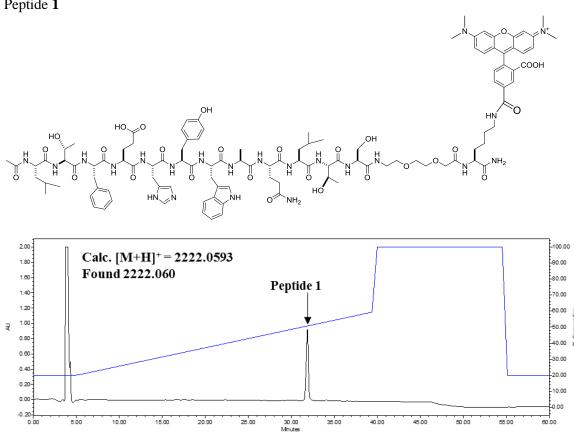
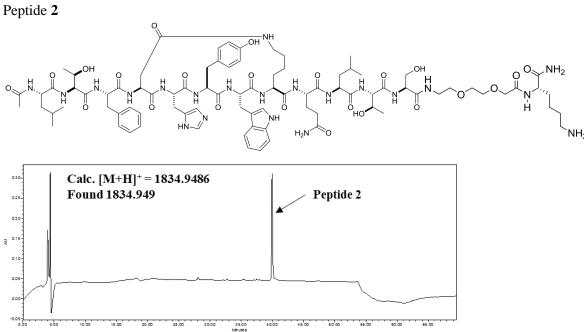
# **Enhancing the Cell-Permeability of Stapled Peptides with a Cyclic Cell- Penetrating Peptide**

Patrick G. Dougherty, Jin Wen, Xiaoyan Pan, Amritendu Koley, Jian-Guo Ren, Ashweta Sahni, Ruchira Basu, Heba Salim, George Appiah Kubi, Ziqing Qian, and Dehua Pei\*

# **Supporting Information**

# **Table of Contents**


| <b>Table S1</b> | S2  |
|-----------------|-----|
| Figure S1       | S3  |
| Figure S2       | S18 |
| Figure S3       |     |
| Figure S4       | S19 |
| Figure S5       | S20 |
| Figure S6       | S21 |
| Figure S7       | S22 |
| Figure S8       |     |
| Figure S9       | S24 |
| Figure S10      | S25 |
| Figure S11      |     |


 $\begin{tabular}{ll} \textbf{Table S1}. \ Purity \ and \ MS \ data \ of \ compounds \ \textbf{1-25} \\ \end{tabular}$ 

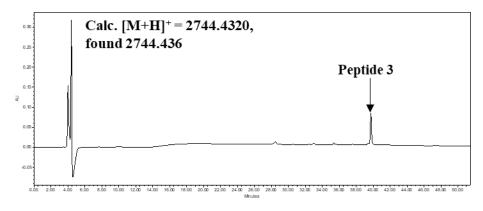
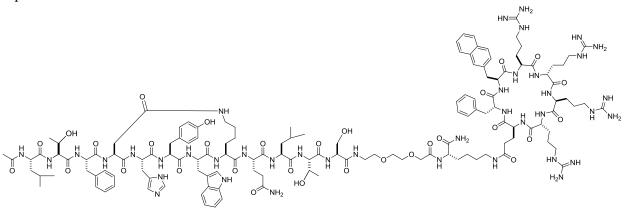
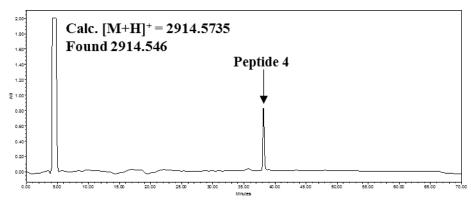
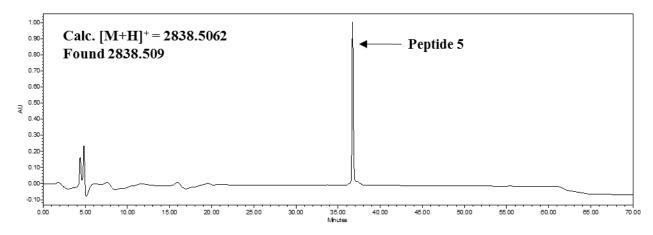

