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Part I

Supplementary Figures & Movies
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Supplementary Figure 1: Validation of the inference method. (a) Examples of
temporal data traces and model fits. The colors show data (red), posterior mean for St (blue),
posteriors circular mean for θt (dashed purple), posterior means At (dashed grey) and baseline
Bt (dashed yellow). The cell-cycle phase φt (which is not a hidden variable) is obtained
from linear interpolation between two successive divisions (dashed green line). Deviations of
the purple curve from a straight line corresponds to transient variations of circadian phase
velocity, owing to noise and coupling. (b-c) Using oscillator parameters mimicking real cells,
we can recover coupling functions from simulated traces. (b) First, we simulated traces with
a coupling F (θ, φ) comprising two Gaussian interaction regions, as shown in the left panel.
The reconstructed function is shown in the right panel. (c) Same numerical experiment made
with the coupling inferred from the real data as input (left). Both simulations reveal that the
inferred functions are qualitatively accurate, but quantitatively damped.
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Supplementary Figure 2: F (θ,φ) depends weakly on temperature. (a) Coupling
functions obtained from traces acquired at 34◦C, 37◦C and 40◦C. Here, to avoid possible
bias, the traces were sampled such that the distribution of cell-cycle periods is identical for
each temperature (n = 513 in each case, Supplementary Fig. 3a for the cell-cycle period
distributions at the three different temperatures). (b) Superimposition of the merged (from
all traces at 34◦C, 37◦C, and 40◦C) coupling function (that of Fig. 2a), the phase-space
trace density (Fig. 2b, here shown as contour lines), and the attractor (Fig. 2c, green line).
(c) Attractors for the vector fields in a) show that the 1:1 phase-locked orbit is temperature
independent. (d) Phase space densities obtained in the same condition and from the same
traces as in (a).
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Supplementary Figure 3: The phase velocity profiles along the 1:1 attractors in
function of cell-cycle period. (a) Cell-cycle period (division-to-division time intervals) dis-
tributions in NIH3T3 cells at three temperatures. The average period progressively decreases
from around 24h at 34◦C to 18h at 40◦C. (b) Circadian phase velocity on the 1:1 attracting
orbit in function of cell-cycle period (increasing from left to right and top to bottom). The
phase velocity shown is either inferred from the data traces (blue line, standard deviation in
light blue), or simulated using the deterministic model (no phase noise) (orange line). The
first and last panels (Tφ = 18h and 28h) have quasi-periodic orbits (hence a standard devia-
tion is associated with the mean phase velocity). The natural (non-dividing cells) circadian
phase velocity (about 0.26 rad.h−1, corresponding to a 24h period) is indicated by a dashed
grey line.
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Supplementary Figure 4: Spectral analysis of simulated traces shows that 1:1
phase-locking is robust against noise. (a) Spectral analysis of long simulated circadian
traces (total simulation length: 10.000h) using either the deterministic (left, phase diffusion
set to zero) or stochastic (right) model, for different cell-cycle periods. Periods of the natural
circadian period (24h, green dashed line), and that of the entraining cell cycle (black dashed
lines) are indicated. (b) Power spectra presented in (a) shown as heatmaps for 350 different
cell-cycle periods (see also Movie 3). Phase-locked intervals are observed in the deterministic
model (left) as lines for the fundamental and few harmonics. Only 1:1 and the 1:2 are visible
in the presence of noise (right).
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Supplementary Figure 5: The circadian clock of dividing cells does not entrain
to temperature cycles. (a) Averaged (n=6) Bmal1-Luc intensities and 95% confidence
intervals from U2OS-Dual Bmal1 luciferase signal centered and corrected for temperature
artifact (Supplementary Information). Results were obtained by plating different number of
cells (40k, 20k, 10k, 5k, or 2.5k) at the beginning of the experiment. (b) Pictograms depicting
three different models: i) the circadian oscillators in dividing cells adopt the same circadian
profile as non-dividing entrained cells; ii) are not entrained; or iii) are entrained, but with a
different phase compared to non-dividing cells. (c) Acrophase (hour of the peak of the signal)
(left) and amplitude (log of peak to mean ratio) (right) in function of intensity obtained from
simulations of the three models in b). Results here should be compared with Figure 6b in the
main text.
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Movie 1: Single-cell trajectories of circadian and cell-cycle phases cluster around
a 1:1 phase-locked state. Inferred temporal single-cell trajectories in the phase-space.
Each cell is represented by a point, and its instantaneous direction by a tail. The color shows
the instantaneous phase velocity of the circadian phase of the cell is blue or red depending
in the instantaneous speed is respectively slower of faster than the intrinsic circadian clock
speed (2π

24 rad.h
−1). The phase density is progressively built in the background from the

accumulation of the cell trajectories.

