### **Supplementary Information PDF**

**Geometry and evolution of the ecological niche in plant-associated microbes** Authors: Thomas M. Chaloner<sup>1</sup>, Sarah J. Gurr<sup>1,2</sup> & Daniel P. Bebber<sup>1\*</sup>.

Affiliations:

<sup>1</sup>Department of Biosciences, University of Exeter, Exeter EX4 4QJ, UK.

<sup>2</sup>Department of Biosciences, Utrecht University, Paduallaan 8, Netherlands.

\*Correspondence to: d.bebber@exeter.ac.uk



## Supplementary Fig. 1. Analysis of spatial correlation on phylogenetic signals calculated for *Phytophthora* species cardinal temperature.

(a, c) GC  $T_{opt}$ . (b, d) GC  $T_{max}$ . (a, b) Relationship between GC temperature response distance (°C) and great circle distance (km). (a) Mantel correlation (MC) = -0.016 (95% CI -0.021 - -0.012), p = 0.013. (b) MC = 0.013 (0.009 - 0.018), p = 0.016. (c, d) Relationship between GC temperature response distance (°C) and average air surface temperature (AST) (°C). (c) MC = 0.020 (0.014 - 0.026), p = 0.009. (d) MC = 0.044 (0.037 - 0.051), p = 0.001.  $N_{species} = 31$ ;  $N_{distances} = 1,367,031$ . Figures show 10,000 randomly sampled data points. All Mantel correlations are near zero. Hence, we ignore the influence of spatial effects on our analysis of cardinal temperature phylogenetic signal.



**Supplementary Fig. 2.** Host/Phytophthora co-phylogenetic association analysis. (a, c, e) The observed best-fit (pink lines) Procrustean super-imposition (ssr) (0.939, 0.939, 0.935) were better (lower) than the same for any of the ensemble of network randomisations in each null model (grey distribution) (N = 10,000). (b, d, f) Procrustes residuals (r) for all interactions in each host-pathogen network (N = 439). (a, b) Bayesian Phytophthora species phylogeny. (c, d) Maximum likelihood Phytophthora species phylogeny. (e, f) Maximum parsimony Phytophthora species phylogeny. All Phytophthora species phylogenies were extracted from ref.<sup>1</sup> (TreeBASE S19303).



#### Supplementary Fig. 3. Relationship between species CT estimates.

(a, b) Relationship between IN cardinal temperature from ref. <sup>2</sup> and ref. <sup>3</sup>. Colour refers to estimates of  $T_{min}$  (blue),  $T_{opt}$  (yellow) and  $T_{max}$  (red). (a) Inclusion of all available data, root mean square error (RMSE) = 5.15 °C, N = 43. (b) Exclusion of data where  $T_{min}$  and  $T_{max}$  were respectively recorded as 1 °C and 35 °C in ref. <sup>2</sup>, RMSE = 4.73 °C, N = 29. Relationship between GC (c)  $T_{opt}$  and (d)  $T_{max}$  estimates from ref. <sup>2</sup> and ref. <sup>4</sup>. (c) RMSE = 2.65 °C, N = 20. (d) RMSE = 3.34 °C, N = 22. Dotted line indicates identity relationship.



#### Supplementary Fig. 4. Unprocessed host phylogeny constructed using S. PhyloMaker.

For clarity, 50 tips have been randomly extracted for presentation. Hosts recorded no further than species. Hosts not recorded as far as species in the Plantwise database were excluded. Hosts not identifiable at genus-level in S.PhyloMaker are excluded.



#### Supplementary Fig. 5. Processed host phylogeny constructed using S. PhyloMaker.

For clarity, 50 tips have been randomly extracted for presentation. Hosts recorded no further than species. Hosts not identifiable at genus-level in S.PhyloMaker were excluded.



**Supplementary Fig. 6.** *Phytophthora* **spp. host phylogeny constructed using S. PhyloMaker.** For clarity, 50 tips have been randomly extracted for presentation. Hosts recorded no further than species. Hosts not identifiable at genus-level in S.PhyloMaker were excluded. Supplementary Table 1. Summary of temperature responses of fungi and oomycetes for different processes. Medians with interquartile ranges in parentheses. Sample sizes shown (*N*). Note that *F. oxysporum formae speciales* are included in these calculations.

| Fungi          |                       |                       |                       |                         |                    |
|----------------|-----------------------|-----------------------|-----------------------|-------------------------|--------------------|
| Process        | T <sub>min</sub> (°C) | T <sub>opt</sub> (°C) | T <sub>max</sub> (°C) | T <sub>range</sub> (°C) | Skew               |
| Disease        | 9.8 (3.7 – 14.0)      | 23.5 (19.9 – 26.6)    | 30.7 (27.2 – 33.1)    | 20.0 (17.3 – 25.6)      | 0.60 (0.51 – 0.73) |
| development    | N = 89                | N = 107               | N = 71                | N = 64                  | N = 58             |
| Fructification | 10.0 (6.9 – 15.0)     | 22.9 (18.4 – 28.0)    | 30.0 (27.5 - 33.0)    | 19.2 (15.6 – 24.6)      | 0.60 (0.49 – 0.71) |
| Fructification | N = 31                | N = 36                | N = 33                | N = 30                  | N = 22             |
| Growth in      | 6.0 (4.0 – 9.4)       | 25.4 (22.8 – 28.0)    | 35.0 (32.5 – 37.5)    | 28.0 (26.0 - 30.8)      | 0.68 (0.62 - 0.75) |
| culture        | N = 425               | N = 502               | N = 467               | N = 400                 | N = 370            |
| Infection      | 10.0 (7.0 – 15.1)     | 21.1 (18.0 – 26.1)    | 30.0 (26.2 - 33.4)    | 19.6 (15.6 – 24.8)      | 0.58 (0.48 – 0.72) |
| mection        | N = 76                | N = 98                | N = 77                | N = 62                  | N = 52             |
| Spore          | 6.0 (3.0 – 8.1)       | 23.0 (19.0 – 26.2)    | 32.4 (30.0 – 36.0)    | 27.0 (23.5 – 30.0)      | 0.62 (0.51 – 0.69) |
| germination    | N = 143               | N = 180               | N = 150               | N = 133                 | N = 126            |
| Sporulation    | 11.8 (5.1 – 15.0)     | 24.0 (19.2 – 28.4)    | 31.7 (26.4 – 34.4)    | 20.5 (16.8 – 25.2)      | 0.62 (0.52 – 0.68) |
| Sporulation    | N = 38                | N = 46                | N = 38                | N = 36                  | N = 30             |