| Compound | HPLC Purity (%)          | [M+H] <sup>+</sup> calculated | HRMS [M+H] <sup>+</sup>       |
|----------|--------------------------|-------------------------------|-------------------------------|
| _        |                          |                               | observed                      |
| 1        | 95.23                    | 2222.0593                     | 2222.060                      |
| 2        | 95.71                    | 1834.9486                     | 1834.949                      |
| 3        | 95.59                    | 2744.4320                     | 2744.436                      |
| 4        | 97.71                    | 2914.5375                     | 2914.546                      |
| 5        | 95.62                    | 2838.5062                     | 2838.509                      |
| 6        | 97.27                    | 3417.8991                     | 3417.887                      |
| 7        | 98.81                    | 3281.8692                     | 3281.860                      |
| 8        | 97.50                    | 2388.0827                     | 2388.074                      |
| 9        | 96.41                    | 3444.8763                     | 3444.855                      |
| 10       | 97.95                    | 3948.2379                     | 3948.206                      |
| 11       | 96.62                    | 3812.2079                     | 1906.607 [M+2H] <sup>2+</sup> |
| 12       | 95.08 (combined 2 peaks) | 1702.7339                     | 1702.733                      |
| 13       | 97.75 (combined 2 peaks) | 3098.4969                     | 3098.505                      |
| 14       | 95.22                    | 2415.9871                     | 2415.989                      |
| 15       | 96.70                    | 3811.7507                     | 3811.728                      |
| 16       | 95.12 (combined 2 peaks) | 2286.9445                     | 2286.943                      |
| 17       | 95.76                    | 3682.7081                     | 1841.858 [M+2H] <sup>2+</sup> |
| 18       | 98.7                     | 2355.9956                     | 2355.990                      |
| 19       | 98.56                    | 3751.7592                     | 1876.382 [M+2H] <sup>2+</sup> |
| 20       | 98.53 (combined 2 peaks) | 2275.9503                     | 2275.950                      |
| 21       | 97.04                    | 3671.7139                     | 3671.692                      |
| 22       | 96.15 (combined 2 peaks) | 2291.9088                     | 2291.909                      |
| 23       | 94.13 (combined 2 peaks) | 3687.6725                     | 3687.656                      |
| 24       | 92.30 (combined 2 peaks) | 2420.9514                     | 2420.952                      |
| 25       | 98.73                    | 3816.7151                     | 3816.707                      |

Figure S1. Structures, purity (by reversed-phase HPLC), and HR-MS (FT-ICR) of peptides 1-25 used in this work. Note: Some of the dye-labeled peptides (12-25) eluted as two separate peaks, because the commercially available NF and FAM are mixtures of 5- and 6-carboxy isomers.