Movie 2: Simulations of the deterministic model shows phase-locking and quasi-
periodicity. Vector fields and simulated (deterministic) trajectories for increasing cell-cycle
periods Tφ. Simulations in forward time are represented with a green line, while simulations in
backward time are represented with a red. The vector field (in blue) shows the instantaneous
phase velocities. Phase-locked states, interspersed with quasi-periodic orbits, are successively
observed. The beginnings of trajectories are removed to show steady-states.

Movie 3: Spectral analysis of the deterministic and stochastic simulations shows
qualitative differences in function of the cell-cycle period. Animated representation
of Supplementary Figure 4 for increasing cell-cycle velocity. The instantaneous position of
the system on the Arnold tongues is represented by a red dot.
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Part II

Supplementary Methods

1 Reconstruction of the dynamical model

The main objective is to perform a data-driven reconstruction of a stochastic models for
the coupled systems of circadian and cell cycles, and to then analyze the consequences on the
coupled oscillator dynamics. A key step is to estimate the coupling function F (θ, φ) (expressed
in terms of the phases of the two oscillators) representing the influence of the cell-cycle on
the circadian clock.

Our approach consists in explicitly modeling the measured fluorescent signals, using a
set of stochastic ordinary differential equations (SODEs) whose parameters are estimated by
maximizing the probability of observing the data over the entire set of cell traces. Parameters
of the SODEs, which include the oscillator coupling, are assumed to be shared by all cells
of a given experimental condition. The method uses several steps, which are detailed in the
following sections.

1.1 Stochastic models for the oscillator phases and measured signals

1.1.1 Phase model for dividing cells

The circadian phase, representing the state of the circadian oscillator of an individual cell, is
modeled as a diffusion-drift process, while the cell-cycle has simpler, piece-wise linear dynamics
between two divisions. This is motivated by previous work where we have shown that the
influence of the clock on the cell-cycle was very weak, and probably nonexistent [1]. Therefore
we focus here on a precise characterization of the coupling function representing the cell-cycle
influence on the clock, and then study the dynamical implications.

We first introduce some notation. θ, φ ∈ [0; 2π[×[0; 2π[ represent the phases of the cir-
cadian clock and the cell-cycle, respectively. The intrinsic period of the circadian clock, Tθ,
is kept fixed to 24h, while the cell-cycle intervals T iφ are indexed on the division-to-division
interval i. The coupling function F (θ, φ) represents the influence of the cell-cycle phase on
the circadian clock phase. σθ is the noise strength of the circadian phase, the noise itself being
modelled through a Wiener process Wθ,t. The stochastic phase model is a two-dimensional
diffusion drift written as follows:{

dθt = 2π
Tθ

dt+ F (θt, φt)dt+ σθ dWθ,t

dφt = 2π
T iφ

dt
(1)

1.1.2 Phase model for non-dividing cells

Due to inherent fluctuations in biological processes, there are always cells in a dish which
transiently exit the cell cycle. On the other hand, the circadian cycle proceeds unperturbed
also in quiescent cells. For such cell traces without division, we assume that the model for

8



the circadian phase reduces to just one stochastic ordinary differential equation:

dθt =
2π

Tθ
dt+ σθdWθ,t (2)

containing the parameters of the bare oscillator. In fact we will use such traces to estimate
those parameters (see 1.2.1).

1.1.3 Model for the fluorescence signals

The experimental signals obtained from microscopy show noisy oscillations with variations in
the amplitude of the maxima as well as in the fluorescence background. For convenience, we
centered and rescaled all single cell traces such that the 5th percentile is 0 and 95th percentile
is 1.

