Supplementary information:

Supplementary figures

Supplementary Fig. 1: a) Whi5-inducible cells carrying Cdc10-mCitrine grown in the absence (red circles, 50 cells) and presence of 30 nM β -estradiol (blue squares, 50 cells) were imaged within one minute with epifluorescence (single image) and confocal microscopy (10 μ m Z-stack, 1 μ m

steps between focal planes) using a hybrid Zeiss LSM800 setup. Septin ring diameters were determined by manually drawing line profiles along septin rings in both epifluorescence images and maximum projections of the confocal Z-stacks. For each cell, the ring diameter as determined from epifluorescence microscopy is shown as a function of the ring diameter determined from confocal microscopy. b) Whi5-inducible cells carrying Cdc10-mCitrine grown in the absence (red circles, 50 cells) and presence of 30 nM β -estradiol (blue squares, 50 cells) were imaged with the Nikon Eclipse setup at lower (5%) and higher (40%) LED intensity compared to settings chosen for the experiments shown in the main text (20%). Septin ring diameters were determined by manually drawing line profiles along septin rings. For each cell, the ring diameter as determined from epifluorescence microscopy at high illumination intensity is shown as a function of the ring diameter determined at low intensity. c) Cell volume as determined from phase contrast images is shown as a function of cell volume determined from 3D-reconstruction based on confocal fluorescence microscopy for cells expressing mKate2 from an ACT1 promoter. Buds (black circles, n=49) and G1 and mother cells not including the bud (green squares, n=138) were included in the analysis. d) Both 3D reconstructed volume (53.4 fL, red) and volume approximated from phase contrast (56 fL, blue) is shown for a representative cell. Data shown in a-d are based on single experiments. e) Median total mKate2 fluorescence in mother cells is shown as a function of median mother cell volume based on phase contrast during the time when the septin ring is detected in cells expressing mKate2 from an ACT1 promoter (n=89 pooled from 3 independent experiments). To account for intensity variations across experiments, mKate2 fluorescence was normalized for each experiment on the average fluorescence at the mean cell volume. Solid lines in a-c) and e) show linear fits, dashed lines show identity lines for comparison. f) Raw data corresponding to Fig. 1e. While Fig 1e shows for each cell the median volume and ring diameter during the time when the ring is detected, raw data for all time points are shown here. Error bars denote means and standard errors. Cells were grown on SCGE. Source data are provided as a Source Data file.

Supplementary Fig. 2: a-c) The median ring diameter (thick lines) as quantified from mCitrinetagged Cdc10 (a), Bni5 (b), and Myo1 (c) is shown as a function of the time since the first frame where the ring was detected for analysis. Error bars show 25 and 75 percentiles. Data are shown for the time ranges during which at least 15 cells of the respective condition were included in the analysis. In the case of Myo1, we typically observe ring contraction at the end of the cell cycle. However, due to fast contraction dynamics and the rather low time resolution (3 min frame rate), this usually only affects the last timepoints analyzed and has therefore no strong effect on the calculation of the median ring diameter during Myo1 presence. **d-f**) Linear plots corresponding to Fig. 2c,e,g showing ring diameter as a function of cell volume. g-i) Median ring diameter during the time when the ring is detected is shown as a function of the median cell length along the major axis. Data from different conditions are pooled and linear fits, as well as binned means with standard error, are shown for each tagged protein. j-l) Median total fluorescence intensity (integrated line profile intensity after background subtraction) during the time when the ring is detected is shown as a function of median ring diameter during that time (red squares: 0 nM β estradiol; green circles: wild-type; blue diamonds: 30 nM β -estradiol). Data from different conditions are pooled and binned means with standard error are shown for each tagged protein. **m-o)** Median total fluorescence (thick lines) is shown as a function of the time since the first frame where the ring was detected for analysis. Error bars show 25 and 75 percentiles. Data are shown for the time ranges during which at least 15 cells of the respective condition were included in the analysis. Solid lines in d)-l) show linear fits to the pooled data. Cells were grown on SCGE. Source data are provided as a Source Data file.

Supplementary Fig. 3: Septin ring diameter based on Cdc10-mCitrine fluorescence is shown as a function of cell volume for *bem2* Δ cells and compared to data obtained for wild-type cells in Fig 3a (grey). Cell volume was controlled through β -estradiol-dependent expression of Whi5 (red squares: 0 nM β -estradiol; green circles: non-inducible-Whi5 strain; blue: 60 nM (diamonds), 120 nM β -estradiol (hexagrams)). For each cell, the median ring diameter during the time when the ring is detected is shown as a function of the median cell volume during that time. Data from different conditions are pooled (166 cells pooled from 4 independent experiments) and a linear fit to the double-logarithmic data as well as binned means with standard error are shown. Source data are provided as a Source Data file.