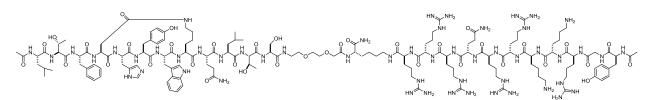

Peptide 1

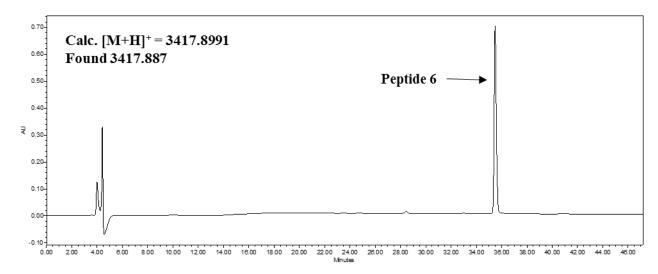





Peptide 4




Peptide **5** 



Peptide 6





30.00 Minutes 35.00

40.00

45.00

50.00

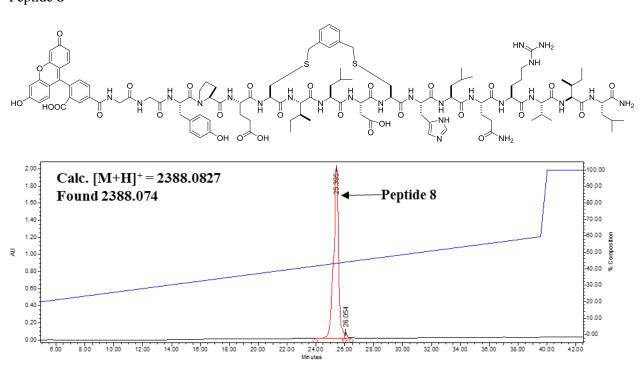
55.00

60.00

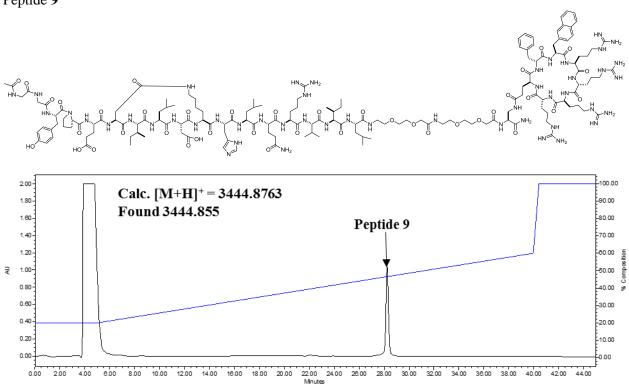
#### Peptide 8

0.00

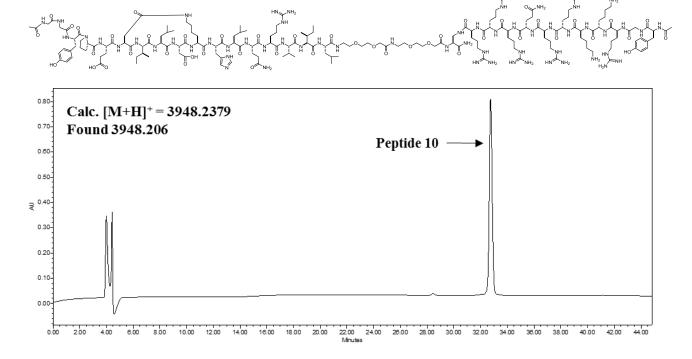
5.00

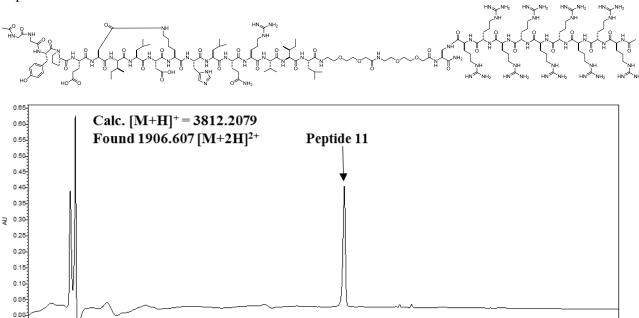

10.00

15.00