The phase θt is linked to the signal St via a function w(θt), which thus defines the phase
in our model. In order to use a common definition of the phase, in particular one that does
not depend on temperature or cell type (i.e. NIH3T3 and U2OS cells), we estimated a single
function w(θt), as the the average of all peak-to-peak signals of non-dividing cells. This showed
that indeed NIH3T3 and U2OS cells yield very similar functions, and we therefore used the
average as a fixed function for all analyses (Fig. 6).

Circadian phase θ

w
(θ)

Figure 6: Estimated w(θ) from NIH3T3 (green) and U2OS (blue) traces reveal little difference
between them. To keep a consistent definition for the phase, the final function was taken as
the average (yellow).

To take into account the variations of amplitude and background, two Ornstein-Uhlenbeck
(O-U) processes are used: At and Bt, modelled as stochastic ordinary differential equations:

dAt = −γA(At − µA)dt+ σA dWA,t

dBt = −γB(Bt − µB)dt+ σB dWB,t

St = exp(At)w(θt) +Bt + ξ

(3)

9



In this parametrization, the stationary mean and variance are E[Xt] = µX and Var[Xt] =
σ2
X

2γX
,

for X = A,B, respectively. ξ represents additional experimental (measurement) white noise
with zero mean and variance σ2

e .
This model assumes that the amplitude and the background fluctuations are independent

from the phase (see Section 1.3 in this document).

1.1.4 Conversion of the model into a Hidden Markov Model (HMM)

A HMM is defined as a stochastic triplet Ω = {π,A,E}, where π is the vector containing
the initial probability distribution of the modeled Markov process, and the matrices A and
E contain the transition and emission probabilities of the process [2].

To define the transition and emission matrices, we first discretize the model. The discrete
phase, amplitude and background domains are defined as:


Ψ = {k∆Ψ|k ∈ {0, 1, ..., N − 1},∆Ψ = 2π/N} = {ψ0, ..., ψN−1}
A = {Amin + k∆A|k ∈ {0, 1, ...,M − 1},∆A = Amax−Amin

M } = {a0, ..., aM−1}
B = {Bmin + k∆B|k ∈ {0, 1, ...,M − 1},∆B = Bmax−Bmin

M } = {b0, ..., bM−1}
, (4)

with N and M the numbers of hidden states for the phase and the O-U processes, respectively.
The maxima (Amax, Bmax) and minima (Amin, Bmin) are chosen at least three standard

deviations away from the mean of the corresponding O-U processes. The full hidden state
space is then X = Ψ×A×B.

The transition probabilities are then obtained from the following:

p(θt+dt|θt = ψi, φt = ψj) = N

(
ψi +

2π

Tθ
dt+ F (ψi, ψj)dt, σ

2
θdt

)
, (5)

where we have made the approximation that dt is small.
For the O-U processes, the results are well-known [3]:

p(At+dt|At = ai) = N

(
µA + (ai − µA)e−γAdt, (1− e−2γAdt)

σ2
A

2γA

)
, (6)

p(Bt+dt|Bt = bi) = N

(
µB + (bi − µB)e−γBdt, (1− e−2γBdt)

σ2
B

2γB

)
, (7)

All the transitions between the three processes are assumed to be independent:

Aijk,lm,no = ptr(ψk|ψi, ψj)Ptr(am|al)Ptr(bo|bn) . (8)

Finally, the probability of an observation Ot obeys to:

p(Ot|At = ai, Bt = bj , θt = ψk) =
1

σe
√

2π
e
− 1

2

(
exp(ai)w(ψk)+bj−Ot

σe

)2

. (9)

Note that w appears in this equation, enabling to compare the prediction of the model with
the actual observations.Also note that in this SI we use Ot to refer to a specific observation in
our dataset, instead of St in the generic case. However, both notations are interchangeable.
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The emission matrix Et for each time point can then be computed as:

Et,ijk = pe(Ot|ai, bj , ψk) . (10)

The fixed cell-cycle phases, given at each time point through a linear interpolation are
noted as Φ, such that Φ = {φ0, . . . , φt, . . . , φT } with φt ∈ Ψ∀t.

Once the matrices π,A and E are built, one can compute the probability of a state x ∈ X
given all the observations O = {O1, ..., Ot, ..., OT }, that is the posterior state distribution
p(x|O), using the forward-backward algorithm [2]. A graphical representation of the HMM is
is provided Figure 7.

