0092-8674(00)81063-6
http://dx.doi.org/10.1016/S0092-8674(00)81063-6
http://dx.doi.org/10.1016/S0092-8674(00)81063-6
http://dx.doi.org/10.1016/S0092-8674(00)81063-6
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=8601308&dopt=Abstract
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=8601308&dopt=Abstract
http://dx.doi.org/10.1126/science.272.5260.408
http://dx.doi.org/10.1126/science.272.5260.408
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=8602529&dopt=Abstract
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=8602529&dopt=Abstract
http://dx.doi.org/10.1016/j.gde.2014.06.002
http://dx.doi.org/10.1016/j.gde.2014.06.002
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=25016437&dopt=Abstract
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=25016437&dopt=Abstract
http://dx.doi.org/10.1126/science.1164097
http://dx.doi.org/10.1126/science.1164097
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=19461003&dopt=Abstract
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=19461003&dopt=Abstract
http://dx.doi.org/10.1093/bioinformatics/btq033
http://dx.doi.org/10.1093/bioinformatics/btq033
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=20110278&dopt=Abstract
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=20110278&dopt=Abstract
http://dx.doi.org/10.1371/journal.pone.0146021
http://dx.doi.org/10.1371/journal.pone.0146021
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=26717316&dopt=Abstract
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=26717316&dopt=Abstract
http://dx.doi.org/10.1093/nar/gkv007
http://dx.doi.org/10.1093/nar/gkv007
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=25605792&dopt=Abstract
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=25605792&dopt=Abstract
http://dx.doi.org/10.1126/science.aad0501
http://dx.doi.org/10.1126/science.aad0501
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=27124452&dopt=Abstract
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=27124452&dopt=Abstract


44. L. Väremo, J. Nielsen, I. Nookaew, Enriching the gene set analysis of genome-wide data by 
incorporating directionality of gene expression and combining statistical hypotheses and 
methods. Nucleic Acids Res. 41, 4378–4391 (2013). doi:10.1093/nar/gkt111 Medline 

45. A. Subramanian, P. Tamayo, V. K. Mootha, S. Mukherjee, B. L. Ebert, M. A. Gillette, A. 
Paulovich, S. L. Pomeroy, T. R. Golub, E. S. Lander, J. P. Mesirov, Gene set enrichment 
analysis: A knowledge-based approach for interpreting genome-wide expression profiles. 
Proc. Natl. Acad. Sci. U.S.A. 102, 15545–15550 (2005). doi:10.1073/pnas.0506580102 
Medline 

http://dx.doi.org/10.1093/nar/gkt111
http://dx.doi.org/10.1093/nar/gkt111
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=23444143&dopt=Abstract
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=23444143&dopt=Abstract
http://dx.doi.org/10.1073/pnas.0506580102
http://dx.doi.org/10.1073/pnas.0506580102
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=16199517&dopt=Abstract
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=16199517&dopt=Abstract

	aax6234-Srivatsan-SM-FRONT
	aax6234-Srivatsan-SM-BODY-CORR-REF
	aax6234-Srivatsan-SM-REFS
	References and Notes
	References and Notes