20.00

25.00

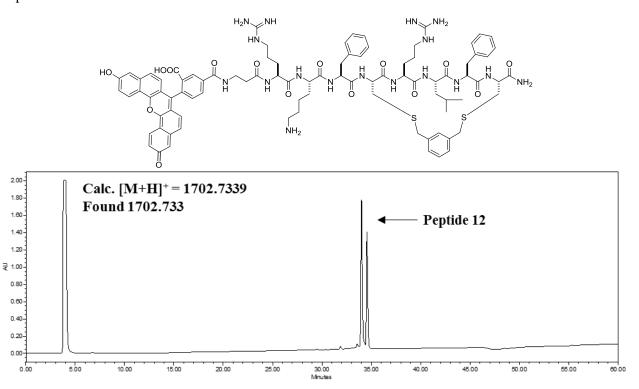

0.10



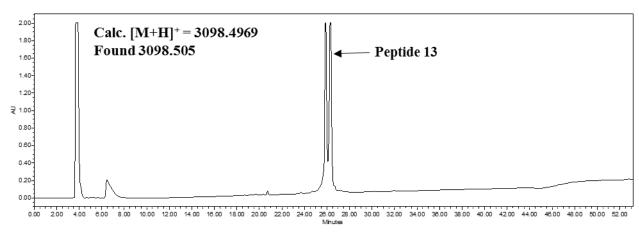

Peptide 9



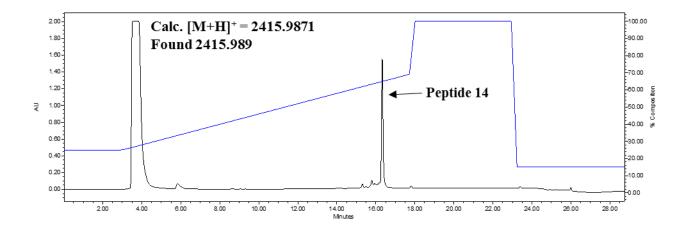


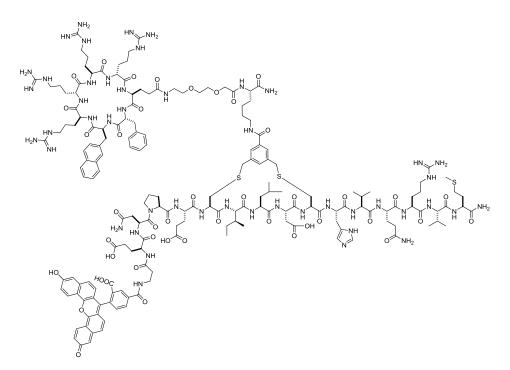


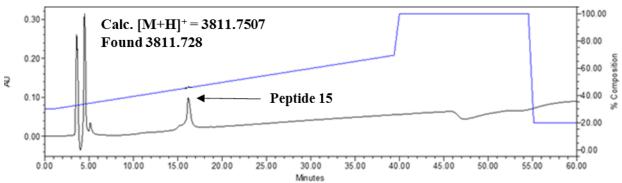




0.00 2.00 4.00 6.00 8.00 10.00 12.00 14.00 18.00 18.00 22.00 24.00 28.00 28.00 32.00 34.00 38.00 40.00 42.00 44.00 48.00 48.00 50.00 52.00 54.00 56.00 58.00 Minutes