P (θt , At , Bt |θt−1, ϕt−1, At−1, Bt−1) P (θt+1, At+1, Bt+1 |θt , ϕt , At , Bt )
θt−1, ϕt−1,
At−1, Bt−1

θt , ϕt ,
At , Bt

θt+1, ϕt+1,
At+1, Bt+1

P ( +1 |θt+1, ϕt+1, At+1, Bt+1)P ( |θt , ϕt , At , Bt )

ot−1 +1

P (ot−1 |θt−1, ϕt−1, At−1, Bt−1)

ot ot

ot ot

Figure 7: Representation of the Hidden Markov Model used for phase inference, at time t−1,
t and t+ 1. Bold arrows correspond to state transitions, while light arrow correspond to state
emissions.

1.2 Parameters of the model

In all analyses, the number of states for the phase, N , and for the O-U processes, M , were
taken as N = 48 and M = 30, yielding a total number of discrete states of 43200.

1.2.1 Parameters common to dividing and non-dividing cells

We first discuss the parameters describing the circadian oscillations in individual cells, which
we assume as independent from the coupling with the cell cycle. These parameters concern the
oscillator period, phase noise, amplitude and background processes, as well as the experimental
noise. The parameters were estimated as described below, and are given in Table 1 for both
NIH3T3 and U2OS cells. Since the estimates were found to be very similar at the three
experimental temperatures, we considered fixed (temperature-independent) values.

Tθ(h) σθ(rad.h
−1/2) µA σA µB σB γA(h−1) γB(h−1) σe

NIH3T3 24 0.16 -0.28 0.11 0.08 0.05 0.075 0.075 0.15
U2OS 24 0.18 -0.45 0.15 0.06 0.05 0.075 0.075 0.15

Table 1: Set of parameters for the single cell circadian oscillators in NIH3T3 and U2OS cells.
The values of σA, σB and σe are in units of the centered and rescaled signals, see section 1.1.3

11



The circadian oscillator period Tθ was estimated by averaging the peak to peak times
in Rev-Erbα-YFP signals on the whole set of non-dividing traces. The resulting value was
24.28h (NIH3T3, whole dataset), rounded for convenience.

To estimate the phase noise σθ, we used the property that the peak-to-peak time distri-
bution of the circadian phase (modeled as a diffusion-drift process) θ obeys:

T2π ∼ IG(µ =
2π

ωθ
= Tθ, λ =

(2π)2

σ2
θ

) , (11)

where IG(λ, µ) stands for the inverse Gaussian distribution with mean µ and shape parameter
λ. This distribution has variance µ3/λ. Therefore:

σ2
θ =

V ar[T2π]4π2

T 3
θ

. (12)

This expression was used in the NIH3T3 cells. Because we observed only very few non-dividing
U2OS cells, we needed to estimate σθ from the dividing traces. Since we observed from traces
generated in silico that the cell-cycle coupling added about 35% of variability in the peak-
to-peak distribution, we corrected the value of σθ obtained from dividing U2OS cells for this
effect.

The means and noise of the O-U processes were estimated from the set of all minima
and maxima of the non-dividing traces. More precisely, the mean background was calculated
as the average minimum value of the signal, and the mean log amplitude as the average
log difference between the maxima and surrounding minima. Similarly, the noise strengths
were obtained from the variances of those quantities, using the relationship for the stationary
variances: σ2

X = 2γ2
XV ar[X], for X = A,B.

We assumed that the time constants of the A and B processes were slower than the phase
fluctuations occurring within one oscillatory cycle, and therefore chose γA = γB = 1/14h−1.
We verified that values of γA and γB in the range of 1/5h−1 to 1/30h−1 did not lead to major
differences in the resulting coupling function.

The noise parameter σe was set to 0.15. Since the signals were quantile normalized (see
section 1.1.3), this corresponds to a relative error of about 15%.

1.2.2 Parameters of the coupling function

1.2.2.1 The EM algorithm

Here we introduce the expectation-maximization (E-M) algorithm, which will be used to
estimate the coupling function.