| Oomycetes              |                                    |                                     |                                     |                                     |                                        |
|------------------------|------------------------------------|-------------------------------------|-------------------------------------|-------------------------------------|----------------------------------------|
| Process                | T <sub>min</sub> (°C)              | T <sub>opt</sub> (°C)               | T <sub>max</sub> (°C)               | T <sub>range</sub> (°C)             | Skew                                   |
| Disease<br>development | 9.6 (6.8 – 11.2)<br><i>N</i> = 12  | 22.5 (20.2 – 28.0)<br>N = 13        | 30.0 (29.2 – 32.5)<br><i>N</i> = 11 | 20.5 (20.0 – 22.6)<br><i>N</i> = 11 | 0.63 (0.58 –<br>0.68)<br><i>N</i> = 10 |
| Fructification         | 10.0 (3.0 – 16.7)<br><i>N</i> = 5  | 21.2 (17.2 – 24.2)<br><i>N</i> = 6  | 26.5 (22.4 – 32.5)<br>N = 7         | 15.0 (13.3 – 21.8)<br><i>N</i> = 5  | 0.81 (0.76 –<br>0.82)<br><i>N</i> = 4  |
| Growth in culture      | 7.7 (6.3 – 9.0)<br>N = 34          | 27.2 (25.9 – 30.0)<br><i>N</i> = 40 | 35.0 (32.5 – 37.0)<br><i>N</i> = 39 | 27.0 (25.5 – 30.0)<br><i>N</i> = 33 | 0.75 (0.67 –<br>0.79)<br><i>N</i> = 30 |
| Infection              | 10.1 (8.1 – 14.2)<br><i>N</i> = 14 | 19.5 (16.3 – 22.7)<br><i>N</i> = 14 | 31.5 (29.5 – 34.0)<br><i>N</i> = 15 | 21.7 (18.8 – 25.0)<br><i>N</i> = 13 | 0.56 (0.51 –<br>0.64)<br><i>N</i> = 10 |
| Spore<br>germination   | 6.5 (4.0 – 9.3)<br><i>N</i> = 19   | 19.0 (16.4 – 23.7)<br><i>N</i> = 27 | 28.8 (26.4 – 31.6)<br>N = 23        | 22.6 (19.2 – 24.4)<br><i>N</i> = 19 | 0.58 (0.49 –<br>0.66)<br><i>N</i> = 18 |
| Sporulation            | 7.4 (5.5 - 8.6)<br>N = 7           | 19.1 (16.2 – 19.8)<br><i>N</i> = 7  | 28.8 (23.9 – 29.5)<br>N = 7         | 20.8 (19.8 – 21.2)<br>N = 7         | 0.53 (0.49 -<br>0.55)<br><i>N</i> = 6  |

**Supplementary Table 2. Difference between temperature responses for growth in culture (GC) and other processes within species**. Positive values indicate that the alternative process has a higher value than GC. Fungi and oomycetes are not differentiated because only a small number of pairwise comparisons were available for oomycetes. Cardinal temperatures were compared using two-sided *t*-tests due to large differences in sample size. The Holm-Bonferroni adjusted significance level was 0.013 (i.e. p-values below 0.013 indicate the null hypothesis can be rejected).

| Response           | Process             | Difference (°C) | 95% CI        | Ν   | df  | t     | р       |
|--------------------|---------------------|-----------------|---------------|-----|-----|-------|---------|
| T <sub>min</sub>   | Disease development | 2.5             | 1.46, 3.51    | 77  | 76  | 4.82  | 7.1e-06 |
|                    | Fructification      | 4.7             | 3.08, 6.28    | 30  | 29  | 5.98  | 1.7e-06 |
|                    | Infection           | 3.0             | 1.82, 4.27    | 54  | 53  | 4.98  | 7.1e-06 |
|                    | Spore germination   | 0.3             | -0.55, 1.21   | 88  | 87  | 0.75  | 0.46    |
|                    | Sporulation         | 3.1             | 1.93, 4.25    | 38  | 37  | 5.40  | 4.1e-06 |
| T <sub>opt</sub>   | Disease development | -2.2            | -3.02, -1.31  | 91  | 90  | -5.03 | 2.5e-06 |
|                    | Fructification      | -1.4            | -3.32, 0.48   | 35  | 34  | -1.51 | 0.14    |
|                    | Infection           | -3.1            | -4.22, -1.97  | 80  | 79  | -5.46 | 5.3e-07 |
|                    | Spore germination   | -0.2            | -0.84, 0.39   | 120 | 119 | -0.72 | 0.48    |
|                    | Sporulation         | -2.1            | -3.47, -0.82  | 40  | 39  | -3.28 | 0.0022  |
| T <sub>max</sub>   | Disease development | -4.1            | -5.38, -2.87  | 61  | 60  | -6.56 | 1.4e-08 |
|                    | Fructification      | -4.1            | -6.19, -2.02  | 33  | 32  | -4.02 | 0.00034 |
|                    | Infection           | -3.8            | -5.13, -2.54  | 58  | 57  | -5.92 | 1.9e-07 |
|                    | Spore germination   | 0.1             | -0.48, 0.74   | 94  | 93  | 0.43  | 0.67    |
|                    | Sporulation         | -3.0            | -4.47, -1.54  | 35  | 34  | -4.16 | 2e-04   |
| T <sub>range</sub> | Disease development | -6.2            | -7.99, -4.51  | 56  | 55  | -7.20 | 1.8e-09 |
|                    | Fructification      | -8.7            | -11.61, -5.82 | 28  | 27  | -6.17 | 1.3e-06 |
|                    | Infection           | -6.3            | -8.22, -4.38  | 44  | 43  | -6.61 | 4.7e-08 |
|                    | Spore germination   | -0.2            | -1.44, 1.05   | 84  | 83  | -0.31 | 0.76    |
|                    | Sporulation         | -5.9            | -7.73, -4.02  | 35  | 34  | -6.43 | 2.4e-07 |
| Skew               | Disease development | -0.04           | -0.08, 0.01   | 51  | 50  | -1.64 | 0.11    |
|                    | Fructification      | -0.04           | -0.13, 0.05   | 21  | 20  | -1.00 | 0.33    |
|                    | Infection           | -0.04           | -0.10, 0.01   | 41  | 40  | -1.54 | 0.13    |
|                    | Spore germination   | 0.00            | -0.03, 0.02   | 79  | 78  | -0.29 | 0.77    |
|                    | Sporulation         | -0.08           | -0.14, -0.02  | 29  | 28  | -2.67 | 0.013   |

