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1 Parameter fitting for viral decay models9

Equations (1) and (2) were numerically simulated using the Python (Python Software Foundation,10

Python Language Reference, version 2.7, available at https://www.python.org/) function scipy.integrate.odeint11

to quantify state variables, i.e. log10 V
pfu, log10 V

rna at measured time points. We fit equations (1)12

and (2) to the respective datasets using the Python function13

scipy.optimize.least squares for performing unconstrained optimization on variables employing14

Levenberg-Marquardt method (implemented as a flag method=’lm’). The initial concentrations of en-15

capsulated genomes and infectious virus in the first stage, V rna(0) and V pfu
1 (0), respectively, were sub-16

ject to estimation. The initial concentrations of infectious virus in the remaining stages V pfu
k=2,...,npfu

(0)17

were set to zero. The objective functions (SSRpfu) and (SSRrna) subject to minimization are given in18

bellow.19

Alternatively, analytical solutions of (1), i.e.,20

V rna(t) = V rna(0) exp

(
− 1

τrna
t

)
(S1)

and (2), following [1], i.e.,21

V pfu
k (t) = V pfu(0)

(
npfu

τpfu
t
)k−1

(k − 1)!
exp

(
−
npfu
τpfu

t

)
(S2)

can be considered to evaluate the state variables and objective function, with the initial concentrations22

of infectious virus and encapsulated genomes, V rna(0) and V pfu(0), respectively, subject to estimation.23

In [2], solution of this form was proposed for the state transition model for eclipse cells at high MOI24

infection, assuming that all cells are infected at the beginning of an infection.25

1.1 Encapsulated genomes26

We fit equation (1) to experimental data described in Materials and Methods (Decay curves) by mini-27

mizing the weighted sum of squared residuals (SSRrna) between the logarithm of the j-th measurement28

at the i-the time point log10D
rna
j (ti) and the respective logarithm of the solution log10 V

rna(ti) at the29

time point ti given as30

SSRrna =
∑
i,j

(
log10 V

rna(ti) − log10D
rna
j (ti)

σrna(ti)

)2

. (S3)

The weights were chosen to be the inverse of the sample standard deviations σrna(ti) of the log-31

experimental measures of total encapsulated genomes at each measured time ti.32
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1.2 Infectious virus33

We fit equations (2) to experimental data described in Materials and Methods (Decay curves) by mini-34

mizing the weighted sum of squared residuals (SSRpfu) between the logarithm of the j-th measurement35

at the i-th time point log10D
pfu
j (ti) and the respective logarithm of the solution log10

∑npfu

k=1 V
pfu
k (ti)36

at the time point ti given as37

SSRpfu =
∑
i,j

(
log10

∑npfu

k=1 V
pfu
k (ti) − log10D

pfu
j (ti)

σpfu(ti)

)2

, (S4)

The weights were chosen to be the inverse of the sample standard deviations σpfu(ti) of the log-38

experimental measures of infectious virus at each measured time ti.39

2 Weibull distributed decay of infectious ZIKV40

The loss of ZIKV infectivity was also modelled following the assumption that infectious virus degra-41

dation over time follows Weibull distribution, which can be mathematically expressed as [3, 7]:42

V (t) = V pfu
0 exp

[
−
(

t

τpfu

)D]
(S5)

where τpfu (measured in (h)) is an average time for an infectious virus to lose infectivity, D is the43

scaling parameter and V pfu
0 is the initial concentration of infectious virus.44

Equations (S5) were fit to experimental data described in Materials and Methods (Decay curves)45

as above with the objective function to be minimized given as46

SSRpfu =
∑
i,j

(
log10 V

pfu(ti) − log10D
pfu
j (ti)

σpfu(ti)

)2

. (S6)

The best-fit decay kinetics associated with the Weibull distribution model (S5) performed better47

in terms of R2 compared to that yielded by both, the exponential and gamma distribution decay48

models. However, the Weibull decay model did not perform better in terms of statistical significance49

computed using the MCMC-accepted parameters than the gamma distribution model (equation (2)50

in the main text) as p-value > 0.05 (details on the calculation of the p-value are given in section 451

below). Incorporating the Weibull distributed viral decay into the model of virus-cell dynamics (3)52

would be difficult, because the ‘age’ of each infectious unit needs to be followed over time. Thus, the53

gamma distribution decay model was favored. Table S1 gives the best-fit values and 95% CrIs for54

parameters in the model (S5). The 95% credible regions and parameter posterior distributions are in55