Denote the sequence of observations by O, the state space by X , a given sequence of
states by X and the current and updated set of parameters by Λ′ and Λ, respectively. The
Q function of the EM [4] is written:

Q(Λ,Λ′) =
∑
X∈X

log(p(O,X|Λ))p(X|O,Λ′) . (13)

Here, the sequence X is composed of states x such that X = {x1, ...,xt, ...,xT }, and
these states are themselves composed of three substates for the phase, the amplitude and the
background: x = (ψ, a, b). In our problem, if we define i0 as the index associated with the
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first state of the sequence X, the probability of the observations and the states can be written
as a product:

p(O,X|Λ) = πi0

T∏
t=1

p(Xt+1|Xt,Λ)p(Ot+1|Xt+1,Λ) . (14)

This equation enables to rewrite the function Q as three separated sums:

Q(Λ,Λ′) =
∑
X∈X

log(πi0)p(X|O,Λ′) +
∑
X∈X

(
T∑
t=1

log(p(Xt+1|Xt,Λ))

)
p(X|O,Λ′)

+
∑
X∈X

(
T∑
t=1

log(p(Ot+1|Xt+1,Λ)

)
p(X|O,Λ′) .

(15)

This expression readily extends to several traces by adding another sum over the trace indices.
Each term can now be optimized individually, enabling to find the optimal set of parameters
for the initial condition, the state transitions (which contain the coupling function), and the
emissions (cf. 1.1.4).

1.2.2.2 Estimation of the initial condition

Taking the derivative of the first term in Eq (15)with respect to the components of π leads
to the optimal initial condition:

πi = p(X0 = xi|O,Λ′) (16)

1.2.2.3 Estimation of the coupling function

The coupling function is parameterized on a grid of N2 parameters, such that Fij corresponds
to the coupling for the pair of phases (θi, φj) ∈ Ψ2. Due to this high number of parame-
ters, regularization constraints were added. Specifically, the squared norm of the gradient,
||∇Fij ||2 = (

Fi+1,j−Fi,j
∆ψ )2 + (

Fi,j+1−Fi,j
∆ψ )2 is used to control for smoothness. In addition, we

controlled the sparseness of the coupling function using the squared norm. The penalized
version of Q is therefore:

Qp(Λ,Λ
′) = Q(Λ,Λ′)− λ1

∑
i,j

||∇F ij ||2 − λ2

∑
i,j

F ij
2 (17)

Starting again from Eq. (15) augmented with these new penalization terms yields:

∂Qp(Λ,Λ
′)

∂Fkl
=

E1︷ ︸︸ ︷
∂

∂Fkl

[∑
X∈X

(∑
t

log(p(Xt+1|Xt,Λ))

)
p(X|O,Λ′)

]

− ∂

∂Fkl

λ1

∑
i,j

||∇Fij ||2 + λ2

∑
i,j

F 2
ij


︸ ︷︷ ︸

E2

(18)
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The first part of this equation, E1, corresponds to the state transitions, while the second
part, E2, corresponds to the penalization. Equating this to zero to find the maxima conditions,
and explicitly taking the sequence of cell-cycle states into account, we obtain:

∂

∂Fkl

[∑
i1,i2

∑
j1,j2

∑
k1,k2

∑
t

log(p(θi2 , aj2 , bk2 |θi1 , φt, aj1 , bk1 ,Λ))

p(xt = (θi1 , aj1 , bk1),xt+1 = (θi2 , aj2 , bk2)|O,Λ′)
]

= E2

(19)

Note here that θi1 , θi2 , aj1 , aj2 , bk1 , bk2 are hidden states, for which we infer a distribution
of probability with the HMM, while φt is given as an external parameter. Now, the Markov
propagators for the phase, amplitude and background being independent (cf. eq. 8), we have:

log (p(θi2 , aj2 , bk2 |θi1 , φt, aj1 , bk1 ,Λ))) = log (p(θi2 |θi1 , φt,Λ))

+ log (p(aj2 |aj1 ,Λ)) + log (p(bk2 |bk1 ,Λ))
(20)

Since the transitions probabilities for the amplitude and the background do not depend
on the coupling function, they cancel out with the derivative. The remaining sum leads to the
marginal joint distribution of phases at time t and t+1. To keep continuity with the previous
notation, we denote the marginal p(θt = θi) =

∑
θi,aj ,bk

p(xt = (θi, aj , bk)) by p(xt = (θi, ., .)).

