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S1. Overview of Statistical Framework

In this paper, our goal is to estimate the true underlying seroprevalence of the population ≥ 5 years old
as measured each week, w in the of the Canton of Geneva, denoted p∗

w (w = 1, . . . ,W = 5).\
We start by estimating the probability that each person in the serosurvey is seropositive using a Bayesian

logistic regression model that accounts for household clustering, the sensitivity and specificity of the ELISA
assay, each individual’s age and sex, as well as the week when they were sampled:

xi ∼ Bernoulli(piθ
+ + (1− pi) ∗ (1− θ−))

logit(pi) = αh + Xiβ

αh ∼ Normal(0, σ2)
x+ ∼ Binomial(n+, θ+)
x− ∼ Binomial(n−, 1− θ−)

where xi is the result of the IgG ELISA (in primary analyses) for the ith person (i = 1, . . . , N = 2766) in
the serosurvey. The sensitivity, θ+, is determined using n+ RT-PCR positive controls from the lab validation
study, of which x+ tested positive. The specificity, θ− , is determined using n− pre-pandemic negative
controls, of which x− tested positive. The model estimates of the sensitivity and specificity are shown in
Table S1. The probability of observing a diagnostic positive is a function of the true positive rate and the
false negative rate with regards to the true underlying probability of seropositivity pi for that person. This
probability itself is a function of covariates X, which consists of sex, age categories, and week of study, and
their coefficients β, and a random effect for household, αh (h = 1, . . . ,H = 1339), with variance σ2. We used
naive priors on all parameters to allow for an exploration of the parameter space. The priors on the sensitivity
and specificity were flat from 0 to 1, equivalent to Uniform(0, 1) or Beta(1, 1). We used weak Normal(0, 1)
priors for the logistic regression coefficients β. The prior on the standard deviation of the household effect,
σ, was flat from 0 to infinity (we tested a positive half-Normal and it did not affect estimates).

We implemented this model in the Stan probabilistic programming language and used the rstan package
in R to run the model and analyse outputs. We ran 5,000 iterations (4 chains with 1,500 iterations each with
250 for warm-up) and assessed convergence visually and using the R-hat statistic.1,2

S1.1. Estimation of weekly seroprevalence
We estimated the weekly seroprevalence p∗

w by post-stratifying the posterior samples of our parameter
estimates to match the demographics of the Canton of Geneva at large. For every combination of age category
(a = 1, . . . , A = 5), sex (s = 0, 1), and week of sample, we estimated the probability of seropositivity, pa,s,w
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Table S1: The mean estimated sensitivity and specificity of the main model (EuroImmune) and for the primary and sensitivity
analyses based on validation data from 181 positive controls and 176 negative pre-pandemic controls. EuroImmune is the
EuroImmune IgG test with the manufacturers suggested cutoff. Geneva is using the EuroImmune IgG test with the cut-off
suggested by Meyer et al. rIFA represents the use of EuroImmune IgG and testing of all with an OD/CI ratio > 0.5 with a
recombinant immunofluorescence assay.

Test Unadj. True Positives Unadj. False Positives Sensitivity (95% CI) Specificity (95% CI)
EuroImmune 154 (85.1%) 0 85.6% (80.4-90.2) 99.8% (99.2-100.0)
Geneva 143 (79.0%) 0 79.8% (73.8-85.2) 99.8% (99.3-100.0)
rIFA 161 (89.0%) 0 89.0% (84.3-93.0) 99.8% (99.3-100.0)

for each posterior draw of β and σ. We can find estimate the weekly seroprevalence by taking a weighted
average of the pa,s,w, where weights are determined by the demographic distribution of the Canton of Geneva:

pa,s,w =
∫ 1

0
logit−1(Xa,s,wβ + σ ∗ Φ−1(t))dt

p∗
w =

A∑
a=1

1∑
s=0

popa,spa,s,w

pop

where Φ−1(t) is the quantile function of a standard normal distribution, popa,s is the population of each
demographic “cell” and pop is the total population of the Canton of Geneva. We estimate the average
probability of seropositivity for the population in each demographic cell by integrating across all values of a
logit-normal distribution with the standard deviation defined by the household random effect σ. Due to the
high degree of household clustering in this study, accounting for the household random effect is important,
as using the mean alone will lead to an underestimate of the probability of seropositivity (in addition to
falsely low variance). For example, in the reference group (age 20-49, female, week 2), using only the mean
results in an estimated seroprevalence of 1.4%, while adjusting that estimate for the household random effect
increases that estimate to 9.2%. Once we estimated the values of all cells, then we averaged over them for
each week, weighting by the proportion of the population of Geneva in each cell.