Supplementary Fig. 4: a-d) The lengths of the major (a-b) and minor (c-d) axes of the Cdc42-GTP cluster at peak intensity in wild-type (a&c; squares: 0 nM β -estradiol, diamonds: 30 nM β -estradiol) and *bni1* Δ (b&d; circles: 0 nM β -estradiol, pentagrams: 30 nM β -estradiol) cells carrying inducible Whi5 shown in Fig. 9c increase with mother cell volume at bud emergence. **e-f)** The length of the Cdc42-GTP cluster measured from the fluorescence intensity line profile along the cell contour is correlated with the length of the major axis of the Cdc42-GTP cluster for wild-type (e) and *bni1* Δ (f) cells. Data from different conditions are pooled and binned means with standard error are shown for each tagged protein. Cells were grown on SCGE. Source data are provided as a Source Data file.

<u>Strain list</u>

Name	Genotype	Origin	Figures
KSY195-1	Mat α; ADE2 cdc10::CDC10-mCitrine-ADH1term-HIS3	This study	2, 3-6,
			8, S1-3
KSY236-2	-2 Mat a; ADE2 cdc10::CDC10-mCitrine-ADH1term-TRP1		2, 5, 8,
			S2
KSY234-1	Mat a; ADE2 his3::LexA-ER-AD-TF-HIS3 whi5::kanMX6-	This study	2, 3, 5,
	LexApr-WHI5-ADH1term-LEU2 cdc10::CDC10-mCitrine-		6, 8,
	ADH1term-TRP1		S1-3
KSY196-1	Mat α; ADE2, bni5::BNI5-mCitrine-ADH1term-HIS3This st		2, S2
KSY203	Mat α; ADE2 his3::LexA-ER-AD-TF-HIS3 whi5::kanMX6-	This study	2, S2
	LexApr-WHI5-mCherry-ADH1term -LEU2 bni5::BNI5-		
	mCitrine-ADH1term-HIS3		
KSY121-1a	Mat α; ADE2 myo1::MYO1-mCitrine-ADH1term-HIS3	This study	2, 5, S2
KSY197-2	Mat a; ADE2 myo1::MYO1-mCitrine-ADH1term-TRP1 This study		2, 5, S2
KSY192-1	Mat a; ADE2 his3::LexA-ER-AD-TF-HIS3 whi5::kanMX6-	This study	2, S2
	LexApr-WHI5-mCherry-ADH1term-LEU2 myo1::MYO1-		
	mCitrine-ADH1term-HIS3		
KSY242-2	Mat α ; ADE2 TRP1 cln1 Δ cln2 Δ cln3::LEU2 LexApr-CLN1-	This study	3
	LEU2 his3::LexA-ER-AD-HIS3 cdc10::CDC10-mCitrine-		
	ADH1term-URA3		
KSY287-9	Mat α; ADE2 cdc10::CDC10-mCitrine-ADH1term-HIS3	This study	3
	cln3Δ::KlacURA3		