We therefore have:

∂

∂Fkl

[∑
i1,i2

∑
t

log (p(θi2 |θi1 , φt,Λ)) p(xt = (θi1 , ., .),xt+1 = (θi2 , ., .)|O,Λ′)
]

= E2 (21)

Now, p(xt = (θi1 , ., .),xt+1 = (θi2 , ., .)|O,Λ′) doesn’t depend on the new coupling function
parameters Fkl, so it can be treated as a multiplicative constant. Defining ωθ = 2π/Tθ, this
yields:

∂

∂Fkl

[∑
i1,i2

∑
t

log

 1

σθ
√

2πdt
e
− 1

2

(
θi2

−(θi1
+ωθdt+F (θi1

,φt)dt)

σ2
θ
dt

)2


p(xt = (θi1 , ., .),xt+1 = (θi2 , ., .)|O,Λ′)
]

= E2

(22)

All the terms that do not depend on Fkl = F (θk, φl) are removed by the derivative, which
simplifies to:

∑
i2

∑
{t|φt=φl}

θi2 − (θk + ωθdt+ Fkldt)

σ2
θ

p(xt = (θk, ., .),xt+1 = (θi2 , ., .)|O,Λ′) = E2 (23)

Fkl can now be isolated, and we can sum over θi2 in the denominator:
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Fkl =
−σ2

θE2 +
∑

i2

∑
{t|φt=φl} (θi2 − (θk + ωθdt)) p(xt = (θk, ., .),xt+1 = (θi2 , ., .)|O,Λ′)

dt
∑
{t|φt=φl} p(xt = (θk, ., .)|O,Λ′)

(24)
Note that the function w(θ) is involved non-explicitly in this equation, through the com-

putation of the posterior phase distributions. From eq. 18, we find:

E2 =
∂

∂Fkl

λ1

∑
i,j

(
Fi+1,j − Fi,j

∆ψ
)2 + (

Fi,j+1 − Fi,j
∆ψ

)2 + λ2

∑
i,j

F 2
ij

 (25)

Taking the derivative, and re-injecting into Eq. 24 yields:

Fkl

dt ∑
{t|φt=φl}

p(xt = (θk, ., .)|O,Λ′) +
8λ1σ

2
θ

∆ψ2
+ 2λ2σ

2
θ


−

2λ1σ
2
θ

∆ψ2
Fk−1,l −

2λ1σ
2
θ

∆ψ2
Fk+1,l −

2λ1σ
2
θ

∆ψ2
Fk,l+1 −

2λ1σ
2
θ

∆ψ2
Fk,l−1

=
∑
i2

∑
{t|φt=φl}

(θi2 − (θk + ωθdt)) p(xt = (θk, ., .),xt+1 = (θi2 , ., .)|O,Λ′)

(26)

For readability, we define the new following quantities:


Q1 = dt

∑
{t|φt=φl} p(xt = (θk, ., .)|O,Λ′) +

8λ1σ2
θ

∆ψ2 + 2λ2σ
2
θ

Q2 = −2λ1σ2
θ

∆ψ2

Qk,l =
∑

i2

∑
{t|φt=φl} (θi2 − (θk + ωθdt)) p(xt = (θk, ., .),xt+1 = (θi2 , ., .)|O,Λ′)

(27)

This gives:

FklQ1 + (Fk−1,l + Fk+1,l + Fk,l−1 + Fk,l+1)Q2 = Qk,l (28)

This is a linear equation for Fkl. Since Eq. 26 holds ∀k, l ∈ N2, this can be rewritten as:

Ax = b (29)

Where A is a matrix containing the Q1 and Q2 terms, x is the vector containing the Fkl
terms and b the vector containing the Qk,l terms. Due to the regularization, Q1 is always
invertible.

1.2.2.4 Regularization

λ1 is found using four-fold cross-validation, i.e. by splitting the NIH3T3 dataset into four
chunks and scanning which λ1 value gives the best generalization, i.e. maximizes the likelihood
of the left-out test traces. The resulting value is 10−6.