# Supplementary Table 3. Correlation coefficients and RMSE (°C) among *T*<sub>opt</sub> values for different processes within species. 95% confidence intervals are given in parentheses. Degrees of freedom (df) and *t*-test statistics vs. zero correlation are given. *P*-values are not given due to multiplicity of tests. NA denotes insufficient data. Pearson correlations were two-sided.

| Correlation coef       | Correlation coefficients                        |                                                    |                                                 |                                                   |                                                   |  |  |  |
|------------------------|-------------------------------------------------|----------------------------------------------------|-------------------------------------------------|---------------------------------------------------|---------------------------------------------------|--|--|--|
| T <sub>opt</sub>       | Disease<br>development                          | Fructification                                     | Growth in culture                               | Infection                                         | Spore germination                                 |  |  |  |
| Disease<br>development | -                                               | -                                                  | -                                               | -                                                 | -                                                 |  |  |  |
| Fructification         | 0.69 (0.25 – 0.89)<br>df = 12, <i>t</i> = 3.28  | -                                                  | -                                               | -                                                 | -                                                 |  |  |  |
| Growth in culture      | 0.65 (0.51 – 0.75)<br>df = 89, <i>t</i> = 7.99  | 0.44 (0.13 -<br>0.68)<br>df = 33, <i>t</i> = 2.83  | -                                               | -                                                 | -                                                 |  |  |  |
| Infection              | 0.91 (0.85 - 0.94)<br>df = 66, <i>t</i> = 17.61 | 0.77 (0.45 -<br>0.92)<br>df = 14, <i>t</i> = 4.57  | 0.64 (0.49 - 0.75)<br>df = 78, <i>t</i> = 7.38  | -                                                 | -                                                 |  |  |  |
| Spore<br>germination   | 0.72 (0.56 - 0.83)<br>df = 52, <i>t</i> = 7.41  | 0.35 (-0.13 -<br>0.69)<br>df = 17, <i>t</i> = 1.52 | 0.66 (0.54 - 0.75)<br>df = 118, <i>t</i> = 9.52 | 0.78 (0.65 -<br>0.86)<br>df = 58, <i>t</i> = 9.44 | -                                                 |  |  |  |
| Sporulation            | 0.72 (0.42 - 0.88)<br>df = 19, <i>t</i> = 4.52  | NA                                                 | 0.71 (0.52 - 0.84)<br>df = 38, <i>t</i> = 6.28  | 0.81 (0.60 -<br>0.92)<br>df = 21, <i>t</i> = 6.40 | 0.78 (0.59 -<br>0.89)<br>df = 28, <i>t</i> = 6.67 |  |  |  |

| RMSE                |                     |                |                   |           |                   |
|---------------------|---------------------|----------------|-------------------|-----------|-------------------|
| T <sub>opt</sub>    | Disease development | Fructification | Growth in culture | Infection | Spore germination |
| Disease development | -                   | -              | -                 | -         | -                 |
| Fructification      | 4.53                | -              | -                 | -         | -                 |
| Growth in culture   | 4.62                | 5.63           | -                 | -         | -                 |
| Infection           | 2.40                | 5.31           | 5.91              | -         | -                 |
| Spore germination   | 4.25                | 6.00           | 3.39              | 3.92      | -                 |
| Sporulation         | 4.47                | NA             | 4.62              | 3.76      | 4.93              |

Supplementary Table 4. Correlation coefficients among  $T_{range}$  values for different processes within species. 95% confidence intervals are given in parentheses. Degrees of freedom (df) and *t*-test statistics vs. zero correlation are given. *P*-values are not given due to multiplicity of tests. NA denotes insufficient data. Pearson correlations were two-sided.

