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Figure S1. Description of data quality metrics and Vcam1 enrichment strategy of arterial

and venous cells. Related to Figure 1.

(A) Bar plots of the number of reads for each cell (pre-QC) that is not aligned, not unique and
properly aligned, for all 4 replicates of young and aged cells (total 2,034 cells).

(B) (Left) Scatterplot of the number of reads versus the number of genes expressed per cell
(pre-QC). Cells are then filtered to retain those expressing at least 500 genes or at least
50000 aligned (mapped) reads. (Right) Relationship between fraction of genes
mitochondrial genes and fraction of ribosomal genes, for each cell. Only cells which have
<10% mitochondrial genes and <10% ribosomal genes are depicted. Cells are colored by
aged (red) or young (blue).

(C) Number of reads and genes detected per biological replicate (see Table S1) for each
experimental condition (Aged vs Young, PBS vs LPS, AMP vs PBS, and YMP vs PBS).

(D) Ratio of all sorted cells (based only on CD31°CD45") that identifies as either arterial (A) or
venous (V) in segmental identity (based on the expression of at least /2 canonical marker
genes), for both aged and young mice. Note the break in the axes. Error bars represent
stdev.

(E) Volcano plots of the top DEGs between Vcam1* and Vcam1 cells in either arterial or venous
populations. Note the transcriptional activation of Vcam1* cells in both populations. Dotted
heatmaps show the average expression level of key arterial and venous defining markers
and the relative differences in percent expression in Vcam1* and Vcam1 populations. Ideal
arterial and venous markers should not be differentially expressed between Vcam1*”
populations, in order encompass the range of arterial and venous cells.

(F) The total number of cells collected from each replicate that identifies as A, C or V, based on
unbiased transcriptome clustering, after the addition of VCAM1-enriched samples (~20% of
all cells).

(G) Number of venous cells in this dataset expressing //1r1 or Nr2f2 at various levels. Number of
arterial cells in this dataset expressing Cdh13 or Efnb2 at various levels.

(H) Quantification of RNA in situ hybridization of Cdh13 and //1r1 in arterial (Vwf'Acta2’) and
venous (Vwf'Acta2) cells, respectively (Cdh13: n=45 (Arterial) and 89 (Venous); /I1r1: n=36
(Arterial) and 92 (Venous)).
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Figure S2. Identification of putative zonation markers in the Allen ISH Brain Atlas.
Related to Figure 1.

Representative images from the Allen ISH Brain Atlas demonstrating the expression of arterial
(Cdh13, Clu, Mgp, Stmn2) and Venous (Tmsb10, ll1r1, Cfh, Ctsc, Cldn5) genes in hippocampal
vasculature. Scale bars (from Left to Right, Top to bottom = 350 pym, 362 pym, 326 ym, 131 um,
125 ym, 163 um, 300 pm, 350 pm, 350 pym, 175 ym, 175 ym, 175 um, 350 pym, 300 uym, 350
pm, 210 ym, 210 ym, 210 pm).
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Figure S3. Analysis of DEGs in LPS treated over PBS treated mice. Related to Figure 2.

(A) Ratio of A-C-V cells collected in LPS-treated and untreated mice through unbiased
CD31*CD45" sorting remains largely unchanged.

(B) Volcano plot of differentially expressed genes (red: FDR<0.1) when LPS-treated capillaries
are compared to PBS-treated capillaries.

(C) Density plots of key genes from showing the single cell distributions of expression levels in
A, C and V segments. Dotted lines indicate median of the LPS- or PBS-treated sample
distributions. All comparisons shown between LPS- and PBS-treated are significant
(p<0.05).

(D) Scatterplot showing the genes which are commonly and oppositely differentially expressed
(FDR<0.1 in both) between aging capillaries and LPS-treated capillaries. Notes the relatively
low number of commonly upregulated DEGs (blue). Commonly downregulated genes
(green), differentially upregulated with LPS but downregulated with age (orange), and

differentially downregulated with LPS but upregulated with age (purple) are also shown.
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Figure S4. Analysis of aging-related DEGs. Related to Figure 3.

(A) Violin plots of the expression levels of various endothelial, mural cell and parenchymal cell
markers in the dataset.

(B) Density plots of key genes from showing the single cell distributions of expression levels in
A, C and V segments. Dotted lines indicate median of the young or aged distribution. *p<0.1,
**p<0.01, ***p<0.001.

(C) Violin plot of the permuted distribution (when cell age labels are shuffled) of average log fold
changes for several genes of interest. All genes show true observed values well above the
95" percentile of the permuted distribution.

(D) Violin plot of log2CPM or B2m and IltmZ2a in aged vs young capillaries, which were validated
via RNAscope.

(E) Dotted heatmap of the average logx(fold change) and statistical significance of genes
associated with Alzheimer’s disease and organismal aging as they change with age in
arterial, capillary and venous cells.

(F) Correlation heatmap of the expression level of the top 125 aging-associated DEGs in
capillaries. Bottom and top inset (of the green boxes) show the higher level of correlation

between specific DEGs.
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Figure S5. Analysis of aging-related DEGs, validation of Vcam1 enrichment strategy,
analysis of sequencing-associated differences between aged and young BECs. Related
to Figure 3.