Peptide 12


-0.05

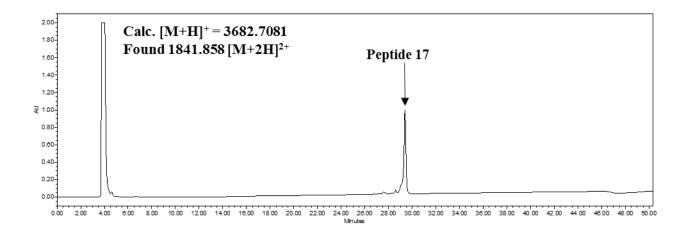


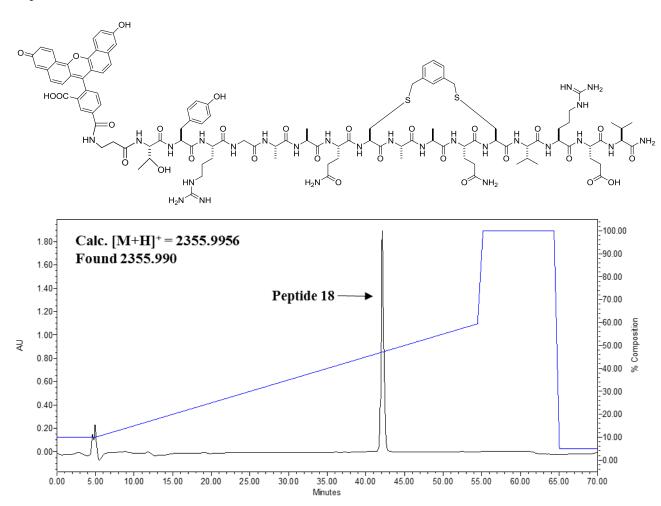


Peptide 13



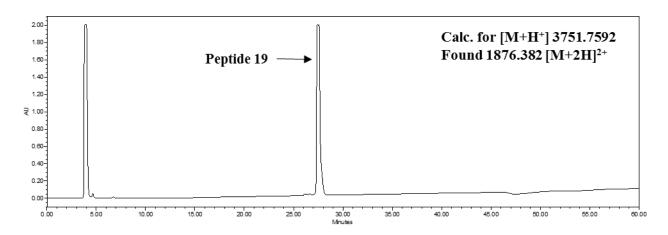
Peptide 14



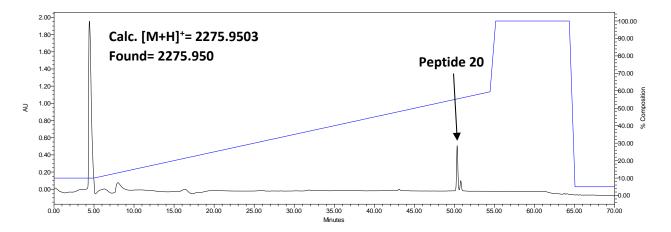


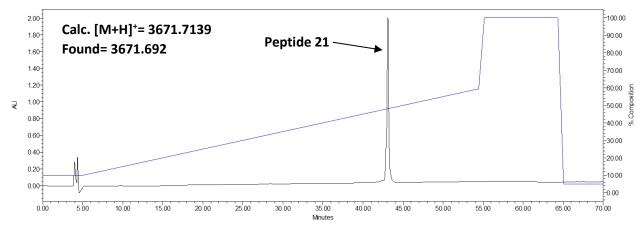

Peptide 16



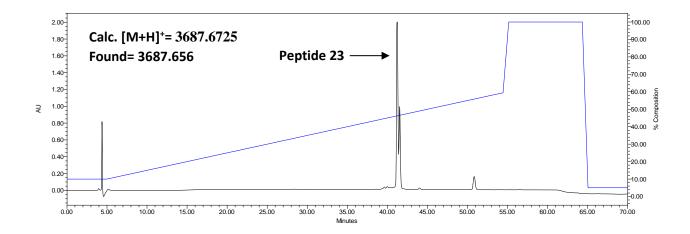

Peptide 17



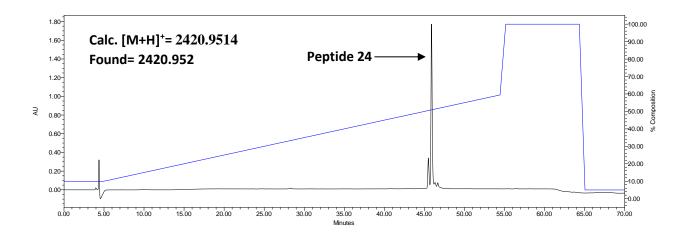




Peptide 19

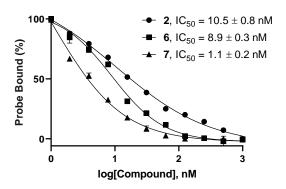



Peptide 20

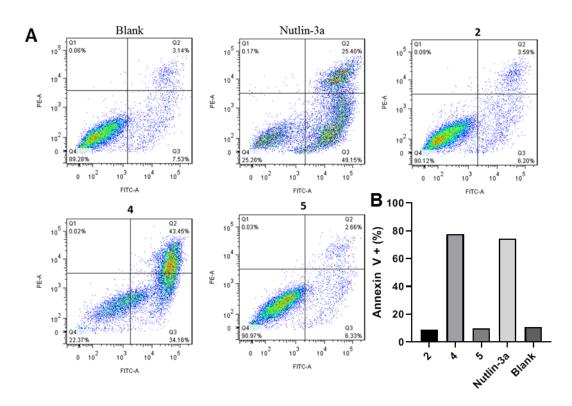



Peptide 21

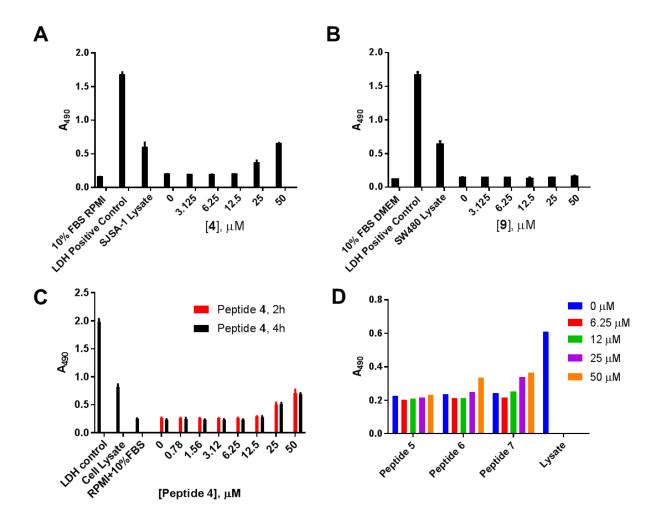



Peptide 22

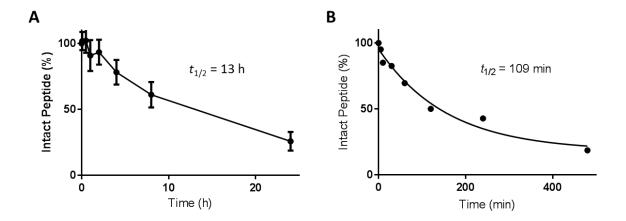



Peptide 24

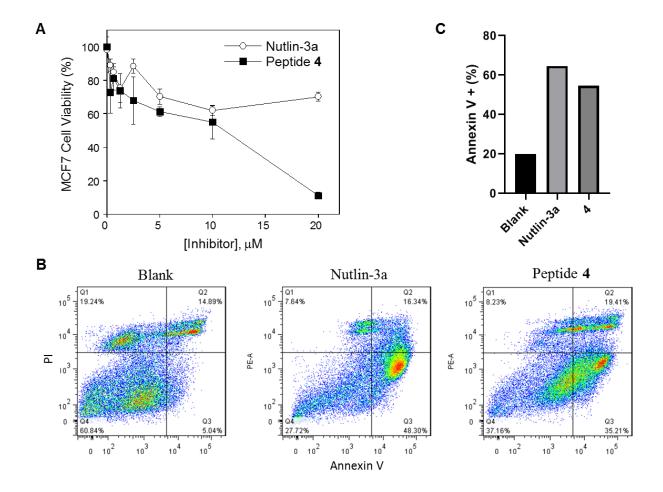



Peptide 25

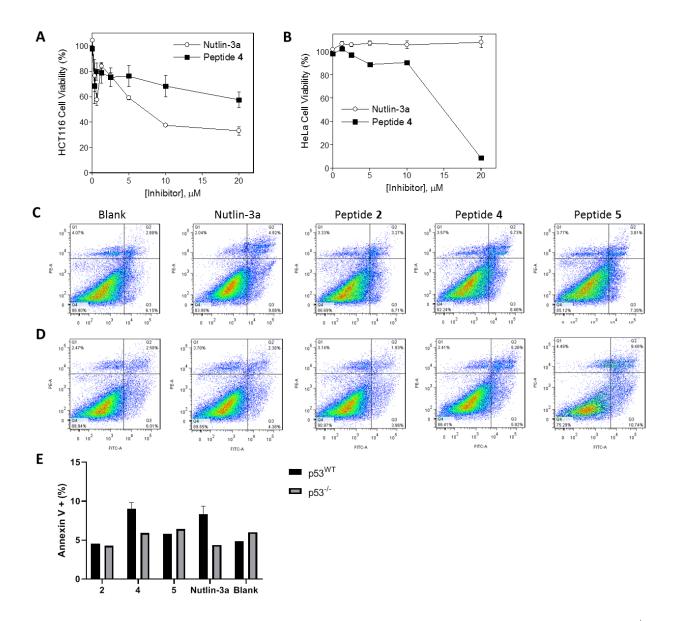



**Figure S2**. MDM2-binding affinity (IC<sub>50</sub>) of stapled PDI conjugated to Tat or R<sub>9</sub> (peptides **6** and **7**) as measured by FP-base competition assay. Reaction contained 15 nM peptide **1** (probe), 15 nM GST-MDM2, and indicated concentration of peptide **2**, **6**, or **7** in PBS (pH 7.4) containing 5 mM DTT and 