| Correlation coef       | Correlation coefficients                        |                                                      |                                                 |                                                    |                                                    |  |  |  |
|------------------------|-------------------------------------------------|------------------------------------------------------|-------------------------------------------------|----------------------------------------------------|----------------------------------------------------|--|--|--|
| T <sub>opt</sub>       | Disease<br>development                          | Fructification                                       | Growth in culture                               | Infection                                          | Spore germination                                  |  |  |  |
| Disease<br>development | -                                               | -                                                    | -                                               | -                                                  | -                                                  |  |  |  |
| Fructification         | 0.46 (-0.24 - 0.84)<br>df = 8, <i>t</i> = 1.45  | -                                                    | -                                               | -                                                  | -                                                  |  |  |  |
| Growth in culture      | 0.24 (-0.03 - 0.47)<br>df = 54, <i>t</i> = 1.80 | -0.05 (-0.42 -<br>0.33)<br>df = 26, <i>t</i> = -0.26 | -                                               | -                                                  | -                                                  |  |  |  |
| Infection              | 0.91 (0.85 - 0.95)<br>df = 44, <i>t</i> = 14.82 | 0.34 (-0.36 -<br>0.80)<br>df = 8, <i>t</i> = 1.04    | 0.27 (-0.03 - 0.52)<br>df = 42, <i>t</i> = 1.80 | -                                                  | -                                                  |  |  |  |
| Spore<br>germination   | 0.39 (0.06 - 0.64)<br>df = 32, <i>t</i> = 2.39  | 0.25 (-0.32 –<br>0.69)<br>df = 12, <i>t</i> = 0.91   | 0.40 (0.21 - 0.57)<br>df = 82, <i>t</i> = 3.99  | 0.29 (-0.03 -<br>0.55)<br>df = 37, <i>t</i> = 1.83 | -                                                  |  |  |  |
| Sporulation            | 0.46 (-0.05 - 0.78)<br>df = 14, <i>t</i> = 1.94 | NA                                                   | 0.57 (0.29 - 0.76)<br>df = 33, <i>t</i> = 3.96  | 0.29 (-0.22 -<br>0.68)<br>df = 15, <i>t</i> = 1.18 | 0.38 (-0.04 -<br>0.68)<br>df = 21, <i>t</i> = 1.87 |  |  |  |

Supplementary Table 5. Correlation between abiotic niche breadth and biotic niche breadth.

Abiotic niche breadth was estimated as  $T_{range}$  or  $T_{range0.5}$ , and biotic niche breadth as  $log_{10+1}$ transformed host phylogenetic diversity calculated from either the processed or unprocessed host phylogeny. Parameter estimate, 95% confidence intervals, and *t*-test statistics vs. zero correlation are given. Pearson correlations were two-sided. The Holm-Bonferroni adjusted significance level was < 0.013, i.e. no null hypotheses of Cor = 0 were rejected.

| T <sub>range</sub> / processed host phylogeny |        |               |     |       |       |  |  |
|-----------------------------------------------|--------|---------------|-----|-------|-------|--|--|
| Process                                       | Cor    | 95% CI        | df  | t     | р     |  |  |
| Disease development                           | 0.203  | -0.056, 0.436 | 57  | 1.56  | 0.12  |  |  |
| Fructification                                | 0.039  | -0.389, 0.453 | 20  | 0.17  | 0.86  |  |  |
| Growth in culture                             | 0.139  | 0.004, 0.270  | 207 | 2.02  | 0.044 |  |  |
| Infection                                     | -0.011 | -0.270, 0.251 | 55  | -0.08 | 0.94  |  |  |
| Spore germination                             | 0.208  | 0.017, 0.385  | 103 | 2.16  | 0.033 |  |  |
| Sporulation                                   | -0.048 | -0.435, 0.354 | 23  | -0.23 | 0.82  |  |  |

|                     | T <sub>range</sub> / unprocessed host phylogeny |               |     |       |       |  |  |  |
|---------------------|-------------------------------------------------|---------------|-----|-------|-------|--|--|--|
| Process             | Cor                                             | 95% CI        | df  | t     | р     |  |  |  |
| Disease development | 0.247                                           | -0.010, 0.473 | 57  | 1.93  | 0.059 |  |  |  |
| Fructification      | -0.081                                          | -0.486, 0.353 | 20  | -0.36 | 0.72  |  |  |  |
| Growth in culture   | 0.174                                           | 0.038, 0.304  | 202 | 2.51  | 0.013 |  |  |  |
| Infection           | 0.038                                           | -0.225, 0.296 | 55  | 0.28  | 0.78  |  |  |  |
| Spore germination   | 0.212                                           | 0.021, 0.389  | 102 | 2.20  | 0.03  |  |  |  |
| Sporulation         | -0.087                                          | -0.466, 0.319 | 23  | -0.42 | 0.68  |  |  |  |

|                     | Trange0.5 / processed host phylogeny |               |     |       |      |  |  |  |
|---------------------|--------------------------------------|---------------|-----|-------|------|--|--|--|
| Process             | Cor                                  | 95% CI        | df  | t     | р    |  |  |  |
| Disease development | 0.133                                | -0.142, 0.389 | 51  | 0.96  | 0.34 |  |  |  |
| Fructification      | -0.259                               | -0.658, 0.253 | 15  | -1.04 | 0.32 |  |  |  |
| Growth in culture   | 0.027                                | -0.112, 0.165 | 198 | 0.38  | 0.70 |  |  |  |
| Infection           | 0.015                                | -0.265, 0.292 | 48  | 0.10  | 0.92 |  |  |  |
| Spore germination   | 0.053                                | -0.146, 0.248 | 97  | 0.53  | 0.60 |  |  |  |
| Sporulation         | 0.173                                | -0.268, 0.554 | 20  | 0.78  | 0.44 |  |  |  |

|                     | $T_{range0.5}$ / unprocessed host phylogeny |               |     |       |      |  |  |  |
|---------------------|---------------------------------------------|---------------|-----|-------|------|--|--|--|
| Process             | Cor                                         | 95% CI        | df  | t     | р    |  |  |  |
| Disease development | 0.188                                       | -0.087, 0.436 | 51  | 1.36  | 0.18 |  |  |  |
| Fructification      | -0.264                                      | -0.661, 0.249 | 15  | -1.06 | 0.31 |  |  |  |
| Growth in culture   | 0.024                                       | -0.117, 0.164 | 193 | 0.33  | 0.74 |  |  |  |
| Infection           | -0.011                                      | -0.289, 0.268 | 48  | -0.08 | 0.94 |  |  |  |
| Spore germination   | 0.056                                       | -0.144, 0.252 | 96  | 0.55  | 0.58 |  |  |  |
| Sporulation         | 0.302                                       | -0.137, 0.642 | 20  | 1.41  | 0.17 |  |  |  |