KSY286-15	Mat α; ADE2 cdc10::CDC10-mCitrine-ADH1term-HIS3		3
	cln1∆::KlacURA3		
KSY288-3	Mat α; ADE2 cdc10::CDC10-mCitrine-ADH1term-HIS3	This study	3, 8
	clb5∆::KlacURA3		
KSY237-1	Mat a/α; ADE2/ADE2 cdc10::CDC10-mCitrine-ADH1term-	This study	5,7
	HIS3/cdc10::CDC10-mCitrine-ADH1term-TRP1		
KSY199-1	Mat a/α; ADE2/ADE2 myo1::MYO1-mCitrine- ADH1term-	This study	5
	HIS3/myo1::MYO1-mCitrine-ADH1term-TRP1		
KSY243-2	Mat a/α; ADE2/ADE2 his3/his3::LexA-ER-AD-TF-HIS3	This study	5,7
	WHI5/whi5::kanMX6-LexApr-WHI5-ADH1term-LEU2		
	cdc10::CDC10-mCitrine-ADH1term-TRP1/cdc10:: CDC10-		
	mCitr-ADH1term-URA3		
KSY258-1&2	Mat α; ADE2 cdc10::CDC10-mCitrine-ADH1term-HIS3	This study	6
	rga1∆::KlacURA3		
KSY264-2	Mat α; ADE2 cdc10::CDC10-mCitrine-ADH1term-HIS3		6
	rga1∆::KlacURA3 rga2∆::CglaTRP1		
KSY267-1&2	7-1&2 Mat α; ADE2 cdc10::CDC10-mCitrine-ADH1term-HIS3		6
	rga1∆::KlacURA3 rga2∆::CglaTRP1 bem3∆::CglaLEU2		
KSY238-1a	-1a Mat α; ADE2 bem2::natMX6 cdc10::CDC10-mCitrine-		6
	ADH1term-HIS3		
KSY239-4	Mat a/α; ADE2/ADE2 cdc10::CDC10-mCitrine-ADH1term-	This study	7
	HIS3/cdc10::CDC10-mCitrine-ADH1term-TRP1		
	CDC42/cdc42::KlacURA3		
KSY268-1&2	Mat a/α; ADE2/ADE2 cdc10Δ::klacURA3/cdc10::CDC10-	This study	7
	mCitrine-ADH1term-TRP1		
KSY260-2	2 Mat α; ADE2 cdc10::CDC10-mCitrine-ADH1term-HIS3		8
	bni1Δ::KlacURA3		
KSY266-1	Mat α; ADE2 cdc10::CDC10-mCitrine-ADH1term-HIS3	This study	8
	arp8Δ::KlacURA3		

KSY284-5&6	Mat α; ADE2 cdc10::CDC10-mCitrine-ADH1term-HIS3	This study	8
	och1Δ::KlacURA3		
KSY265-1	Mat α; ADE2 cdc10::CDC10-mCitrine-ADH1term-HIS3	This study	8
	spt20∆::KlacURA3		
KSY235-4	Mat a; ADE2 his3::LexA-ER-AD-TF-HIS3 whi5::kanMX6-	This study	9, S4
	LexApr-WHI5-ADH1term-LEU2 cdc10::CDC10-mCitrine-		
	ADH1term-TRP1 ura3::YIp211-GIC2PBD(W23A)-		
	1.5tdTomato-v2-URA3		
KSY269-5&6	Mat a; ADE2 his3::LexA-ER-AD-TF-HIS3 whi5::kanMX6-	This study	9, S4
	LexApr-WHI5-ADH1term-LEU2 cdc10::CDC10-mCitrine-		
	ADH1term-TRP1 ura3::Ylp211-GIC2PBD(W23A)-		
	1.5tdTomato-v2-URA3 bni1∆::natMX6		
KSY282-2	Mat a; ADE2 cdc10::CDC10-mCitrine-ADH1term-TRP1	This study	S1
	HIS3::Act1pr-mKate2-ADH1term-HIS3		
KSY281-10	Mat a; ADE2 bem2::natMX6 his3::LexA-ER-AD-TF-HIS3	This study	S3
	whi5::kanMX6-LexApr-WHI5-ADH1term-LEU2		
	cdc10::CDC10-mCitrine-ADH1term-TRP1,		