0.01% Triton-X100. FP values are relative to those at 0 (100%) and saturating concentration of competing peptide (0%). Data reported represent the mean  $\pm$  SD of three sets of independent experiments.

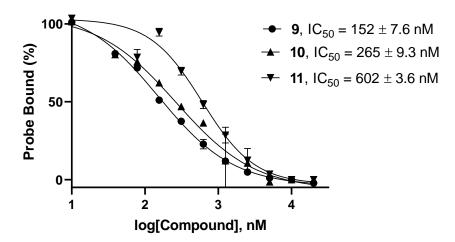



**Figure S3.** Apoptosis of SJSA-1 cells induced by MDM2 inhibitors. Cells were seeded in 12-well plates at a density of 1.0 x 10<sup>5</sup> cells/well in serum-free RPMI-1640 supplemented with 1% penicillin/streptomycin and incubated for 24 h at 37 °C in the presence of 5% CO<sub>2</sub>. Compound was added to each well (final concentration = 10 μM for peptide **4** and Nutlin-3a or 25 μM for peptides **2** and **5**) in fresh RPMI-1640 supplemented with 10% FBS and 1% penicillin/streptomycin. Cells were incubated for 48 h, stained with Annexin V and PI, and analyzed by flow cytometry. (A) Flow cytometry data for untreated cells (blank) and cells after treatment with nutlin-3a or peptides **2**, **4**, or **5**. (B) Percentage of apoptotic cells (populations in Q2 and Q3) after compound treatment, from (A).