Supplementary Table 6. Difference between temperature responses for growth in culture (GC) and other processes within species with ambiguous species records excluded. Medians with interquartile ranges (IQR) and sample size (*N*). Positive values indicate that the alternative process has a higher value than GC. Fungi and oomycetes are not differentiated because only a small number of pairwise comparisons were available for oomycetes.

| Response           | Process             | Median Difference (°C) | IQR           | Ν  |
|--------------------|---------------------|------------------------|---------------|----|
| T <sub>min</sub>   | Disease development | 2.0                    | 0.00, 5.05    | 61 |
|                    | Fructification      | 3.4                    | 1.50, 6.56    | 24 |
|                    | Infection           | 2.5                    | 0.00, 7.00    | 41 |
|                    | Spore germination   | 0.0                    | -2.05, 2.60   | 72 |
|                    | Sporulation         | 3.8                    | 0.89, 6.00    | 31 |
| T <sub>opt</sub>   | Disease development | -1.0                   | -3.87, 0.00   | 70 |
|                    | Fructification      | 0.0                    | -3.06, 0.71   | 27 |
|                    | Infection           | -2.0                   | -5.28, 0.00   | 61 |
|                    | Spore germination   | -0.2                   | -1.69, 1.03   | 95 |
|                    | Sporulation         | -1.2                   | -5.27, 0.00   | 34 |
| T <sub>max</sub>   | Disease development | -3.4                   | -5.25, -0.74  | 48 |
|                    | Fructification      | -2.4                   | -6.00, -0.50  | 27 |
|                    | Infection           | -3.3                   | -5.16, -0.15  | 45 |
|                    | Spore germination   | 0.3                    | -1.14, 2.00   | 75 |
|                    | Sporulation         | -3.0                   | -5.50, -1.00  | 29 |
| T <sub>range</sub> | Disease development | -6.0                   | -11.00, -1.97 | 44 |
|                    | Fructification      | -6.1                   | -12.67, -2.56 | 22 |
|                    | Infection           | -5.8                   | -10.30, -1.86 | 34 |
|                    | Spore germination   | 0.0                    | -3.56, 2.87   | 68 |
|                    | Sporulation         | -7.0                   | -9.50, -3.97  | 29 |
| Skew               | Disease development | -0.03                  | -0.14, 0.09   | 39 |
|                    | Fructification      | -0.07                  | -0.10, 0.03   | 15 |
|                    | Infection           | -0.03                  | -0.15, 0.08   | 32 |
|                    | Spore germination   | 0.00                   | -0.11, 0.07   | 63 |
|                    | Sporulation         | -0.09                  | -0.15, 0.04   | 25 |

Supplementary Table 7. Influence of possible data reporting uncertainties on within species differences between  $T_{opt}$  and  $T_{range}$  for growth in culture (GC) and other processes. Positive values indicate that the alternative process has a higher value than GC. Fungi and oomycetes are not differentiated because only a small number of pairwise comparisons were available for oomycetes. Cardinal temperatures were compared using two-sided *t*-tests due to large differences in sample size. The Holm-Bonferroni adjusted significance level was < 0.14, (i.e. p-values below 0.14 indicate the null hypothesis can be rejected).

| Response           | Process             | Difference (°C) | 95% CI        | df  | t     | p       |
|--------------------|---------------------|-----------------|---------------|-----|-------|---------|
| T <sub>opt</sub>   | Disease development | -2.1            | -3.00, -1.27  | 90  | -4.90 | 4.1e-06 |
|                    | Fructification      | -1.4            | -3.32, 0.48   | 34  | -1.52 | 0.14    |
|                    | Infection           | -3.0            | -4.10, -1.82  | 79  | -5.17 | 1.7e-06 |
|                    | Spore germination   | -0.20           | -0.82, 0.42   | 119 | -0.65 | 0.52    |
|                    | Sporulation         | -2.1            | -3.47, -0.82  | 39  | -3.28 | 0.0022  |
| T <sub>range</sub> | Disease development | -6.2            | -7.91, -4.47  | 55  | -7.22 | 1.6e-09 |
|                    | Fructification      | -9.0            | -12.19, -5.91 | 27  | -5.92 | 2.6e-06 |
|                    | Infection           | -6.1            | -7.91, -4.21  | 43  | -6.60 | 4.9e-08 |
|                    | Spore germination   | 0.60            | -0.69, 1.87   | 83  | 0.91  | 0.36    |
|                    | Sporulation         | -6.2            | -8.02, -4.47  | 34  | -7.15 | 2.9e-08 |

Supplementary Table 8. Correlation between abiotic niche breadth and biotic niche breadth with ambiguous species records excluded. Abiotic niche breadth was estimated as  $T_{range}$  and biotic niche breadth as  $log_{10+1}$ -transformed host phylogenetic diversity calculated from the processed host phylogeny. Parameter estimate and 95% confidence intervals are given. Pearson correlations were two-sided.