<u>Primer list</u>

Name	Descriptive name	Sequence
KP145	Sacl_ADH1term_R	accGAGCTCCCGGTAGAGGTGTGGTCAATAAGAGC
KP155	Sacl-Myol-5201_F	cgcGAGCTCCAAGGAATGGGGAGTTGGTTAAGACATTAC
KP156	BamHI Myo1 B	cacGGATCCACTGAAAATTTTACTCTGTGCATTGTTACTATCAATATTT
	вашні_муот_к	TTCG
KP180	mCitr_200_F_qPCR	CGGCCTGATGTGCTTCGCC
KP181	mCitr_400_R_qPCR	CCTCCTTGAAGTCGATGCCC
KP184	Myo1_4500_F	GAACATATTCATGCACTAAAACAAGCTGAAGAGG
KP254	SacI-Cdc10-481_F	cgcGAGCTCGACGTTGAAGCCTTGAAAAGATTGACAGAAATAG
KP255	BamHI_Cdc10_R	cacGGATCCACGTTGAATGGCGTTGCTAGACATATGAG
KP258	Sacl-Bni5-755_F	cgcGAGCTCGTTTAGCTGATCAAACACCCCATGACG
KP259	BamHI_Bni5_R	cacGGATCCTTTAGTTCCAATCCAAAATTGGCCATTTTCGCC
KP265	Cdc10_F	ATGGATCCTCTCAGCTCAGTACAGCC
KP266	Bni5_F	ATGGGCTTGGACCAGGACAAGATAAAGAAG
		CCTGAGGAGATAGGTTAACAAACGAATTAGAGAAGCAAAACTTATA
KP364	Cdc42-80bphom-F1	AAACAAGAAATAAACGTATTAGCTCTTCCACAAAcggatccccgggttaatt
		аа
KP365	Cdc42-80bphom-R1	GATAATAAAAGGATAGGAAGGTGTATATATAAGTTAATTTTAGATAT
		AGATTAAGAAAAGATGGGCATATACTAATATGAgaattcgagctcgtttaa
		ac
KP366	Cdc42seq_F	GCAATAGGTTTCCTTTGTCG
KP367	Cdc42seq_R	GAGAATCAACTCTGAGCAAAGC
KD368	Rom2 66babam E	GAACACACGGTCGTCGTGCCTTTTCTGGATAGACACAAAAAAAA
KI 300	Bemz-005phom-1	ATAACGAAGCAGGAGTCTA GTTTAGCTTGCCTTGTCCC
KD360	Rom2 75babom R	CTCAAACCCTCGATAGGCGGGACCAAATTTTTTCTCTCTC
KI 303	Beniz-755phom-K	ATTGTATACATTTACCACGAAAATTGT ACTGGATGGCGGCG
KP370	Bem2seq_F	CGTTCCCGCTATACGC
KP371	Bem2seq_R	GGAGAAGAGGCAGAATTCC
KP429	Rga1-74bp-F1	CTCTATTATAGCTTTTTGTACAAGACAAGGATAGCTGATTCAGGTACT
KI 423		AGTGGTGGAGAGAGCGGCATATTAAAcggatccccgggttaattaa
		CCTGCTTAAGTCTGCGATTAAAAAAAAAACGTTTCGATACAGTTCATA
KP430	Rga1-80bp-R1	TAAGGCGGCTCAATGCAGAACCGAGGATAGCGgaattcgagctcgtttaaa
		С
КР434	Bni1_71bp_F1	CACGCCACATAAAGAAGGCACCTGAACCTTTTCAACAAACGAGAAGC
KI 4 34		AAGAAAGGAAGAAGGAAAGGAAcggatccccgggttaattaa
KP435	Bni1_80bp_R1	CGTGACTATTTCTTTGTACTAGTGCTTGTTTGGATGTTTGTT
117433		TACTGTTGTCATAATTTTTGGTTTAATATTgaattcgagctcgtttaaac
KP442	Rga1_seq_F	GATCAGTCAACATTCTTGATCA
KP443	Rga1_seq_R	CAACGCTTACAGGTGTCC
KP446	Bni1_seq_F	CGTCTCATACAGTTGGGC
KP447	Bni1_seq_R	CACATGGAAACAATGGCAC
		GATAAAAGAATGAGAAAAGTAGCCTTCAAGAGGATTAGGAAGGA
KP454	Spt20_80bp_F1	AGTTACGGTTAATTTGCGCCTATATATTTCAGGGcggatccccgggttaatt
		аа