In the analysis consisting of only Bus Santé participants, we post-stratify directly from the distributions
of the β coefficients since there is no household random effect in that model.

S1.2. Estimation of relative risk
To estimate the relative risk for some categorical variable z relative to the reference group (20-49 years

old for age; female for sex) we used the following set of equations for each posterior draw of parameters β
and σ:

pz =
∫ 1

0
logit−1(β0 + βz + σ ∗ Φ−1(t))dt

p0 =
∫ 1

0
logit−1(β0 + σ ∗ Φ−1(t))dt

RRx = pz/p0.

We estimated the seroprevalence for the population in category z (pz) by integrating across all values of a
logit-normal distribution with the standard deviation defined by the household random effect σ. We then
divided that quantity by the estimated seroprevalence for the reference category (p0) to calculate the relative
risk (RRz)

In the analysis consisting of only Bus Santé participants without their household contacts, there is no
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Table S2: Weekly estimates of seroprevalence for Bus Santé participants

Week Obs Test positive Test negative Indeterminate Seroprevalence (95% CI) p
1 154 4 (2.6%) 148 (96.1%) 2 (1.3%) 3.4 (1.1-7.0) 0.032
2 214 14 (6.5%) 199 (93.0%) 1 (0.5%) 8.3 (5.0-12.5) –
3 282 25 (8.9%) 252 (89.4%) 5 (1.8%) 10.0 (6.2-14.6) 0.522
4 296 16 (5.4%) 275 (92.9%) 5 (1.7%) 6.1 (3.1-9.7) 0.326
5 388 39 (10.1%) 345 (88.9%) 4 (1.0%) 11.4 (7.6-15.5) 0.228

Table S3: Relative risks among Bus Santé participants

Type Category Obs Test positive Test negative Indeterminate Relative risk (95% CI) p
Age [20,50) 539 46 (8.5%) 484 (89.8%) 9 (1.7%) – –
Age [50,65) 542 43 (7.9%) 496 (91.5%) 3 (0.6%) 0.91 (0.58-1.33) 0.580
Age [65,105) 253 9 (3.6%) 239 (94.5%) 5 (2.0%) 0.42 (0.18-0.77) 0.004
Sex Female 701 43 (6.1%) 654 (93.3%) 4 (0.6%) – –
Sex Male 633 55 (8.7%) 565 (89.3%) 13 (2.1%) 1.33 (0.86-1.93) 0.199

random effect for household, and therefore no integration is necessary:

pbus
z = logit−1(β0 + βz)
pbus

0 = logit−1(β0)
RRbus

z = pbus
z /pbus

0 .

S1.3. Bus Santé Subset Results
As the Bus Santé participants represent a population originally selected in a representative manner,

we estimated seroprevalence and relative risk of seropositivity for these participants alone, without their
household members. The estimates of seroprevalence by week are presented in Table S2 with the relative
risks by age and sex in Table S3.

S1.4. Intracluster coefficient estimation
The intracluster coefficient (ICC) is calculated as in Guo and Zhao:

ICC = σ

σ + π2/3

where π2/3 is the variance of the standard logistic distribution.3

S2. Alternative diagnostic thresholds/tests

To test the robustness of our estimates, we ran our model using two other thresholds for determining
seropositivity.

Meyer et al. established a higher cutoff for the EuroImmune assay of 1.5 (as opposed to the manufacturer
recommended 1.1) to determine seropositivity.4 The weekly seroprevalence estimates using this threshold are
presented in Table S4.

The same study established a lower cutoff of 0.5 for seronegativity and denoted any cases falling
between 0.5 and 1.5 as ‘indeterminate’. We retested all indeterminate and positive cases using recombinant
immunofluorescence (rIFA), which is often considered a confirmatory test. At the time of analysis, all but 11
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Table S4: Weekly seroprevalence estimates using an alternative ELISA positivity cut-off (1.5) as described in Meyer et al. 2020.