|                     | T <sub>range</sub> / processed host phylogeny |               |     |
|---------------------|-----------------------------------------------|---------------|-----|
| Process             | Cor                                           | 95% CI        | df  |
| Disease development | 0.202                                         | -0.087, 0.460 | 46  |
| Fructification      | 0.024                                         | -0.448, 0.486 | 16  |
| Growth in culture   | 0.145                                         | -0.003, 0.287 | 173 |
| Infection           | -0.101                                        | -0.377, 0.192 | 45  |
| Spore germination   | 0.262                                         | 0.063, 0.441  | 92  |
| Sporulation         | -0.262                                        | -0.616, 0.180 | 20  |

**Supplementary Table 9. Summary information for analysis of niche co-specialisation**. Note that host number refers to all pathogens identified in both the Togashi dataset and the Plantwise database (excluding hosts discussed in Methods section). However, pathogens included in analyses of niche co-specialisation (Pathogens identified) required at least one  $T_{range}$  or  $T_{range0.5}$  for at least one biological process in the Togashi dataset.

| Phylogeny   | Hosts in  | Hosts identified to | Hosts identified to | Temperature           | Pathogens  |
|-------------|-----------|---------------------|---------------------|-----------------------|------------|
|             | phylogeny | species             | genus               | range                 | identified |
| Unprocessed | 1016      | 914                 | 102                 | T <sub>range</sub>    | 259        |
| Unprocessed | 1016      | 914                 | 102                 | T <sub>range0.5</sub> | 246        |
| Processed   | 15,982    | 15,880              | 102                 | T <sub>range</sub>    | 264        |
| Processed   | 15,982    | 15,880              | 102                 | T <sub>range0.5</sub> | 251        |

Supplementary Table 10. Influence of data reporting uncertainties on correlation between abiotic niche breadth and biotic niche breadth. Abiotic niche breadth was estimated as  $T_{range}$  and biotic niche breadth as  $log_{10+1}$ -transformed host phylogenetic diversity calculated from the processed host phylogeny. Parameter estimate, 95% confidence intervals, and *t*-test statistics vs. zero correlation are given. Pearson correlations were two-sided.

| T <sub>range</sub> / processed host phylogeny |       |               |     |      |       |
|-----------------------------------------------|-------|---------------|-----|------|-------|
| Process                                       | Cor   | 95% CI        | df  | t    | р     |
| Disease development                           | 0.181 | -0.079, 0.418 | 57  | 1.39 | 0.17  |
| Fructification                                | 0.040 | -0.388, 0.454 | 20  | 0.18 | 0.86  |
| Growth in culture                             | 0.120 | -0.016, 0.252 | 207 | 1.74 | 0.084 |
| Infection                                     | 0.006 | -0.255, 0.266 | 55  | 0.04 | 0.97  |
| Spore germination                             | 0.165 | -0.028, 0.346 | 103 | 1.70 | 0.093 |
| Sporulation                                   | 0.009 | -0.388, 0.403 | 23  | 0.04 | 0.97  |

Supplementary Table 11. Pathogen species names updated in the Plantwise database to improve matching to the Togashi database. Pathogen species names were updated according to either the IF/SF or Mycobank databases. A pathogens name was only updated in the Plantwise database if the updated current name was present in the Togashi dataset. Authors of all updated species names above matched those in the Togashi dataset. Note that whilst all pathogens listed above were present in both the Togashi dataset and the Plantwise database, only those with  $T_{range}$  or  $T_{range0.5}$  cardinal temperature data were included in niche co-specialisation analyses. \* Listed on the IF/SF and Mycobank databases as *Phytophthora drechsleri* var. *cajani.* \*\* The European and Mediterranean Plant Protection Organization Global (EPPO) database notes *P. erythroseptica* var. *erythroseptica* as an alternative name of *P. erythroseptica* (https://gd.eppo.int/taxon/PHYTER) [accessed 6/3/2020]. \*\*\* Only Ustilago nuda f.sp. hordei was recorded in the Plantwise database for the species *U. nuda.* Hence, *U. nuda* in the Togashi dataset assigned hosts of *U. nuda f.sp. hordei* recorded in the Plantwise database.