The value of λ2 is set according to the following principle. The update expression for the
coupling function (when λ1 = 0) reads:
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Fkl =

∑
i2

∑
{t|φt=φl} (θi2 − (θk + ωθdt)) p(xt = (θk, ., .),xt+1 = (θi2 , ., .)|O,Λ′)

2σ2
θλ2 + dt

∑
{t|φt=φl} p(xt = (θk, ., .)|O,Λ′)

(30)

Thus, λ2 buffers the sum dt
∑
{t|φt=φl} p(xt = (θk, ., .)|O,Λ′), especially when the latter is

small, i.e. for the phase-space points which are rarely visited by the cells. Defining T as the
total number of time measurements (from all cells), we set:

λ2 =
Tλ′2
2σ2

θ

dt . (31)

The interpretation is as follow: given a phase-space state that is visited once in T time
points, if λ′2 = 1

T then the corresponding coupling parameter is halved. More visited states
lead to more robust coupling parameters, and conversely for less visited states.

In practice, we want to be able to interpret λ′2 independently of the total number of time
points, and we therefore compute it in units of cell-cycle periods, such that the coupling
parameter of a state visited once every 200 cell-cycles is halved, that is:

λ′2 =
1

200Tφ
(32)

1.3 Assessment of model assumptions

In our model for the signal St = exp(At)w(θt) + Bt + ξ, we assumed that the dynamics of
the amplitude, background and phase variables At, Bt and θt were uncoupled. Within our
probabilistic framework, we can a posteriori verify this hypothesis, by analyzing the joint
posterior distribution P (θt, At, Bt|O). Indeed, we can compute the expected values of the
three latent variables corresponding to each measured observation Ot as follows:

E[θt] = arg(
∑

i,j,k p(θt = θi, At = aj , Bt = bk|O)eiθi)

E[At] =
∑

i,j,k p(θt = θi, At = aj , Bt = bk|O)aj

E[Bt] =
∑

i,j,k p(θt = θi, At = aj , Bt = bk|O)bk

(33)

As shown in Fig. 8, both the expected amplitudes and backgrounds are on average only
weakly dependent on the expected phases. Indeed, the means for A and B vary by, respectively,
less than ±10% and ±20% compared to the global means. In fact, the variation in the means
of these expected values in function of the phases is much lower than the spread observed in
the phase bins (corresponding to the many measurements with the same expected phases).
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Figure 8: Expected value of the amplitude At (left) and background Bt (right) in function
of the expected circadian phase θt (binned). The data show the means (dots) and standard
deviations computed over all the NIH3T3 cell traces, all temperature included.

Similarly, we then analyzed the (a posteriori) estimated phase noise σθ in function of the
circadian phase θt. To do this, we compute a phase-dependent estimate of σθ:

σ2
θ(θi) =

∑
j,k,t (θk − (θi + (ωθ + F (θi, φj)dt))

2 p(θt = θi, θt+1 = θk|φt = φj ,O)

dt
∑

j,k,t p(θt = θi, θt+1 = θk|φt = φj ,O)
(34)

Results (Fig. 9, left) reveal only very weak dependence of σ2
θ over the circadian phase θ.

Indeed, the means in σθ vary from 0.016 to 0.017, i.e. a deviation of about ±6%.
Finally, we analyzed the measurement noise ξ. We thus computed the prediction of the

model yt as yt = exp(E[At])w(E[θt]) + E[Bt], and analyzed the distributions of residuals
yt − Ot binned by expected circadian phase (Fig. 9, right). Here, we find that the residuals
are centered on 0 within a good approximation (±0.035), showing that there is no systematic
bias in the noise model.
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Figure 9: Left: Evolution of the distribution of phase diffusion coefficient estimates σ2
θ with

the expected circadian phase θt (binned). Right: Evolution of the distribution of residuals
yt − Ot with the expected circadian phase θt (binned). Dark horizontal dashes indicate the
means. The computation are made from the distributions computed on all the traces coming
from NIH3T3 cells, all temperature included.
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1.4 Assessment of the parameter estimation

To assess the parameter estimation, we simulated traces in silico and re-estimated the pa-
rameters using the same methods as for the experimental traces. The generated traces were
of the same scale and length as the experimental traces. The regression parameters γA, γB
and the noise parameters σe were taken from Table 1.

Table 2 summarizes the results for all estimated parameters. Although we expect some
imprecisions due to the stochasticity of the system, the relative error remains low for every
parameter.

Tθ(h) σθ(rad.h
−1/2) µA σA µB σB

Simulated 24.0 0.16 -0.28 0.11 0.08 0.05

Estimated 24.0 0.16 -0.24 0.11 0.04 0.05

Table 2: Simulated and estimated model parameters.