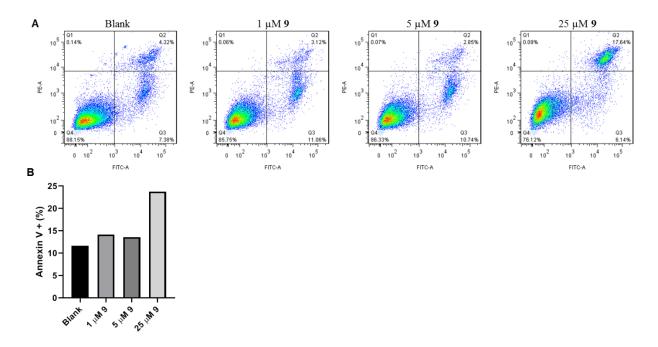



**Figure S4.** Lactate dehydrogenase (LDH) release caused by membrane disruption. (**A**) SJSA-1 cells treated for 45 min with 0-50  $\mu$ M peptide **4.** Data shown represent the mean  $\pm$  SD of three replicates from two independent experiments (n = 6). (**B**) SW480 cells treated for 45 min with 0-50  $\mu$ M peptide **9.** Data shown represent the mean  $\pm$  SD of three replicates from two independent experiments (n = 6). (**C**) SJSA-1 cells treated with peptide **4** for 2 or 4 h. Data shown represent the mean  $\pm$  SD of three independent experiments (n = 3). (**D**) SJSA-1 cells treated for 45 min with 0-50  $\mu$ M indicated peptides. Data shown were from a single set of experiments.

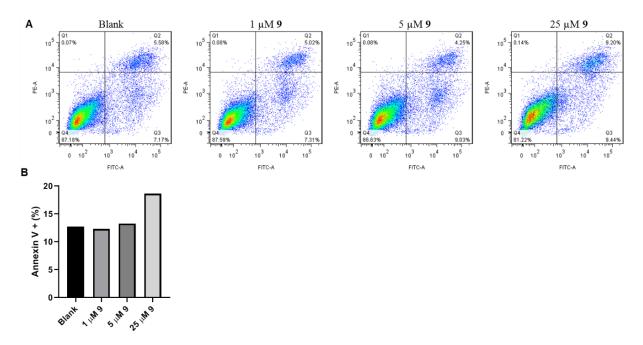



**Figure S5.** Stability of peptides **4** (**a**) and **9** (**b**) in human serum. Serum was diluted 1:4 in sterile DPBS (v/v) and equilibrated at 37 °C for 15 min. Peptide was added to the diluted serum to a final concentration of 100  $\mu$ M and incubated at 37 °C. At the indicated time points, 100- $\mu$ L aliquots were withdrawn, mixed with 100  $\mu$ L of 15% trichloroacetic acid (TCA) in MeOH (w/v) and 100  $\mu$ L of MeCN, and stored overnight at 4 °C. The samples were analyzed by RP-HPLC and the percentage of remaining peptide at a given time point was determined by integrating the peak area and compared it to that of the untreated control (100%). Data in (**a**) are the mean  $\pm$  SD of three independent experiments, where data in (**b**) were from a single set of experiment.

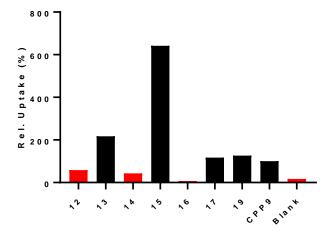



**Figure S6.** Induction of apoptotic death of MCF7 cells (which express WT p53 and display MDM2 and MDMX amplification) by peptide **4**. (**A**) Viability of MCF7 cells as a function of peptide **4** or nutlin-3a concentration (72 h treatment and in the presence of 10% FBS) as monitored by the MTT assay (n ≥ 3). (**B**) Annexin V/PI staining of MCF7 cells after treatment with MDM2 inhibitors. Cells were seeded in 12-well plates at a density of 1.0 x  $10^5$  cells/well in MEM supplemented with 10% FBS, 1% penicillin/streptomycin and incubated for 24 h at 37 °C in the presence of 5% CO<sub>2</sub>. Each well was washed with warm DPBS and compound (5 μM peptide **4** or Nutlin-3a) was added to each well in fresh MEM supplemented with 10% FBS, 1% penicillin/streptomycin. Cells were incubated for 48 h, stained with Annexin V and PI, and analyzed by flow cytometry. (**C**) Percentage of apoptotic cells (populations in Q2 and Q3) with and without compound treatment from (**B**).