| Species name in Plantwise database      | Updated species name           |
|-----------------------------------------|--------------------------------|
| Acremonium strictum                     | Sarocladium strictum           |
| Alternaria macrospora                   | Alternaria brassicae           |
| Ascochyta gossypii                      | Ascochyta gossypiicola         |
| Ascochyta pisi                          | Didymella pisi                 |
| Botryosphaeria obtusa                   | Peyronellaea obtusa            |
| Botryosphaeria ribis                    | Neofusicoccum ribis            |
| Cochliobolus heterostrophus             | Bipolaris maydis               |
| Cochliobolus miyabeanus                 | Bipolaris oryzae               |
| Cochliobolus nodulosus                  | Curvularia nodulosa            |
| Cochliobolus sativus                    | Bipolaris sorokiniana          |
| Cochliobolus stenospilus                | Bipolaris stenospila           |
| Diaporthe phaseolorum                   | Phomopsis phaseoli             |
| Diaporthe phaseolorum var. caulivora    | Phomopsis phaseoli             |
| Diaporthe phaseolorum var. meridionalis | Phomopsis phaseoli             |
| Diaporthe phaseolorum var. sojae        | Phomopsis phaseoli             |
| Diaporthe vaccinii                      | Phomopsis vaccinii             |
| Emericella nidulans                     | Aspergillus nidulans           |
| Fusarium coeruleum                      | Fusarium caeruleum             |
| Fusarium phaseoli                       | Neocosmospora phaseoli         |
| Geotrichum candidum                     | Dipodascus geotrichum          |
| Gibberella acuminata                    | Fusarium acuminatum            |
| Gibberella avenacea                     | Fusarium avenaceum             |
| Gibberella baccata                      | Fusarium lateritium            |
| Gibberella fujikuroi                    | Fusarium fujikuroi             |
| Gibberella fujikuroi var. subglutinans  | Fusarium fujikuroi             |
| Gibberella gordonii                     | Fusarium Iolii                 |
| Gibberella intricans                    | Fusarium gibbosum              |
| Gibberella pulicaris                    | Fusarium roseum                |
| Gibberella tricincta                    | Fusarium tricinctum            |
| Gibberella zeae                         | Fusarium graminearum           |
| Glomerella cingulata                    | Colletotrichum gloeosporioides |
| Glomerella tucumanensis                 | Colletotrichum falcatum        |
| Guignardia bidwellii                    | Phyllosticta ampelicida        |
| Guignardia citricarpa                   | Phyllosticta citricarpa        |
| Haematonectria haematococca             | Neocosmospora solani           |
| Helicobasidium brebissonii              | Helicobasidium purpureum       |
| Inonotus radiatus                       | Xanthoporia radiata            |
| Khuskia oryzae                          | Nigrospora oryzae              |
| Leptosphaeria coniothyrium              | Paraconiothyrium fuckelii      |
| Leptosphaeria sacchari                  | Epicoccum sorghinum            |
| Leucostoma persoonii                    | Cytospora leucostoma           |
| Magnaporthe grisea                      | Pyricularia grisea             |
| Magnaporthe salvinii                    | Nakataea oryzae                |
| Meria Iaricis                           | Rhabdocline Iaricis            |
| Monographella nivalis                   |                                |
| Mycosphaerella tragariae                | Ramularia grevilleana          |
| iviycosphaerella graminicola            |                                |
| Nycosphaerella pinodes                  | Diaymeila pinodes              |
| Necciria coccinea                       | rusarium lateritium            |
| Ivernatospora coryli                    | Eremonecium coryli             |
| iveoladraea alda                        | Νεοιαρίαεα Vagabunda           |

Olpidium brassicae Ophiostoma piceae . Passalora fulva Penicillium aurantiogriseum var. viridicatum Penicillium purpurogenum Penicillium rubrum Peronospora hyoscyami f.sp. tabacina Pestalotiopsis theae Phoma destructiva Phoma destructiva Phoma pinodella Phoma tracheiphila Phytophthora drechsleri f.sp. cajani\* Phytophthora erythroseptica var. erythroseptica\*\* Pilidiella diplodiella Pleospora betae Pleospora herbarum Porodaedalea pini Pyrenochaeta terrestris Pythium debaryanum Pythium spinosum Pythium splendens Pythium ultimum Pythium vexans Setosphaeria monoceras Setosphaeria turcica Sphacelotheca reiliana Thanatephorus cucumeris . Thielaviopsis basicola Tolyposporium ehrenbergii Uromyces trifolii Ustilago nuda f.sp. hordei\*\*\* Valsa mali Valsa sordida

Olpidiaster brassicae Pesotum piceae Fulvia fulva Penicillium aurantiogriseum Talaromyces purpureogenus Talaromyces ruber Peronospora hyoscyami Pseudopestalotiopsis theae Boeremia exigua Remotididymella destructiva Didymella pinodella Plenodomus tracheiphilus Phytophthora drechsleri Phytophthora erythroseptica Coniella diplodiella Pleospora bjoerlingii Stemphylium vesicarium Phellinus pini Setophoma terrestris Globisporangium debaryanum Globisporangium spinosum Globisporangium splendens Globisporangium ultimum Phytopythium vexans Exserohilum monoceras Exserohilum turcicum Sporisorium reilianum Rhizoctonia solani Berkeleyomyces basicola Anthracocystis ehrenbergii Uromyces trifolii-repentis Ustilago nuda Cytospora mali Cytospora chrysosperma

**Supplementary Table 12. Host names updated in the Plantwise database**. See Methods for details of how hosts were renamed. Family Chenopodiaceae was absent from S.PhyloMaker. Rather than update this family name, we instead assumed Chenopodiaceae included *Allenrolfea, Aphanisma, Arthrocnemum, Atriplex, Axyris, Bassia, Beta, Camphorosma, Chenopodium, Corispermum, Cycloloma, Dysphania, Enchylaena, Endolepis, Exomis, Grayia, Halimione, Halocnemum, Halogeton, Krascheninnikovia, Maireana, Microtea, Monolepis, Nitrophila, Polycnemum, Proatriplex, Salicornia, Salsola, Sarcobatus, Sarcocornia, Spinacia, Suaeda, Suckleya, and Zuckia genera (https://plants.usda.gov/classification.html) [accessed 16/5/2020]. For all hybrid (X) species, we assumed that species names matched between the Plantwise database and The Plant List, even if X was missing from species names recorded in the Plantwise database. \* Only genus-level records were updated.* 