Figure S2a and the associated dynamics in Figure S2b.56

2.1 Parameter fitting for the main model (3)57

Equations (3)+(4) were numerically simulated using the Python function scipy.integrate.odeint to58

quantify state variables, i.e. log10 V
pfu
low , log10 V

pfures
low , log10 V

rna
low , log10 V

pfu
high, log10 V

pfures
high and log10 V

rna
high59

over the course of infection. Fitting equations (3) to the log of experimental data log10D
pfu
low, log10D

rna
low,60

log10D
pfu
high and log10D

rna
high was performed by minimizing the weighted sum of squared residuals SSR =61
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SSRlow
pfu + SSRlow

rna + SSRhigh
pfu + SSRhigh

rna , where62

SSRlow
pfu =

1

N low
pfu

8∑
i=1

3∑
j=1

 log10
∑npfu

k=1

(
V pfu
k,low(ti) + V

pfures
k, low (ti)

)
− log10D

pfu
j,low(ti)

σpfulow(ti)

2

,

SSRlow
rna =

1

N rna
low

3∑
i=1

3∑
j=1

(
log10 V

rna
low (ti) − log10D

rna
j,low(ti)

σrnalow(ti)

)2

,

SSRhigh
pfu =

1

Nhigh
pfu

8∑
i=1

3∑
j=1

 log10
∑npfu

k=1

(
V pfu
k,high(ti) + V

pfures
k, high(ti)

)
− log10D

pfu
j,high(ti)

σpfuhigh(ti)

2

,

SSRhigh
rna =

1

N rna
high

4∑
i=1

3∑
j=1

(
log10 V

rna
high(ti) − log10D

rna
j,high(ti)

σrnahigh(ti)

)2

,

(S7)

using the Python function scipy.optimize.least squares for performing optimization on vari-63

ables employing Levenberg-Marquardt method (unconstrained optimization implemented as a flag64

method=’lm’). The weights were chosen to be the inverse of the sample standard deviations of the65

log-experimental measures of infectious virus and encapsulated genomes σpfulow(ti), σ
rna
low(ti), σ

pfu
high(ti) and66

σrnahigh(ti) at each measured time ti of low and high MOI dataset. We summed over the total number67

of measurements of infectious virus Npfu
low and Npfu

high, and encapsulated genomes N rna
low and N rna

high. Since68

we excluded data points bellow the limit of detection, we accounted for different number of measure-69

ments of infectious virus and encapsulated genomes by normalizing against the respective number of70

measurements Npfu
low , Npfu

high, N rna
low and N rna

high.71

3 Virus sampling for quantification72

Each experimental measurement of infectious virus and encapsulated genome concentrations, V pfu
k ,73

k = 1, . . . , npfu and V rna, respectively, should be reduced by 6.5% to account for the supernatant74

extraction at each measured time. However, the amount of virus in such a small sample is rather75

negligible compared to the total viral load in the supernatant and thus has only negligible impact on the76

overall virus dynamics. To simulate the punctual extraction of the supernatant at measured times and77

to show that sampling has negligible effect on the viral dynamics, we stopped the numerical integration78

at each time t = 0h, 4h, 6h, 8h, 24h, 48h, 72h, 96h and subtract 6.5% out of the total concentration79

from each stage of infectious virus concentration V pfu
k , k = 1, . . . , npfu and encapsulated genome80

concentrations V rna and re-initiate the simulation with these reduced values as new initial conditions.81

This routine is repeated at every measured time point. We show the best-fit solution of the model82

(3)+(4) (best-fit parameter values are in Table 4) with and without sampling adjustment in Figure83

S3.84

4 MCMC computations and statistical analysis85

To infer posterior parameter distributions, we employed a Python module emcee [4], which is an86

implantation of Goodman and Weare’s Affine Invariant Markov chain Monte Carlo (MCMC) Ensemble87

sampler [5]. Twenty walkers were log-uniformly distributed within the close proximity of the best-fit88

parameter set to perform MCMC inference. A proposed step ~x was accepted or rejected with the89

acceptance probability exp−0.5×SSR(~x) (as in [6]), where SSR(~x) is the weightned sum of squared90

residuals between the solution of the model and experimental measurements. For viral decay models91

(1), (2) and (S5) we implemented a burn-in of 200 steps for each MCMC run. Another 1,000 steps92

were run, thus totalling in 20,000 parameter sets that were used to generate the posterior parameter93