For the reliability of the estimated coupling function, we refer to the main text (Figure
S1, panels b and c).

2 Simulations of the dynamical system

2.1 Model

A deterministic model for the phase dynamics is obtained by removing the phase noise term
from the full model. In addition, to study the bifurcations (phase locked states) in function
of the coupling strength, we added a multiplicative factor for the coupling function called K:
(K = 1 for the biological coupling value).{

θ̇ = 2π
Tθ

+KF (θ, φ)

φ̇ = 2π
Tφ

(35)

2.2 Phase-locked states

Weakly coupled oscillators can phase-lock when the ratio of their natural period is close to a
ratio of integer numbers, i.e. Tθ

Tφ
' p

q with p, q ∈ N [5]. To characterize mode-locked states,

we estimate ω̄θ, defined as the average circadian phase velocity:

ω̄θ = lim
t→∞

θ(t)

t
. (36)

Phase-locking occurs when ω̄θ remain constant within an interval of cell-cycle frequencies
ωφ, as represented by Arnold tongue diagrams. Outside of such stable intervals, the dynamics
is quasiperiodic.
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3 Correspondence between cell-cycle phase and biological cell-
cycle events

In our model, we assumed a linear progression of the cell-cycle phase between two successive
divisions. To get a better handle on the relation between this measure and cell-cycle events,
we generated a set of 104 experimental traces from NIH3T3 cells expressing the FUCCI cell-
cycle sensor [9]. To obtain estimates of the boundaries for the different cell-cycle events, we
normalized and rescaled all fluorescent signals before mapping them to a 0 to 2π interval
(from division to division, Figure 10). Despite biological variability, the growth phase 1 (G1)
generally spans from 0 to 0.4 × 2π rad, while DNA replication and growth phase 2 (S-G2)
usually occur between 0.4×2π rad and 0.95×2π rad. Mitosis usually happens from 0.95×2π
rad to 2π rad.
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Figure 10: Normalized experimental traces from NIH3T3 cells expressing the FUCCI cell-
cycle reporter system enable the association between the physical cell-cycle phase and the
biological phase. The red and green fluorescence signals correspond respectively to mKO2-
Cdt1 and mAG-Geminin FUCCI reporters. The vertical grey lines denote the (approximate)
separation between the different biological cell-cycle phases.
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4 Analysis of a population of bioluminescence traces under
temperature entrainment
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Figure 11: a: Observed O(t), smoothed R(t) and corrected R(t) signals obtained from U2OS
cells expressing a PGK-luciferase reporter grown at low cell confluence. b: Recorded 35.5◦C-
38.5◦C temperature entrainment (black) and smoothed signal (red, T (t)) from a. c: Normal-
ized PGK-Luc signal obtained from U2OS cells grown at different confluences (black) and the
optimal fit using td = 80 min and k = −0.26 (red).

The enzymatic activity of luciferase is known to be higher at lower temperature [6]. Since we
applied temperature cycles from 35.5◦C to 38.5◦C for entrainment, even a luciferase reporter
driven by a constitutive gene, e.g. Pgk, would show an oscillatory signal (Fig. 11, panels a
and b)[7, 8]. To correct the signal for this systematic effect, we found that the observed signal
O(t) could be well fitted by the following expression

O(t) = R(t)(1 + k(T (t− td)− T0) , (37)

where R(t) is the real signal exempts of any temperature artifact, T (t) is the temperature
profile, T0 = 37◦C), k = is a magnitude coefficient, and td minutes a time delay. To determine
the free parameters td and k, we used the luciferase signal obtained from U2OS cells expressing
a PGK luciferase reporter (U2OS-PGK-Luc) which is expected to yield a non-oscillating signal
after correction (Fig. 11a). Specifically, we optimized d and k to best fit O(t), after smoothing
O(t) to obtain a proxy for R(t). The optimal fit yielded td = 80 minutes and k = −0.26 (Fig.
11c). These values of td and k were then used to detrend the circadian luminescence signals
using Eq. (37). Importantly, we performed all our luciferase experiments using the Luc2p
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luciferase (Promega), a destabilized version of the WT Photinus pyralis luciferase optimized
for expression in mammals. Consequently, we could use the optimized td and k to retrieve
the corrected signal R(t) for all our constructs.
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