KP455	Spt20_Cterm64bphom_R1	TTATGACATTGTAGTAGAAGAGGGCGTGCTACTTGCGCTCTGTTTCTT
		CTTAGTCATTCTTTTCgaattcgagctcgtttaaac
KP459	Rga2-78bp-F1	CCAAGAGTTCATTGTACTTTTAATAAAGTGAAATATAACGTAGCATCT
		CAAGAGCAAGGAGATTTTGATGAAAAAAATcggatccccgggttaattaa
КР460	Rga2-80bp-R1	CTATTTTCTTACTTTATTCTTTTTCATATGATTTCTTATTTAATCTATCC
		TATGTTTATTTAACTTTTGCAAATCTGTAgaattcgagctcgtttaaac
KP461	Bem3-80bp-F1	CACGTTTGTTGAAACACTGGCTGCTAGGAGTATCTGTGTGTATATTCT
		AGAATAAACTCACACTCAACTAACAGCACGCAcggatccccgggttaattaa
KP462	Bem3-80bp-R1	CTCTATACATCTCGCCCTCTTTCTATCATTAAATCAATGGAGGTTTACT
		GGCAACGTTATATTTCTACAATTTTAGACCAgaattcgagctcgtttaaac
KP463	Rga2_seq_F	GAAAATTGGCATTCCTTGGAG
KP464	Rga2_seq_R	CCAAGAAAAGACTTCACCAC
KP465	Spt20_seq_F	CCGCACCATTAATAACTAACTAAC
KP466	Spt20_seq_R	GTGAGATGCCCAAGTGAG
KP467	Arp8_seq_F	GCAGCAACTTTGGGTCC
KP468	Arp8_seq_R	GGACGCCTTCAAGTTGTGC
KD4CO		TACTTAACTTTTTCAGGCAAAGACAAGAAAATACAAGGCCAAGCCC
KP469		CACGGTTACTACAAGCACTCTATAAATATATTAcggatccccgggttaattaa
10170		GTTACGGTGTTTTCATATAGAATAATTTGAGAATTCTTAATAACATAA
КР470		GATATATAATCACCACCATTCTTATGAGATgaattcgagctcgtttaaac
KP471	Cdc10_seq_F	GCTTTCTGAATGCTTGCG
KP472	Cdc10_seq_R	CAAACGAGAAGGTGATAGCTG
KP473	Bem3_seq_F	CCGTTTACCTTTGTGTGTTAG
KP474	Bem3_seq_R	CGACCATTTGGTCAAGAAG
	Bni1_71bphom-F	CACGCCACATAAAGAAGGCACCTGAACCTTTTCAACAAACGAGAAGC
KP475		AAGAAAGGAAGAAGGAAAGGAA GTTTAGCTTGCCTTGTCCC
KD470		CGTGACTATTTCTTTGTACTAGTGCTTGTTTGGATGTTTGTT
KP470	впіт_воррноті-к	TACTGTTGTCATAATTTTTGGTTTAATATT ACTGGATGGCGGCG
VDE 22	Och1_78bp_F1	CTTTGATTCCGTTTTCATTTCAAGAGCAATAATAGCAATTTGGAAAAA
KP5ZZ		GAAAGCAAGTAAAAGAAAGAAGAGAGATCcggatccccgggttaattaa
		CATGATTAAGGATATGAAGAAGAAAGGAATAACTAGGAATAAATTTT
KP523	Och1_80bp_R1	ATTTAGAGAGGGTATGATGAAAGGAGAGCCTCGgaattcgagctcgtttaa
		ac
KP524	Och1_seq_F	GGTAGCTTGGTAGCCAC
KP525	Och1_seq_R	GCAGTGTTACAGAAGCACTG
KP538	Cln2 72hn E1	GCATTTCTTACATTCCATTGCATCTCCCTTTTACTCTCGTTCAAGACACT
KI 550		GATTTGATACGCTTTCTGTACGcggatccccgggttaattaa
KP539	Cln3 78hn B1	GATCATTAATGTATGTTAACGTATTTGCTTTGCAAATTTTAATTTATTT
KI 555		GTTGTTAAATGCATTTTTTTTTGTCGTTgaattcgagctcgtttaaac
KP540	Cln3_seq_F	CAAGCATCCATCCGAGTC
KP541	Cln3_seq_R	GTAATCGTATTTTAGGTTGTGC
KD517	Cln1_80bp_F1	CAATAATAGCAATTAAATAAAATAGCACTACCACCACTCCACTGCTCG
11 3 7 2		TTAGCTATTTCTGTAAAATAAATAAAAAGATCcggatccccgggttaattaa
КР5 43	Cln1_77bp_R1	GTCATTATTACTTACGATGGAAAAGCGTAGTATTCCGTTATTAATTA
		GTATATATGTAGGCTTGATGAGAAAATGGgaattcgagctcgtttaaac
KP544	Cln1_seq_F	CCAAGGAGTTCTTCGTTCG
KP545	Cln1_seq_R	GGTATATTACTATTCAGCTGGTTTC

КР550	Clb5_80bp_F1	CACAAAGCAAAATAAGCTTAATAATTAGCAGTAACGCGCTTTTCCCTG
		TATTTAAAGCCGCTGAACACCTTTACTGAACAcggatccccgggttaattaa
KP551	Clb5_70bp_R1	CCTTTTAGTTCAGCAAAAAGAAAAGAAAATGTAAAGAGTATGCGAAT
		TCATGAGCATTACTAGTACTAATgaattcgagctcgtttaaac
KP552	Clb5_seq_F	CTTGGAACTAATTCTTAAGCTTCTC
KP553	Clb5_seq_R	GATGATAATAGTAGTAATACTGGTGG