3



distributions.94

In the case of the main model (3)+(4), we ran the MCMC process for 60,000 steps, totalling in95

1,200,000 parameter sets. The convergence of the MCMC samples was graphically inspected. Due96

to computational limitations, we performed thinning to reduce autocorrelation in MCMC chains and97

kept every tenth parameter set for each chain. The autocorrelation function (AFCk), calculated as98

AFCk =
sk
s0
, k ≥ 0, (S8)

where99

sk =
1

n

n∑
i=k+1

(yi − ȳ)(yi−k − ȳ), (S9)

and ȳ and s0 are the mean and variance of the time series y1, . . . , yn, respectively, was plotted to asses100

the correlation between the samples k steps apart (Figure S4, lag on x-axis). The Figure S4a shows101

values of the lag-k ACF against increasing values of k for unthinned chains. The autocorrelation values102

drop slowly for larger k for the parameters β, τE , τI , ppfu compared to the parameters V pfu
h (0) and103

V rna
h (0). Autocorrelation after thinning on Markov chains is displayed in Figure S4b.104

Trace plots in Figure S5 show the sampled values of the model parameters over time. This plot105

helps to judge how rapidly the MCMC process converges to marginal parameter posterior distribution.106

For the parameters β, τE , τI , ppfu and prna, the chains seem well burnt after approximately 2500 steps.107

We thus set the burn-in to double, i.e. 5000 steps. The thinned samples, after the burn-in was108

discarted, were used to generate the posterior parameter distributions in Figure 5 the main text.109

Statistical significance was quantified using a bootstrap t-test. To determine whether two math-110

ematical models of viral decay are statistically different (one model performs better then the other),111

we calculated the Akaike Information Criterion for small sample size AICC as112

AICC = n log

(
SSR

n

)
+ 2 k + 2 k

k + 1

n− k − 1
. (S10)

We then sampled (with replacement) 1000 parameter sets out of the total of 20000 parameter sets113

obtained from MCMC simulation for each viral decay model and calculated the fraction of times the114

AICC of one model was smaller than that of the other. We repeated the procedure one hundred times115

and calculated the final p-value as the mean of all bootstrap p-values.116
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Figure S1. Parameter posterior distributions and pair-wise posterior plots obtained from MCMC run
of the decay model for (a) encapsulated genomes (equation (1)) and (b-c) infectious virus (equations
(2)), assuming (b) exponentially distributed decay time (npfu = 1) and (c) gamma distributed decay
time (npfu = 8). The orange targets indicate the best-fit parameter values given in Tables (a) 2 and
(b-c) 3. The solid dark lines enclose the 95% credible regions.
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Figure S2. (a) Parameter posterior distributions and pair-wise posterior plots obtained from MCMC
run of the Weibull decay model (S5). The solid dark lines enclose the 95% credible regions. (b) The
best-fit of the model (S5) is displayed as a solid green line. The light shading around the best-fit
corresponds to the model kinetics associated with MCMC-accepted parameters. The dark shading
represents 95% credible region. Data are shown as the mean ± standard deviation.
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Figure S3. Simulated time course dynamics of infectious virus and encapsulated genomes yielded
by the model (3)+(4) using the best-fit parameters in Table 4 and taking timely extractions of the
supernatant into account. (a) low MOI infection dynamics, (b) high MOI infection dynamics. In both
figures, ‘no dilution adjustment’ refers to the continuous simulation whereas ’dilution adjustment‘
refers to the sequentially restarted simulation where we adjust for removal of the supernatant for
quantification.
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Figure S4. Graphical diagnostics of the MCMC run. Autocorrelation of the parameters as a function
of the sample lag in one of the (a) unthinned and (b) thinned Markov chains. Thinning was performed
using every tenth parameter set in each chain to reduce autocorrelation.
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Figure S5. Trace plots of the thinned MCMC chains.
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Tables138

Table S1. Parameter values obtained from fitting equations (S5) to infectious virus decay data and
95% CrRs were constructed from the MCMC fits of the model (S5).

parameter description value 95% CrR

τpfu decay time of infectious virus 34.14 [30.60, 37.57]
(h)
D scaling constant 2.06 [1.81, 2.33]

(dimension-less)

V pfu
0 initial infectious virus 8.82 [7.85, 10.28]

(×105 PFU/ml)
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