| Host name in the Plantwise database | Corrected host name for phylogeny construction |
|-------------------------------------|------------------------------------------------|
| Abies borisii-regis                 | Abies X borisii-regis                          |
| Acroptilon repens                   | Rhaponticum repens                             |
| Allium chinense                     | Allium tuberosum                               |
| Allium porrum                       | Allium ampeloprasum                            |
| Alnus viridis                       | Alnus alnobetula                               |
| Anthoxanthum puelii                 | Anthoxanthum aristatum                         |
| Aster ericoides                     | Symphyotrichum ericoides                       |
| Brassica chinensis                  | Brassica rapa                                  |
| Brassica oleracea var. botrytis     | Brassica cretica                               |
| Brassica oleracea var. italica      | Brassica cretica                               |
| Brassica pekinensis                 | Brassica rapa                                  |
| Capsicum frutescens                 | Capsicum annuum                                |
| Cassia obtusifolia                  | Senna obtusifolia                              |
| Centaurea cyanus                    | Cyanus segetum                                 |
| Chamomilla recutita                 | Matricaria chamomilla                          |
| Chenopodium ambrosioides            | Dysphania ambrosioides                         |
| Chrysanthemum frutescens            | Argyranthemum frutescens                       |
| Cinnamomum zeylanicum               | Cinnamomum verum                               |
| Cissus rhombifolia                  | Cissus alata                                   |
| Citrus aurantium                    | Citrus X aurantium                             |
| Citrus bergamia                     | Citrus limon                                   |
| Citrus deliciosa                    | Citrus reticulata                              |
| Citrus limonia                      | Citrus limon                                   |
| Citrus macrophylla                  | Citrus aurantiifolia                           |
| Citrus unshiu                       | Citrus reticulata                              |
| Coleus*                             | Plectranthus*                                  |
| Conyza canadensis                   | Erigeron canadensis                            |
| Coronilla varia                     | Securigera varia                               |
| Crambe abyssinica                   | Crambe hispanica                               |
| Crocosmia crocosmiiflora            | Crocosmia X crocosmiiflora                     |
| Dioscorea batatas                   | Dioscorea polystachya                          |
| Dioscorea rotundata                 | Dioscorea cayennensis                          |
| Dizygotheca*                        | Schefflera*                                    |
| Dracaena deremensis                 | Dracaena fragrans                              |
| Eucalyptus calophylla               | Corymbia calophylla                            |
| Eucalyptus citriodora               | Corymbia citriodora                            |
| Eutrema wasabi                      | Eutrema japonicum                              |
| Fragaria ananassa                   | Fragaria X ananassa                            |
| Garcinia mangostana                 | Garcinia X mangostana                          |
| Gleditsia caspica                   | Gleditsia caspia                               |
| Glycine soja                        | Glycine max                                    |
| Hippophae rhamnoides                | Elaeagnus rhamnoides                           |
| Kalanchoe pinnata                   | Bryophyllum pinnatum                           |
| Larix lubarskii                     | Larix X lubarskii                              |
| Lithocarpus densiflorus             | Notholithocarpus densiflorus                   |
| Luffa aegyptiaca                    | Lutta cylindrica                               |
| Malus prunifolia                    | Malus X prunifolia                             |
| Medicago denticulata                | Medicago polymorpha                            |
| Melilotus alba                      | Melilotus albus                                |
| Mentha piperita                     | Mentha X piperita                              |
| Michelia compressa                  | Magnolia compressa                             |
| Michelia doltsopa                   | Magnolia doltsopa                              |
| Musa paradisiaca                    | Musa X paradisiaca                             |

Elymus smithii

Pascopyrum smithii

| Pharbitis nil              | lpomoea nil            |
|----------------------------|------------------------|
| Pharbitis purpurea         | lpomoea purpurea       |
| Photinia fraseri           | Photinia X fraseri     |
| Poncirus trifoliata        | Citrus trifoliata      |
| Poncirus*                  | Citrus*                |
| Populus canadensis         | Populus X canadensis   |
| Populus maximowiczii       | Populus suaveolens     |
| Populus tomentosa          | Populus X tomentosa    |
| Quamoclit vulgaris         | Ipomoea quamoclit      |
| Raphanus sativus           | Raphanus raphanistrum  |
| Rhamnus francula           | Frangula alnus         |
| Rhamnus purshiana          | Frangula purshiana     |
| Rheum hvbridum             | Rheum X hvbridum       |
| Rubus fruticosus           | Rubus plicatus         |
| Salix matsudana            | Salix babylonica       |
| Samanea saman              | Albizia saman          |
| Sesbania exaltata          | Sesbania herbacea      |
| Solanum gilo               | Solanum aethiopicum    |
| Solanum nigrum             | Solanum americanum     |
| Sorghum almum              | Sorghum X almum        |
| Sorghum dochna             | Sorghum bicolor        |
| Sorghum sudanense          | Sorghum X drummondii   |
| Spiraea bumalda            | Spiraea X bumalda      |
| Sterculia urens            | Firmiana simplex       |
| Tagetes patula             | Tagetes erecta         |
| Thymus citriodorus         | Thymus X citriodorus   |
| Triticum dicoccum          | Triticum dicoccon      |
| Ulmus procera              | Ulmus minor            |
| Vaccinium oxycoccus        | Vaccinium microcarpum  |
| Xanthocyparis nootkatensis | Cupressus nootkatensis |
| Zanthoxylum piperitum      | Zanthoxylum bungeanum  |
| Ziziphus mauritiana        | Ziziphus jujuba        |

**Supplementary Table 13**. Influence of  $T_{max}$  reporting uncertainties on phylogenetic signal reported for *Phytophthora* species.

| Phylogeny          | Blomberg's K | p     |
|--------------------|--------------|-------|
| Bayesian           | 0.574        | 0.001 |
| Maximum likelihood | 0.256        | 0.001 |
| Maximum Parsimony  | 1.24         | 0.001 |

#### References

- 1. Yang, X., Tyler, B. M. & Hong, C. An expanded phylogeny for the genus Phytophthora. *IMA Fungus* **8**, 355–384 (2017).
- 2. Togashi, K. Biological characters of plant pathogens: temperature relations. (Meibundo, 1949).
- 3. Magarey, R. D., Sutton, T. B. & Thayer, C. L. A Simple Generic Infection Model for Foliar Fungal Plant Pathogens. *Phytopathology*<sup>™</sup> **95**, 92–100 (2005).
- 4. Martin, F. N., Abad, Z. G., Balci, Y. & Ivors, K. Identification and Detection of Phytophthora: Reviewing Our Progress, Identifying Our Needs. *Plant Disease* **96**, 1080–1103 (2012).