**Figure S7.** Effect of peptide **4** on the viability of HCT116 and HeLa cells. (**A**) Viability of HCT116 p53<sup>+/+</sup> cells as a function of peptide **4** or nutlin-3a concentration (72 h treatment and in the presence of 10% FBS) as monitored by the MTT assay (n = 3). (**B**) Viability of HeLa cells (which express WT p53) under the same condition as in (**A**) (n = 3). (**C**, **D**) Annexin V/PI staining in HCT116 p53<sup>WT</sup> (**C**) and p53<sup>-/-</sup> cells (**D**). HCT116 cells were seeded into 12-well plates at a final density of 1.0 x 10<sup>5</sup> cells/well in RPMI-1640 supplemented with 10% FBS, 1% penicillin/streptomycin and incubated for 24 h at 37 °C, 5% CO<sub>2</sub>. Each well was washed with warm DPBS and compound (5 μM) was added to each well in fresh RPMI-1640 supplemented with 10% FBS and 1% penicillin/streptomycin and incubated for 48h. Cells were stained with Annexin V and PI, and analyzed by flow cytometry. (**E**) Percentages of HCT116 p53<sup>+/+</sup> and HCT116 p53<sup>-/-</sup> cells that are positive for annexin V (Q2 + Q3 populations) after treatment with 5 μM peptide **2**, **4**, **5**, or nutlin-3a in fresh RPMI-1640 supplemented with 10% FBS and 1% penicillin/streptomycin for 48 h. **Result**: Peptide **4** and nutlin-3a (but not peptide **2** or **5**) resulted in p53-dependent apoptosis in a smal fraction of p53<sup>WT</sup> cells (~5%), although HCT116 cells are less sensitive to MDM2-p53 inhibition than SJSA-1 and MCF7 cells.




**Figure S8.** Competition for binding to  $\beta$ -catenin by peptides **9-11**. Reaction contained 10 nM FAM-labeled peptide **8** as probe and 50 nM GST- $\beta$ -catenin in 20 mM Tris, pH 8.8, 300 mM NaCl, 0.01% Triton-X100 was pre-incubated for 1 h at RT. Serial dilutions of peptide **9-11** were prepared in the same buffer and mixed with the above equilibrated complex for 1 h at RT. Values are normalized to fully bound/unbound FP values for peptide **9-FITC**. Data shown represent the mean  $\pm$  SD of three independent experiments.



**Figure S9.** Annexin V/PI staining of SW480 cells after treatment with increasing concentrations of peptide **9**. Cells were seeded into 12-well plates at a final density of  $1.0 \times 10^5$  cells/well in RPMI-1640 supplemented with 10% FBS, 1% penicillin/streptomycin and incubated for 24 h at 37 °C in the presence of 5% CO<sub>2</sub>. The cells were washed with warm DPBS and treated with 0-25 μM peptide in fresh RPMI-1640 supplemented with 10% FBS and 1% penicillin/streptomycin for 48 h. Annexin V/PI staining was performed as described above. (**A**) Flow cytometry data for untreated cells (blank) and cells after treatment with 1, 5, or 25 μM peptide **9**. (**B**) Percentage of apoptotic cells (populations in Q2 and Q3) with and without compound treatment from (**A**).



**Figure S10.** Annexin V/PI staining of DLD-1 cells after treatment with increasing concentrations of peptide **9**. Cells were seeded into 12-well plates at a final density of  $1.0 \times 10^5$  cells/well in RPMI-1640 supplemented with 10% FBS, 1% penicillin/streptomycin and incubated for 24 h at 37 °C in the presence of 5% CO<sub>2</sub>. The cells were washed with warm DPBS and treated with 0-25 μM peptide in fresh RPMI-1640 supplemented with 10% FBS and 1% penicillin/streptomycin for 48 h. Annexin V/PI staining was performed as described above. (**A**) Flow cytometry data for untreated cells (blank) and cells after treatment with 1, 5, or 25 μM peptide **9**. (**B**) Percentage of apoptotic cells (populations in Q2 and Q3) with and without compound treatment from (**A**).



**Figure S11.** Comparison of the cytosolic entry efficiencies of unconjugated (peptides **12**, **14**, and **16**) and CPP9-conjugated peptides (peptides **13**, **15**, **17**, and **19**) as analyzed by flow cytometry at pH 6.5. HeLa cells ( $1.5 \times 10^5$  cells/well) were incubated with 0 (blank) or  $5 \mu M$  NF-labeled peptide for 2 h in the presence of 10% FBS. Cells were harvested and washed. Immediately before flow cytometry analysis, the pH of the cell suspension was lowered to 6.5 by the addition of 0.2 M glycine-HCl (pH 2.0) to quench the fluorescence of any cell surface-associated peptide. All values are relative to that of CPP9 (100%).