(A) Regulatory motif enrichment analysis of the top 125 aging-associated DEGs in capillaries
was performed using HOMER. For each putative de novo motif, the percentage of target
(aging DEGs) vs background genes is depicted. Genes of interest in this study are
highlighted in red.

(B) Distribution of Vcam1 expression in (Left) venous and (Right) arterial cells in aged and
young BECs.

(C) Comparison of the signed p-value (log.FC*-log1o(FDR)) of each DEG calculated from using
only unbiasedly sorted or VCAM1-enriched (Left) venous or (Right) arterial cells. DEGs in
the top 50" percentile (ranked by FDR) derived using the VCAM1-enriched datasets are
labeled in red.

(D) Accuracy analysis with ERCCs showing the relationship between the number of input ERCC
molecules and the number detected by scRNAseq, for both aged and young cells.

(E) Sensitivity analysis with ERCCs showing the number of ERCC molecules to reach 50%
probability of detection, in either aged or young cells.

(F) Forward vs backscatter (from flow cytometry) of aged and young endothelial cells. Violin plot
comparison the FSC (representative of size) between aged and young cells.

(G) Violin plots of the concentration of cDNA for each cell after 22 cycles of PCR amplification,
the number of unique genes detected, and the sequencing depth, for aged compared to

young cells.
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Figure S6. Analysis of DEGs associated with AMP treatment and overlaps with normal

aging. Related to Figure 4.

(A) Ratio of A-C-V cells collected via unbiased CD31°CD45 CD11b" sorting remains largely
unchanged in AMP- versus PBS-treated mice.

(B) Scatterplot showing the genes which are oppositely differentially expressed (FDR<0.1 in
both) between aging and AMP-treated venous cells. Note the relatively low number of
common DEGs (red).

(C) Scatterplot showing the genes which are oppositely differentially expressed (FDR<0.1 in
both) between aging and AMP-treated arterial cells. Note the relatively low number of
common DEGs (red).

(D) GO analysis of the pathways enriched in the genes upregulated and downregulated with
AMP treatment (compared to PBS)

(E) Scatterplot of the signed p-values (-logio(FDR)*log2FC) for each gene. Genes differentially
up- and down-regulated are marked in red. Top scoring genes are labeled.

(F) Scatterplot of the mean log.CPM values of all genes in either AMP-treated or aged BECs.
Common DEGs between the two conditions (B) are depicted in red. Top expressed genes
are labeled. Note that all common DEGs are more highly expressed in AMP treatment than
normal, disease-free aging.

(G) Violin plot of the permuted distribution (when cell treatment labels are shuffled) of average
log fold changes for several genes of interest in capillary cells, and the relative positions of

the true observations and the 95™ percentile of the permuted distributions.
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Figure S7. Analysis of DEGs associated with YMP treatment and overlaps with normal

aging. Related to Figure 5.

(A) GO analysis of the pathways enriched in the genes up- and down-regulated with YMP
treatment (compared to PBS).

(B) Scatterplot of the signed p-values (-logio(FDR)*log2FC) for each gene. Genes differentially
up- and down-regulated are marked in red. Top scoring genes are labeled.

(C) Scatterplot of the mean log.CPM values of all genes in either YMP-treated or aged BECs.
Common DEGs between the two conditions (B) are depicted in red. Top expressed genes
are labeled in blue.

(D) Violin plot of the permuted distribution (when cell treatment labels are shuffled) of average
log fold changes for several genes of interest in capillary cells, and the relative positions of

the observations and the 95™ percentile of the permuted distributions.
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Figure S8. Analysis of DEGs intersecting with normal aging, AMP treatment and YMP

treatment. Related to Figure 6.

(A) Bubble plots of key genes grouped by function, and their log fold change values in each
condition (Aged/Young, YMP/PBS, AMP/PBS). Gene of interest are highlighted in grey.

(B) Regulatory motif enrichment analysis of the 42 “tri-intersecting” DEGs (upregulated with
aged, AMP and downregulated with YMP) in capillaries was performed using HOMER. For
each putative de novo motif, the percentage of target (DEGs) versus background genes is
shown. Genes of interest in this study are highlighted in red.

(C) Heatmap of the expression level of expressed genes encoding surface receptors in arterial,

venous or capillary cells.



Table S1. Distribution of numbers of mice, cells and independent sequencing runs. Related to Figure 1.

Condition # mice | #cells # sequencing # mice per run
Past runs spread Runl | Run2 | Run3 | Run4 | Run5 | Run6 | Run7 | Run8 | Exps
(QC) over
Healthy Young | 6 981 4 3 1 1 1 4
Healthy Aged | 6 1053 4 3 1 1 1 4
LPS 2 156 2 1 1 2
PBS 2 276 2 1 1 2
Young + AMP | 4 333 3 1 1 2 3
Young + PBS 4 205 3 1 1 2 3
Aged +YMP 4 256 2 2 2 2
Aged + PBS 4 121 2 2 2 2
Total 32 3381
Aging | Expl | Exp2 | Exp3 | Exp4
LPS Expl | Exp2
AMP Expl | Exp2 | Exp3
YMP Expl | Exp2




SUPPLEMENTARY TABLES

Table $1
Table outlining the experimental layout (humber of mice, number of sequencing runs spread out

over) for each treatment condition.