Week Obs Test positive Test negative Indeterminate Seroprevalence (95% CI) p
1 341 11 (3.2%) 308 (90.3%) 22 (6.5%) 4.9 (2.4-8.1) 0.060
2 469 25 (5.3%) 418 (89.1%) 26 (5.5%) 8.4 (5.8-11.5) –
3 577 50 (8.7%) 461 (79.9%) 66 (11.4%) 9.5 (6.6-12.8) 0.580
4 604 33 (5.5%) 536 (88.7%) 35 (5.8%) 6.4 (4.0-9.2) 0.260
5 775 77 (9.9%) 621 (80.1%) 77 (9.9%) 10.8 (8.1-13.9) 0.215

had been retested with rIFA. For these 11 samples, we assigned them the outcomes from the Meyer cutoff
(positive if greater than 1.5). The seroprevalence estimates using this algorithm are presented in Table S5.
While the rIFA results were a bit lower than the original results, all of the credible intervals overlap in each
week across all techniques.

Table S5: Weekly seroprevalence estimates using ELISA results for all individuals with OD/CI less than 0.5 and using rIFA
results for all others.

Week Obs Test positive Test negative Indeterminate Seroprevalence (95% CI) p
1 341 12 (3.5%) 329 (96.5%) 0 (0.0%) 4.5 (2.3-7.5) 0.081
2 469 24 (5.1%) 445 (94.9%) 0 (0.0%) 7.5 (5.1-10.2) –
3 577 54 (9.4%) 523 (90.6%) 0 (0.0%) 9.0 (6.3-12.2) 0.442
4 604 40 (6.6%) 564 (93.4%) 0 (0.0%) 7.0 (4.7-9.8) 0.744
5 775 77 (9.9%) 698 (90.1%) 0 (0.0%) 9.6 (7.1-12.4) 0.236

S3. Additional Results

S3.0.1. Ratio of confirmed cases to infections
To estimate the ratio of implied infections (seroprevalence) to the number of clinically confirmed cases

we used the daily number of confirmed COVID-19 cases from the Canton of Geneva (https://github.com/
openZH/covid 19, data through 9-May-2020) and adjusted this time series by an assumed times from
symptom onset to test result and from symptom onset to seroconversion.

We estimated the time from symptom onset to seroconversion using a parametric accelerated failure
time model accounting for right censoring of observations using the icenReg package in R. We considered
log-normal, Weibull and gamma distributions and selected the one with the highest log-likelihood. We found
that a log-normal model fit the data best with a log-mean of 2.34 and a log-standard deviation of 0.38.

To estimate the time of seroconversion for each confirmed case, we first shift back the time series of
confirmed cases (time of confirmation) by 6 days assuming this fixed lag across the population.5 We then
convoluted this time series with the time from symptom onset to seroconversion (truncated at 40 days). To
calculate the ratio of implied infections to confirmed cases we then divide the implied number of infections
by the sum the number of cases that have seroconverted until the mid-point of week 5 of the serosurvey
(2020-05-06, 4727 out of a reported 5091 cases). We find that for every confirmed case we have 11.6 infections
in the community.
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Figure S1: Flow chart of inclusion in the study.
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Figure S2: Histogram of IgG Ratios for the study 2,766 particpants. Colors represent manufacturer reccomended cutoffs of 0.8
and 1.1 for negative and positive.
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Figure S3: Comparison of age and sex of study population (bars) and the Geneva population (2019, dots). Blue represents
males and pink represents females.
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Figure S4: Estimated time to seroconversion after symptom onset assuming a log-normal distribution.
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Figure S5: Time series of incident confirmed cases (purple), assumed times of symptom onsets (yellow) and times of seroconversion
(green). Grey boxes represent time of each weekly serosurvey.

S8



2 Stan Development Team. RStan: The R interface to Stan. 2018. http://mc-stan.org/.
3 Guo G, Zhao H. Multilevel Modeling for Binary Data. Annual Review of Sociology 2000; 26: 441–62.
4 Meyer B, Torriani G, Yerly S et al. Validation of a commercially available SARS-CoV-2 serological

Immunoassay. medRxiv 2020;: 2020.05.02.20080879.
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